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ABSTRACT
Self-adaptive systems (SAS) need to reflect on the current envi-

ronment conditions, their past and current behaviour to support

decision making. Decisions may have different effects depending

on the context. On the one hand, some adaptations may have run

into difficulties. On the other hand, users or operators may want

to know why the system evolved in a certain direction. Users may

just want to know why the system is showing a given behaviour

or has made a decision as the behaviour may be surprising or not

expected. We argue that answering emerging questions related to

situations like these requires storing execution trace models in a

way that allows for travelling back and forth in time, qualifying

the decision making against available evidence. In this paper, we

propose temporal graph databases as a useful representation for

trace models to support self-explanation, interactive diagnosis or

forensic analysis. We define a generic meta-model for structuring

execution traces of SAS, and show how a sequence of traces can be

turned into a temporal graph model. We present a first version of a

query language for these temporal graphs through a case study, and

outline the potential applications for forensic analysis (after the sys-

tem has finished in a potentially abnormal way), self-explanation,

and interactive diagnosis at runtime.

CCS CONCEPTS
• Software and its engineering → Software system models;
Extra-functional properties; Designing software; • Comput-
ing methodologies;

KEYWORDS
Self-explanation, Temporal Graph Models, Runtime models, Self-

adaptation

1 INTRODUCTION
In [31], it is argued that self-explanation shown by the running

system helps someone diagnosing the behaviour of the system to

analyze and trace past actions, helping fix potential faults and fos-

tering the trust of the end users. To enable these capabilities, we

argue that self-adaptive systems should be equipped with traceabil-

ity management facilities and offer temporal links to provide (i)

the impacts of the adaptation actions over the quality properties

of the system over time and (ii) the history of the decisions of the

system and the evidence that supports the decisions made with the

environmental conditions observed.

In this paper we offer the first contributions towards allowing the

system to support explanations to operators and end users based on

a generic meta-model. Specifically, we define a generic meta-model

for structuring execution traces of SAS, and show how a sequence

of traces can be turned into a temporal graph model. We present a

first version of a query language for these temporal graphs based on

specific cases related to a case study. Our solution relies on temporal

model-based graphs that abstracts decisions, evidence collected and

their corresponding estimated impacts on quality properties of the

system. We foresee two potential applications of our approach:

forensic analysis of SAS once the system has finished, and self-

explanation supported by the self-adaptive system at runtime.

The paper is organised as follows. Section 2 presents the basic

concepts in self-explanation and temporal graphs needed to under-

stand the rest of the text. Section 3 describes our proposed approach

for creating frameworks for reusable self-explanation, and outlines

our proof of concept implementations of the key components. Sec-

tion 4 presents a case study on an existing self-adaptive system,

together with a number of time-aware queries targeted at users

and developers. Section 5 relates this work to others in the fields

of self-explanation and model versioning. Section 6 concludes the

paper with some general remarks and our lines of future work.

2 BACKGROUND
This section will present some of the basic concepts that underlie

our proposal: the need for self-explanation in self-adaptive system,

and our specific choice among the various definitions available in

the literature for temporal graphs.

2.1 Self-explanation and diagnosis in
self-adaptive systems

Our increasing reliance on software systems hasmade self-adaptation

a expected capability. However, self-adaptation actions may run

into problems or unexpected behaviour due to uncertainty in the

environment [11]. Therefore, end users may require explanation

about the reasons the system is showing the current behaviour

and specifically why it has made particular adaptations actions

that were not expected. Further, in case of a failure, the operators

may perform diagnosis during runtime, or forensic studies after

the system has terminated, to therefore identify the origins of the

failure. Surprisingly, this area of research has been rather limited

with scarce research efforts. We describe some of the few initiatives

below.

Early work has been done by Roth-Berghofer et al [7, 28] on

Explanation-aware Computing. The main idea was to help design-

ers and engineers to create explanations for users. The explanations

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Email exchange example of a temporal graph by
Kostakos [21]

should cover why specific services were recommended and how

the system infers that the end user will agree, and therefore main-

tain the end user satisfied by the recommendations. In their work

explanation generation was an aim.

More recently, the need of self-explanation in self-adaptive sys-

tems was argued in [3, 29, 31]. The authors claim the behaviour of

self-adaptive systems is emergent, and means that the behaviour

exposed by the running system may be seen as unexpected by its

end users or its developers. They further argue that trust in the

system and the resolution of the surprising behaviour can only be

achieved if a self-adaptive system is also capable of self-explaining

itself [29]. In [10] we presented how traceability (i.e. following the

life of a requirement) and versioning (i.e. keeping track of how a

specific artifact evolved over time) are needed for self-explanation

and diagnosis. More recently, in [23], the authors present a tem-

poral model to support interactive diagnosis of adaptive Systems.

The authors describe a temporal data model to represent, store and

query decisions as well as their relationship with the context, re-

quirements, and adaptation actions. Self-explanation and diagnosis

support is still a young research area that needs more research

efforts.

2.2 Temporal graphs
A graph is a well-understood concept in computer science: in its

most basic form, it is a collection of nodes with edges connecting

them, which may be directed or undirected. There is a number of

ways to extend the concept of a graph with the time dimension: in

this section we will present three, one of which is the base for our

proposal.

Kostakos [21] was one of the first to use the term temporal graph,
as a graph encoding of a temporal dataset of events. Kostakos’

proposal includes an example where the email exchanges between

a number of people through time are transformed into a temporal

graph like the one in Figure 1 in three steps:

(1) One node is created per person and point in time when it

sent an email: a person A would have nodes At1, At2 and so

on.

timeti+1ti
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owns

friend

Bob

Eve
owns

friend

Bob
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watched owns
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Bob
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Figure 2: Example of a time-evolving temporal graph, by
Hartmann et al. [13]

(2) Directed edges are used to link the various nodes of a person

into a sequence. The edges have weights equal to the time

elapsed between the two timepoints.

(3) Unweighted directed edges are used to link people who ex-

changed emails at a specific timepoint: for instance, an edge

from At3 to Bt3 means that at timepoint 3, A sent an email

to B.

This representation lends itself well to variants of traditional

graph metrics, such as temporal distance between two people, or

the temporal availability of a path from one person to another (i.e.

whether there is a chain of emails from one person to another while

considering time ordering). It uses discrete time, where timepoints

act as timeslices and events are assumed to be instantaneous.

In a later survey of temporal networks by Holme and Sarä-

maki [15], this type of graph with instantaneous edge activations is

called a contact sequence, and another type of temporal network is

identified: interval graphs, where edges are active over a set of time

intervals rather than at specific timepoints. Holme and Sarämaki

mentioned in the same survey how the use of temporal networks

was becoming common across multiple disciplines, and no stan-

dardized notation had been set out yet.

Regardless, these two previous works consider temporal graphs

to be rearrangements of a sequence of events between persistent

entities, which may or may not be instantaneous. In contrast, Hart-

mann et al. consider temporal graphs as attributed labelled graphs
1

whose state evolves over time [13]. In the most naive approach,

one would think of simply storing each version of a time-evolving

graph as separate snapshots, and to visit each snapshot as needed.

Unfortunately, the space requirements for such a naive solution

would skyrocket as we increase the number of timepoints, and the

time needed to visit the various versions would raise as well. In

the same paper, Hartmann et al. specifically considered Internet

of Things devices and cyber-physical systems, where a network of

sensors may be picking up readings frequently over a long period

of time, at different rates.

Hartmann et al. proposed a more efficient data model and storage

mechanism for these temporal graphs, and made it available as the

1
Attributed graphs have key-value pairs in their nodes and edges, and labelled graphs

classify nodes and edges into equivalence sets, e.g. “person” nodes and “emailed” edges.

Neo4j is a well-known implementation of this data structure.
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Greycat open source project
2
. In this data model (shown in Figure 2),

the graph is stored as a collection of nodes, which are conceptual
identifiers that are mapped to specific state chunks depending on

the world and timepoint chosen to visit it. Nodes have a lifespan

between two specific timepoints, and within that lifespan they may

take on a sequence of state chunks. Each state chunk appears at a

specific timepoint and overrides any previous state chunk.

In the example in Figure 2, during timepoint i + 1 a “watched”
edge is created from “Eve” to “Video”, and in i + 2 “Alice” enters
the graph and posts a “friendReq” to “Bob”. Instead of storing the

three full graphs outright, we only create new state chunks for “Eve”

and “Alice” as needed, using a copy-on-write style. State chunks are
keyed by node, time and (in Greycat) byworld. This third coordinate
makes it possible to “fork” the graph into multiple branching paths,

which enables what-if analyses.

The approach presented in this paper adopts the data model by

Hartmann et al. of an evolving labelled attributed graph. If we can

turn the models that the system operates upon into this type of

temporal graphs, we could allow the system to reflect on what it

has been doing in the long and the short term, and provide clear

explanations about its history to the user.

3 PROPOSED APPROACH
Our end goal is to develop a generic and reusable framework to

allow self-adaptive systems using the models@run.time approach

to reflect upon their past execution and to improve the explanations

provided to the users about their behaviour. In this section we will

describe the various components that we see as necessary to achieve

this goal. The next section will present an initial case study for a

SAS which must choose between multiple configurations.

3.1 Problem-independent execution trace
models

Self-adaptive systems are generally built as feedback loops (e.g.

those following the MAPE-K architecture [18]). At each timepoint

or time slice, observations are made and analysed, then future be-

haviour is planned, and those plans are executed. Since we want

to make the queries on the execution history reusable, the his-

tory must be expressed in a language that can be reused across

multiple problems (e.g. network management and smart grids).

Whether the language could be further reused across multiple types

of self-adaptive systems would require further research. It may be

necessary to allow extending these metamodels to accommodate

algorithm-specific details.

As an example of a potential execution trace metamodel for

self-adaptive systems that need to switch between multiple con-

figurations, consider the metamodel shown in Figure 3. At the top

level, the Log for a time slice records the requested non-functional

requirements as NFR objects (which have specific satisficement

thresholds between 0 and 1), together with the Metrics to be mea-

sured to check their satisficement, and the alternative Actions

that can be taken. These are used in the various Decisions that

must be taken by the system. The system is pre-configured with a

RewardTable linking the satisfaction of certain NFR with certain

Actions to a reward value. These rewards may evolve over time.

2
https://github.com/datathings/greycat

Each Decision is based on an Observation of the environment,

which produces a set of Measurements of the Metrics. In this

version of the language we do not include specific values, but rather

between which of the various Thresholds the value was. For in-

stance, if we had three thresholds x and y with values 10 and 20,

position 0 would be for x < 10, position 1 would be 10 ≤ x < 20,

and position 2 would be x ≥ 20. Using these measurements, the sys-

tem would derive a set of beliefs about the satisficement of the NFR

and the value of the different Actions, and finally pick a specific

Action from the Decision.

3.2 Transparent temporal graph storage
The next part of the approach is to store the models themselves

in a temporal graph to facilitate querying. In the literature, there

are essentially two approaches to integrate graph databases with

modelling technologies: changing the storage layer of the system

directly (as implemented by NeoEMF [6]), or having an external

system watch the existing storage and update the graph when

changes are detected (as done by our Hawk [9] tool).

Either option is valid, but we chose Hawk as it had a number of

advantages over NeoEMF for this problem. First, using Hawk does

not require modifying existing systems: Hawk has a component-

based architecture, making it possible to change the database tech-

nology, graph updating algorithms and supported model storage

locations to fit the situation. In addition, Hawk has been specifically

designed to detect the parts of a model that have changed, and only

changes the subgraph that is impacted by these changes [1].

In our implementation, we have extended Hawk with the ability

to use Greycat as a backend. We have also extended Hawk with

a time-aware version of the incremental graph update algorithm,

which tells time-aware backends (i.e. Greycat) to “travel in time” to

the timepoint when the change has been introduced before applying

the detected changes. This allows for the preservation of the original

graph at the previous timepoint, making it possible to travel back

and forth in time to answer queries about the history of the trace

execution model.

3.3 Reusable time-aware query language
Having a convenient way to write queries over the history of the

graph is another important ingredient for reusable self-explanation.

To simplify adoption, the most direct approach is to start from an

existing model querying language (e.g. OCL), and then add the

ability to traverse the history of a model element or a type through

their lifespans. Our definitions for the history of a model element

and a type are as follows:

• The history of a model element starts from the moment it is

created, and ends when it is destroyed. Model elements are

assumed to have a unique identity, which could be a natural

or artificial identifier or its location within the model. There

will be a new version of a model element every time its state

changes, whether by changing the value of an attribute or

the target of one of its references to other model elements.

• Model element types are considered “immortal”, in the sense

that they are created at the first timepoint in the graph and

last to the virtual “end of time” of the graph. We will have a

https://github.com/datathings/greycat
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Log

Decision

name : EString

Observation

description : EString

probability : EDouble = 0.0

Measurement

measurementPosition : EInt

Metric

name : EString

Threshold

name : EString

value : EDouble = 0.0

NFRBelief

estimatedProbability : EDouble = 0.0

ActionBelief

estimatedValue : EDouble = 0.0

Action

name : EString

NFR

name : EString

threshold : EDouble = 0.0

RewardTable

NFRSatisfaction

satisfied : EBoolean = false

RewardTableRow

value : EDouble = 0.0

[0..*] decisions

[0..*] actions
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[0..1] rewardTable

[0..*] nfrBeliefs

[0..*] actionBeliefs[0..1] observation

[0..1] actionTaken[0..*] measurements[0..1] metric
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[0..1] nfr

[0..1] action

[0..*] rows

[0..1] nfr
[0..*] satisfactions

[0..1] action

Figure 3: Execution trace metamodel for a decision-based self-adaptive system

new version of a model element type every time an instance

of the type is created or destroyed.

For model elements and model element types, we consider these

to be the basic time-aware operations that must be supported by

the temporal graph backend (e.g. Greycat): i) retrieving all versions,

ii) all versions within a range, iii) versions from/up to a certain

timepoint (included), iv) earliest/previous/next/latest version, and

v) retrieving the timepoint for that version.

Our approach is heavily inspired by the “history” fields proposed

by Rose and Segev during their work on temporal object-oriented

data models in the 90s [27]. Rose and Segev went further in their

proposal, suggesting the availability of per-field histories and a

wider variety of predicates covering linear temporal logic. We are

considering providing pre-defined versions of these additional fa-

cilities on top of the basic primitives above.

For our proof-of-concept implementation, Hawk already had

most of the elements, as it came with a number of backend-specific

and backend-agnostic query engine components. The most mature

query language at the time of writing is a dialect of the Epsilon

Object Language (EOL) [20], essentially a mix between JavaScript

and OCL. It was a matter of defining a new query engine based on

the EOL one with additional support for the previous primitives:

Table 1 lists the syntax for these new primitives.

3.4 Reusable visualizations
The last piece in the puzzle would be to have a reusable set of

visualizations for a certain class of self-adaptive system. These

could be dashboards with the key instants in the self-adaptive

Operation Syntax

All versions, from

newest to oldest

x.versions

Versions within a range x.getVersionsBetween(from, to)
Versions from a time-

point (included)

x.getVersionsFrom(from)

Versions up to a time-

point (included)

x.getVersionsUpTo(from)

Earliest / latest version x.earliest, x.latest
Next / previous version x.next, x.prev/x.previous
Version timepoint x.time

Table 1: Implemented time-aware primitives in the Hawk
EOL dialect, for a model element or type x

system, to allow users to jump to the main changes in behaviour

that were introduced automatically, or a predefined sequence of

“why”-form questions for common queries: why was it doing this

at that time, why did it stop doing the previous action, why did it

reason that was beneficial, why was the reasoning process in such

a state, and why was the user configuration like that.

Adding these visualizations to a system should require less ef-

fort once we have achieved the definition of a standardized trace

metamodel, and have reusable temporal storage and querying ca-

pabilities that we can always start from. The visualizations would

be backed by time-aware queries, and could be packaged together
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Figure 4: RDM Case Study

with the configuration of the self-adaptive system for a specific

problem domain.

Beyond getting the data, another challenge is finding an accessi-

ble way to present it, which steps into the realm of human-computer

interaction and is outside the scope of this paper. Regardless, at this

stage the reusable visualizations remain as a future line of work.

4 CASE STUDY: DECISION-MAKING SAS FOR
NETWORKS

As an example to demonstrate the feasibility of the ideas proposed,

let us consider the case of the Remote Data Mirroring (RDM) self-

adaptive system (SAS). RDM is a technique to protect data against

inaccessibility to therefore provide further resistance to data loss

[17, 26]. An RDM maintains data availability and prevents data loss

by storing copies (i.e., replicates) on servers (i.e., data mirrors) in

physically remote locations [8].

Fig. 4 presents the R-POMDP (Relational Partially Observable

Markov Decision Process [22]) model of the RDM SAS for a given

IT network infrastructure which has been used as the case studies

in [2, 25].

The RDM described above has been designed to be configured

by using two different topologies: minimum spanning tree (MST)

and redundant topology (RT). These two possible configurations

allow the RDM selectively activate and deactivate network links to

change its overall topology at runtime [8].

The RDM SAS self-adapts reconfiguring itself at runtime accord-

ing to the changes in its environment, which may include either

delayed or dropped messages and network link failures. Each net-

work link in the RDM brings upon an operational cost and has a

measurable throughput, latency, and loss rate. The performance and

reliability of the RDM are determined by these metrics according

to the following trade-off: while RT is more reliable than MST, RT

can be prohibitively more expensive than MST in some contexts.

Each configuration provides its own levels of reliability and energy

costs which are taken into account while estimating the levels of

Listing 1: Excerpt of the original JSON trace execution logs
from the Remote Data Mirroring self-adaptive system

1 {

2 "0": {

3 "current_belief_mec_true": 0.5,

4 "current_belief_mr_true": 0.25,

5 "current_observation_code": −1,

6 "current_rewards": [

7 [90.0, 45.0, 25.0, 5.0],

8 [100.0, 10.0, 20.0, 0.0]

9 ],

10 "ev.mst": 465.104345236406,

11 "ev.rt": 326.710194366562,

12 "flagUpdatedRewards": 0,

13 "observation_description": "None",

14 "observation_probability": 0.0,

15 "selected_action": "MST"

16 },

17 "1": {

18 "current_belief_mec_true": 0.94, ...

19 },...

20 }

satisficement of the NFRs observed, the Maximization of Reliabil-

ity (MR) and the Minimization of Energy Consumption (MEC). As

such, and RDM makes decisions about the topologies to use. The

operators may find themselves asking the reasons why the RDM

SAS has used one topology instead of the other.

The states of these NFRs are not directly observable. Observa-

tions about their states are obtained by using monitoring variables

(called MON variables). Two MON variables REC=“Ranges of En-

ergy Consumption" and NCC=“Number of Concurrent Connec-

tions" has been specified. In [24], we have shown the requirements

specification based on Partially Observable Markov Decision Pro-

cesses (POMDP) that enables reasoning and decision-making about

partial satisficement of non-functional requirements (NFRs) and

their trade-off based on evidence collected at runtime based on

the formalism for decision-making under uncertainty provided by

POMDPs (See Fig. 4).

4.1 Log preprocessing
In its current implementation, the RDM SAS produces execution

traces in JSON format for each time slice, mentioning the observa-

tions made, the currently estimated levels of satisficement of the

NFRs, and the preferences currently being applied in the decision

process. The JSON log is made available for forensic purposes to

debug the system after the fact. Listing 1 shows an excerpt of the

log for the first time slice.

Due to time constraints, for this first feasibility study it was

decided to collect a large number of JSON logs and transform them

into a temporal graph, answering queries away from the system

(in an “off-line” fashion). It is planned to revise the RDM SAS in

future studies to have it maintain the temporal graph while it is

running, so queries can be answered “on-line” for reflection and
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self-explanation. All the resources used in this study are available

online
3
, and Hawk is freely available as open source from Github

4
.

The transformation of the logs into a temporal graph was done

on a Lenovo Thinkpad X1 Carbon laptop with an Intel i7-6600U

CPU running at 2.60GHz, running Ubuntu Desktop 18.04, Linux

4.15.0 and Oracle Java 8u102, allocating 8GB of RAM through

-Xmx8g -Xms8g. The process required a number of steps:

(1) The RDM SAS had been previously run in a different ma-

chine through a simulation over 1000 time slices, producing

a sequence of entries in JSON format which took 536KB.

(2) The trace execution metamodels of Section 3.1 were imple-

mented in the Eclipse Modelling Framework [30].

(3) A small Java program (381 lines of code) was created to trans-

form the JSON logs into EMF models conforming to the trace

execution metamodels, and store them into a Subversion
5

(SVN) repository as a sequence of revisions of the same trace

execution model file. The SVN repository was produced after

48 seconds, taking up 7.3MB of disk space, and resulted in

888 commits. SVN naturally ignores cases when the model

has not changed at all from one time slice to the next.

(4) Hawk was instructed to index the full history of the SVN

repository into a Greycat temporal graph, using its new

time-aware updater component. From the second revision

onwards, Hawk used its incremental updating capabilities to

propagate any differences observed since the previous revi-

sion. The Greycat temporal graph over the 888 commits was

produced after 21 seconds, taking up 31MB of disk space
6
.

We chose SVN over manually time-stamped files (for example,

slice1.xmi, slice2.xmi, and so on) because the version of the

local folder indexing component in Hawk at the time would index

all time-stamped files separately, rather than as a single evolving

model. The SVN component in Hawk is designed to provide the

full history of each file, which produced the results we intended.

In the future, we may create a version of the local folder indexing

component that understands that files time-stamped according to a

certain convention are versions of the same model.

Regardless, ignoring those 112 timepoints when the model did

not changed did not result in loss of information. Indeed, if we only

have SVN revisions for timepoints 1 and 10, that means that the

model did not change at all between timepoints 2 and 9. If we ask

for the state of the model at timepoint 5, we will see the version

at timepoint 1 as we should. Omitting timepoints which did not

introduce any changes can result in significant space savings when

changes are infrequent, i.e. in a stable system configuration. This

also reduces the number of results that we will have to go through

in our queries. It can be thought of as a form of compression.

4.2 Time-aware queries for developers
We argue that self-explanation needs to be tailored to the reader.

SAS developers and integrators will be interested on a different

type of explanations about the system. Particularly, they will often

need to verify that certain desirable properties are being met, while

3
https://git.aston.ac.uk/garcia-a/hawk-mrt2018

4
https://github.com/mondo-project/mondo-hawk

5
https://subversion.apache.org/

6
A previous version with second-level rather than millisecond-level timestamps re-

quired 2.6MB instead. We intend to investigate this further in future studies.

Listing 2: EOL query to check the evolution of belief levels
through the lifespan of each action choice

1 return RewardTableRow.latest.all

2 .collect(r_row | r_row.versions.size).max();

Listing 3: EOL query to check the min/max/average shift in
reward values through the life of the SAS

1 var rewardShifts = RewardTableRow.latest.all

2 .collect(row | row.getRewardShifts()).flatten();

3

4 return Sequence { rewardShifts.min(),

5 rewardShifts.max(), rewardShifts.average() };

6

7 operation RewardTableRow getRewardShifts(): Sequence {

8 var v = self.versions;
9 if (v.size <= 1) {

10 return Sequence {};

11 } else {
12 return v.subList(0, v.size − 1)

13 .collect(v | v.value − v.prev.value);

14 }

15 }

16 operation Sequence average() { return self.sum() / self.size(); }

other times they will want to identify points in time where the

self-adaptive system misbehaved.

Listing 2 shows a first example of what can be done for the

developers. It allows the RDM SAS developer to check if the internal

reward values in the decision algorithm have evolved over time or

if they have remained the same. It operates as follows:

(1) RewardTableRow.latest returns the latest version of the

RewardTableRow type node in the temporal graph. There

are only two versions for this node: the one at the beginning

of time with no instances, and the second one with all the

instances. RewardTableRows are not created or deleted,

they are simply modified with different reward values.

(2) .all returns all instances of that type at that point in time.

(3) .collect(x | expression) visits each instance, comput-

ing an expression and collecting the results into a new list.

(4) r_row.versions.size returns the number of versions for

that instance. This would be the number of times that the

reward values have changed.

(5) .max() computes the maximum value over the list with all

the numbers of versions of the various RewardTableRows.

Essentially, if the query returns 1 we know that the reward values

have remained the same, whereas if it returns 2 or higher we will

know that it has changed at some point, and depending on the

value we will know how often it happened. For this experiment,

the query returned 442 - there was a reward table row that had

changed that many times in value.

Developers can easily expand upon the queries to produce more

nuanced results. Listing 3 shows a more advanced example that

computes some basic descriptive statistics of the reward table rows

https://git.aston.ac.uk/garcia-a/hawk-mrt2018
https://github.com/mondo-project/mondo-hawk
https://subversion.apache.org/
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Listing 4: EOL query to detect the longest sequence of action
thrashing within the SAS

1 var decVersions = Decision.latest.all.first.versions;

2 var dvBeforeLast = decVersions.subList(1, decVersions.size);

3 var dvWithObs = dvBeforeLast.collect(dv | Sequence {

4 dv.time, dv.actionTaken.name, dv.supportingObservations()

5 });

6

7 // Find longest sequence of actions supported by 1 observation
8 var longestThrashing : Sequence;
9 var lastStart = −1;

10 for (i in 0.to(dvWithObs.size() − 1)) {

11 var nObs = dvWithObs.at(i).at(2);

12 if (nObs > 1) {

13 if (lastStart > −1 and i − lastStart > longestThrashing.size) {

14 longestThrashing = dvWithObs.subList(lastStart, i);

15 }

16 lastStart = −1;

17 } else if (lastStart = −1) {

18 lastStart = i;

19 }

20 }

21 return longestThrashing;

22

23 // Count supporting observations for a decision
24 operation Decision supportingObservations() : Integer {

25 var timeNextDecision = self.next.time;

26 var result = 0;

27 var observation = self.observation;
28 while (observation.time < timeNextDecision) {

29 observation = observation.next;

30 result += 1;

31 }

32 return result;

33 }

over time. This query makes use of EOL context operations to

define the “reward shifts” of a specific version of a RewardTable-

Row. If we have only one version, it is the empty sequence. If it

has more than one version, then it is the sequence of differences

between the values of each version and the one immediately before

it. For values (0.1, 0.12, 0.11) we would have shifts of (0.02,−0.01).

This can give us an idea of whether the reward recalculation is

keeping shifts bounded, or if the values are wildly shifting from

one timepoint to the next. In the case of the current log, the SAS

kept shifts bounded to a symmetric range within ±0.034, with an

average of −5.31 × 10
−9
.

Continuing with the theme of checking if the SAS is behaving

appropriately, it may be important to notice situations in which

the system may be “thrashing” between two actions, which suggest

that the decision process may benefit from a “tolerance interval”

where it will not react just yet to an observed situation. Listing 4

shows a query designed to find the longest sequence of actions that

are only backed by a single observation, i.e. intervals in which the

Listing 5: EOL query to find cases when observations clash
against the understanding of satisficement within the SAS

1 var mecBelief = NFRBelief.latest.all.selectOne(

2 nfrb | nfrb.nfr.name='Minimization of Energy Consumption'

3 );

4 var recMeasurement = Measurement.latest.all.selectOne(

5 m | m.metric.name = 'Ranges of Energy Consumption'

6 );

7

8 var contradictions : Sequence;
9 for (v in recMeasurement.versions) {

10 var vMecBelief = mecBelief.travelInTime(v.time);

11 var meets = vMecBelief.estimatedProbability

12 >= vMecBelief.nfr.threshold;

13 if (meets and v.measurementPosition >= 2) {

14 contradictions.add(Sequence {

15 v.time, meets, v.eContainer.description});

16 } else if (not meets and v.measurementPosition <= 1) {

17 contradictions.add(Sequence {

18 v.time, meets, v.eContainer.description});

19 }

20 }

21

22 return contradictions;

system kept changing action after each observation. It is a rather

complex query, but it can be broken down as follows:

(1) Lines 1–5 go from the earliest to the second last versions of

the only Decision in the RDM SAS. For each of them, they

compute a triplet with the timepoint, the name of the action

taken, and the number of supporting observations.

(2) The number of supported operations is defined by the con-

text operation in lines 24–33, which counts the number of

observations that existed before the next version of that

decision.

(3) Lines 8–21 find the longest sequence of triplets with 1 sup-

porting observation. For our trace, the query finds a sequence

of 8 timepoints when the SAS is switching back and forth

between RT and MST after each observation.

Queries can also be used to find less intuitive scenarios. Being

probabilistic, R-POMDP may infer that a certain NFR is not being

met even though the current observation may say otherwise: this

simulates sensor failures and noise. Listing 5 shows a query which

found 18 time slices when theMinimization of Energy Consumption

NFR satisfaction did not match the Rate of Energy Consumption

measurement. Either the NFR was met even though we were in the

high ranges of REC, or the NFR was not met even though we were

in the low ranges of REC. As a minor detail, for each version of the

measurement we check the belief level at the same timepoint by

using travelInTime on the belief node.

4.3 Time-aware queries for users
Other queries may bemore generally useful to thewider community

around the SAS, and could be fed into dashboards. They would
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Listing 6: EOL query to compute statistics about NFR satis-
ficement above their thresholds

1 return NFRBelief.latest.all.collect(nfrb | nfrb.stats());

2

3 operation NFRBelief stats() {

4 var versions = self.versions;
5 var nAbove = versions.select(v |

6 v.estimatedProbability >= v.nfr.threshold).size;

7 var nBelow = versions.size − nAbove;

8 return Map { 'name' = self.nfr.name,

9 'above' = nAbove, 'below' = nBelow };

10 }

essentially start off from the NFRs and give increasingly more

detailed explanations of to what degree they were met, what was

done to correct situations when they were not met, and why those

corrective actions were chosen.

Listing 6 shows a query which indicates how often the various

NFRs were met. The query takes all the NFRBelief instances, and

visits all their versions, counting how many are above and below

their thresholds
7
. We compute a simple triplet with the name of

the NFR and the number of times we believed it to be above/below

the threshold. Regarding MEC, out of the 888 unique belief levels

stated by the SAS, 670 passed the threshold and 218 did not. 665

belief levels passed MR, and 223 did not.

Deeper self-explanation requires looking at how the satisfice-

ment of the MRs evolved over time, and how the system reacted

to it. Listing 7 shows a query that will produce a timeline of how

the NFRs changed between being met and not met, as shown in

Listing 8.

Looking at line 1 of the output, we see that the system started

with both MR and MEC unmet, that it stayed like that for 1 obser-

vation, and that since it observed that REC was low and NCC was

high, it decided to go with RT as an action. Line 2 shows that the

system started meeting MR and MEC, but then observed energy

usage (REC) to be in the high ranges, so it went into MST. Interest-

ingly, MEC started to fail later on, even though the observed energy

usage was not that high: again, this may be due to the probabilistic

nature of R-POMDP observed in Listing 5.

In general, the main advantage of the presented approach is that

it allows for rapid development and iteration of new queries on the

history of the model, making it possible to create the explanations

for a category of SAS as required, and then later package them as

premade, reusable visualizations.

5 RELATEDWORK
This paper is based on a combination of various results from the

areas of self-explanation for decision making systems, and model

versioning. In this section we will relate the work to several key

contributions in these fields.

7
Interestingly, this query could easily accommodate dynamic NFR thresholds without

any changes, since we visit the NFR through the version of the belief.

Listing 7: EOL query to find intervals of MR satisficement
states and reactions by the SAS upon the observationsmade.

1 var vNfrMecB = NFRBelief.latest.all.selectOne(nfrb

2 | nfrb.nfr.name = 'Minimization of Energy Consumption'

3 ).versions.reverse();

4

5 var currentStates = computeStates(vNfrMecB.first.time);

6 var newStates : Map;

7 var results : Sequence;
8 var length = 0;

9 for (v in vNfrMecB) {

10 newStates = computeStates(v.time);

11 if (newStates.equals(currentStates)) {
12 length += 1;

13 } else {
14 var lastDecision = Decision.latest.all.first.travelInTime(v.time);

15 results.add(Sequence { currentStates, length,

16 v.time, // time of last decision taken in this interval
17 lastDecision.observation.description,

18 lastDecision.actionTaken.name // name of action
19 });

20 currentStates = newStates;

21 length = 1;

22 }

23 }

24 return results;

25

26 operation computeStates(instant: Integer): Map {

27 var nfrbs = NFRBelief.latest.all

28 .collect(nfrb | nfrb.travelInTime(instant));

29 var result : Map;

30 for (nfrb in nfrbs) {

31 result.put(nfrb.nfr.name,

32 nfrb.estimatedProbability >= nfrb.nfr.threshold);

33 }

34 return result;

35 }

Listing 8: Excerpt of output from Listing 7 about justifica-
tion of the actions taken by the system.

1 [[{Maximization of Reliability=false, Minimization of Energy

Consumption=false}, 1, 1532385574820, REC LOWER X

AND NCC GREATER S, Redundant Topology],

2 [{Maximization of Reliability=true, Minimization of Energy

Consumption=true}, 1, 1532385575022, REC IN Y_Z AND

NCC GREATER S, Minimum Spanning Tree Topology],

3 [{Maximization of Reliability=true, Minimization of Energy

Consumption=false}, 1, 1532385575166, REC LOWER X

AND NCC GREATER S, Minimum Spanning Tree Topology

],

4 ...]
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5.1 Decision making, self-explanation,
interactive diagnosis

The area of research about self-explanation and interactive is still

in its infancy. The need for it is exacerbated due to the use of

artificial intelligence and machine learning. However, few research

initiatives exist. The authors in [3] use goal-based requirements

models at runtime to offer self-explanation of how a system is

meeting its requirements. Our case study also contemplates the use

of runtime goal-based models but supported by POMDPS. Different

from the work in [3], our work uses Bayesian learning. Further,

new future versions of the temporal graph models will be seen as

runtime models to be consulted at runtime [4] to support decision

making.

In [23], and as in our case, the authors present a temporal model

to support interactive diagnosis of self-adaptive systems. The au-

thors describe a temporal data model to represent, store and query

decisions as well as their relationship with the context, require-

ments, and adaptation actions. So far, we do not include the context

or the requirements, however it is part of our future research av-

enues. They have used their approach in the area of smart grids

while we have used RDMs as the case study.While they use Greycat,

only we have extended the Hawk model indexer with the ability

to use Greycat as a backend. Using a model indexer makes it pos-

sible to reason over temporal graphs without the need of making

changes to the existing system.

5.2 Model versioning
As a complex artifact developed within teams, keeping track of

the various revisions that a model goes through is very important.

According to the survey by Brosch et al. [5], versioning approaches

can be classified across two orthogonal dimensions: the way they

represent the artefacts, and the way they identify, represent and

merge differences between versions. Artifact representations can

be text-based as in most well-known tools (e.g. Subversion or Git),

where they are seen as a collection of lines, or can be graph-based
as a collection of nodes and edges, potentially with attributes and

labels. Merging two versions developed in parallel from a common

ancestor can be done in two ways: by comparing their states, or

by combining the operations that were applied on the common

ancestor in each side.

In terms of tools, many practitioners use simple and mature

text-based version control systems (VCS) to keep track of their

models (e.g. Git), and they use standalone state-based model com-

parison and merging tools (e.g. EMF Compare
8
). Others accept the

additional complexity for the sake of additional functionality and

use dedicated model repositories, which handle model revisions in

terms of model elements and their references. Some well-known

examples are Eclipse Connected Data Objects
9
, which stores model

revisions inside a relational database (usually combined with a

relational database), or EMFStore [19], which actually uses a collec-

tion of XMI files. EMFStore is interesting in that it keeps both the

states of the various revisions, and the individual changes that were

applied between those revisions, so it may use those for merging.

8
https://www.eclipse.org/emf/compare/downloads/

9
https://www.eclipse.org/cdo/

In the last few years, there has been increasing interest in having

time-awareness as a native capability of the modelling framework

itself. In 2012, Holmes et al. implemented a copy-on-write ver-

sioning scheme for models at an element level using UUIDs [16].

Hartmann showed in 2014 [14] a first version of the Kevoree Mod-

elling Framework that supported reusable versioning of individual

model elements, with the ability to travel back and forth in time.

This would eventually evolve to their standalone Greycat temporal

graph database. Our proposal takes this element-level versioning

idea as a base, and proposes a general approach to use it for self-

explanation across a variety of SAS, adding a generic metamodel

for execution traces and a easy-to-use, database-agnostic query

language. We have also integrated Greycat with a model indexer,

making it possible to reason over temporal graphs without needing

to re-engineer existing systems.

Another recent work in the area of temporal graph stores for

models is ChronoSphere, developed by Haeusler et al. [12]. Simi-

lar to Greycat, it is also based on a key-value store where the key

combines the timepoint and the element identifier. Unlike Greycat,

which is a “pure” temporal graph database, the authors report capa-

bilities as a model repository, supporting branches (without merges,

for now), transactions, and some capabilities for metamodel evo-

lution. The authors also mention the application of ChronoSphere

in an “industrial IT Landscape Management tool” called Txture for

model-based visualizations. We intend to evaluate ChronoSphere

as an alternative to Greycat in future versions of our approach, in

terms of performance and feature set.

One last idea that Borsch et al. identified in their survey as an

open research area was intention-aware model versioning, where
merges could be simplified by encoding what the modelers wanted

to accomplish with their changes. We have not found many re-

search initiatives in the area since then, but we find that the idea of

encoding the intentions of a change in the model could certainly

be relevant and useful for self-explanation. For future work, we are

considering model versioning approaches where the self-adaptive

model-based system would encode their intentions upon the vari-

ous changes. These intentions could also be indexed by Hawk into

the temporal graph, and could be accessed from EOL queries.

6 CONCLUSIONS AND FUTUREWORK
In this work, we have described the key requirements for a reusable

framework for self-explanation in self-adaptive systems: a generic

and extensible execution tracemetamodel, a temporal graph to store

these traces, a time-aware query language that allows to reason

about the history of the models, and a set of reusable visualiza-

tions the main types of self-adaptive systems in the wild. We have

provided proof-of-concept implementations for the first three. We

have also demonstrated different queries aimed at explaining the

self-adaptive nature of the systems to developers and end users.

The present work can be considered as a first step towards that

reusable framework, suggesting several lines of future work. First, it

would be useful to have a taxonomy of the various types of queries

that different audiences may ask of a self-adaptive system, and the

different levels of detail that we could use for our answers. Some of

those queries may cross over multiple types of SAS, while others

may be specific to a class of SAS. Once we determine which queries

https://www.eclipse.org/emf/compare/downloads/
https://www.eclipse.org/cdo/
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are the most valuable and reusable, we would develop visualizations

based on them.

The trace execution metamodel shown in the paper captured

most concepts used by the RDM SAS, but it may require further

refinement to cover other SAS. We need to apply the approach to a

wider range of SAS and to allow the extension of the trace execu-

tion metamodel with “profiles” for other types of self-adaptation

approaches. This is a similar approach to UML and the use of pro-

files for specific domains.

The query language is based on a set of basic primitives around

versions, but it lacks the richness of a more formal model such

as linear temporal logic, with richer predicates such as “always”,

“never” or “eventually”.

We also envision a different application of temporal graphs

to produce better simulation models for the development of self-

adaptive systems. If we kept track of the actions and their impacts

in a self-adaptive system “deployed in the wild”, we could produce a

better probability matrix between NFR satisficement levels, actions

and observations. Further, we envision that the temporal graph

models will act as runtime models to support self-explanation, in-

teractive diagnosis and even decision-making. The language will

provide a way how to access and change the runtime model during

execution.
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