
Model Synchronization with the Role-oriented Single
Underlying Model

Christopher Werner
Technische Universität Dresden

christopher.werner@tu-dresden.de

Uwe Aßmann
Technische Universität Dresden

uwe.assmann@tu-dresden.de

ABSTRACT
Models@runtime (M@RT) suffer from information fragmen-
tation across heterogeneous runtime models conforming to
several metamodels that are filled with information from
a source model. This creates an amount of related models
with replicated information. In contrast, a recent approach to
software engineering utilizes Single Underlying Model (SUM)
to generate views of a software system on demand. The
views represent fragments specifying required information
for model instances. This results in an increasingly complex
source model which is consistent from scratch and views with
relations between each other that require complex processes
to maintain consistency. Thus, to hold the views and models
consistent at runtime, an intuitive approach for the creation
of an adaptable SUM should be introduced that permits run-
time synchronization and adaptation of views. We propose
utilizing the concept of roles in the domain of SUM-based
software engineering and M@RT. Based on existing work in
the area of role modeling, we present a Role-oriented Single
Underlying Model approach that provides a natural way to
create views from a running model. We show how the role
concept simplifies the creation of runtime models as views
from a SUM, provide an incremental view update approach,
and introduce a flexible adaptation mechanism. Finally, we
illustrate our approach with two example views to explain
the benefits of a role-oriented SUM.

CCS CONCEPTS
• Software and its engineering → Software development meth-
ods; Development frameworks and environments; Software
development techniques; Software design engineering;

KEYWORDS
Model-driven engineering, single underlying model, role-ori-
ented programming.
Reference Format:
Christopher Werner and Uwe Aßmann. 2018. Model Synchroniza-
tion with the Role-oriented Single Underlying Model. In Proceed-
ings of MODELS conference workshops (MRT’18). 10 pages.

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MRT’18, October 2018, Copenhagen, Denmark
© 2018 Copyright held by the owner/author(s).

1 INTRODUCTION
Since the 1980s, the software engineering community has
realized that there is no silver bullet to solve the complexities
of software processes and model-dependent tasks. Ensuring
the consistency of information fragments, while the system is
running, is an essential aspect in the area of Models@runtime
(M@RT) and Model Driven Engineering (MDE). Consistency
between two models is defined as follows: Two models are
consistent if their combination does not generate any contra-
dictions and is realizable with implementation effort. Consis-
tency makes maintaining artifacts a grand challenge. Without
much work on maintainability of software elements, the qual-
ity inevitably degrades over time and with it the quality of
the final product.

In the area of M@RT, it is necessary to create new runtime
models as architecture, performance, and failure models from
a running system on the fly [27]. These models may, but do
not have to, be predefined in the software and must be hold
synchronized with all other runtime models and the running
system. As a solution, we need a runtime adaptation and
synchronization mechanism for new runtime models from
the running system and for the running system itself. It
is possible to create bidirectional synchronization relations
between all related models creating a collaborative consistent
model environment. This method increases the number of
synchronization relations quadratically to the number of
involved models, i.e., n(n-1)/2 where n is the number of
models. These pairwise consistency relationships must be
added and adapted at runtime. In addition, they must be
maintained over time to overcome modification problems
like: (1) data inconsistency, (2) evolution of models, and (3)
integration of new models.

The Single Underlying Model (SUM) approach by Atkin-
son et al. [3] is the paradigm we will concentrate on, because
it overcomes these modification problems. All known infor-
mation of a software system is stored in the SUM, whereby
views represent user- and concern-specific fragments of the
information. This reduces the number of correspondences to
the number of views. The direct implementation of the SUM
approach is the Orthographic Software Modeling (OSM) [3]
approach with minimal overlapping views, which reduces syn-
chronization problems. However, the current implementations
of this approach are only design time approaches with a num-
ber of predefined views and a completely constructed SUM
from scratch. However, the minimization of correspondences
to the number of views and the synchronization of informa-
tion in the SUM make this approach a good foundation to
extend it by runtime adaptation mechanisms.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

MRT’18, October 2018, Copenhagen, Denmark C. Werner and U. Aßmann

Figure 1: SUM / view centric environment, from [2].

This paper transforms the SUM approach from design
time to runtime to make it usable in the area of M@RT for
the synchronization of runtime models as views of the under-
lying source. We use the Compartment Role Object Model
(CROM) by Kühn et al. [23] as SUM modeling concept. The
role concept allows the modeling of views as compartments/
contexts, and contains a natural adaptation mechanism with
roles that can be bound to objects at runtime and adapt their
behavior. In addition, arbitrarily many roles can be bound
to each object, which is a natural unlimited extension and
adaptation mechanism provided by roles. In this paper, we
address the following research questions:

∙ RQ1: How can the role concept simplify the creation of
runtime views from a SUM and adaptation of a SUM?

∙ RQ2: How can the role concept be used to implement
an incremental view update mechanism at runtime
without redundant information?

The contribution of this paper is the Role-oriented Single
Underlying Model (RSUM) approach using the role con-
cept to create a SUM which is an integrated synchronization
mechanism for views. The concept improves creation of views,
introduces runtime adaptation, runtime synchronization be-
tween SUM and views, and reduces redundant information.
Furthermore, the RSUM is prototypically implemented in the
SCala ROLes Language (SCROLL) [25] with an illustrative
example showing the benefits.1

The remainder of this paper is structured as follows. The
next section summarizes background knowledge about closely
related topics. Section 3 provides an in-depth discussion of the
concepts with an illustrative example and its implementation
details. We demarcate our approach from related work in
Section 4. Finally, in Section 5, we conclude the paper and
discuss lines of future work.

2 BACKGROUND
This section introduces the single underlying model approach,
the view-based software development, and the role concept,

1https://github.com/chrissi007/RoleSUM

Figure 2: Vitruvius architecture [7].

which we combine in the next sections to our Role-oriented
SUM approach.

2.1 Single Underlying Model
As mentioned before, SUM [3] is the central comprehensive
model of a system and contains all information for stakehold-
ers (e.g., functional, non-functional, and visual information).
If the SUM is engineered, it is consistent from scratch. How-
ever, Atkinson et al. describe that the SUM gets complex for
small models. This complexity does not allow a single user
to understand the whole SUM. To distribute the complexity
to different stakeholders, subsets of a SUM are presented
in views that support the specific tasks of a user, as shown
in Figure 1. If the views are consistent with the SUM, they
are also consistent with each other. This is comparable to
views in database management systems. Still, dependencies
between the views cause problems during parallel modifica-
tion on same elements in different views. In addition, the
SUM and views are defined at design time and no runtime
adaptation or extension is possible.

2.2 View-based Software Development
In the view-based software engineering area, views manage
access to information from the models, as described in the
section before. The views handle the complexity of the overall
system and allow the separation of concerns in views. The
IEEE 1471/ISO 42010 standard [17] gives the first definition
of an architecture view and an architecture view type. In
this work, we concentrate on the derived view and view type
definition of Goldschmidt et al. [12] “A View is the actual
set of objects and their relations displayed using a certain
representation and layout.” [12, p 63] and “A View Type
defines rules according to which views of the respective type
are created.” [12, p 64]. Hence, views are instances of view
types with elements of a SUM. In view-based modeling, two
fundamental approaches are distinguished: the synthetic and
projective approach. For the synthetic approach, a special
architect creates and integrates all views in a system (e.g.,
SUM [3]). In projective approaches, the views are generated
automatically with a special procedure and do not need any
help from a software architect, e.g., Vitruvius [21] with the

Model Synchronization with the Role-oriented Single Underlying Model MRT’18, October 2018, Copenhagen, Denmark

query language ModelJoin [8] to create view types. Figure 2
presents Vitruvius, where users only see a SUM and not the
connected metamodels which allows integration and evolu-
tion of new and existing metamodels without constructing
the SUM from scratch, but creates redundant information
in different connected models and needs complex synchro-
nization mechanisms between all metamodels. The creation
and synchronization of views from and with the software
system is a complex task, which needs a special synchroniza-
tion mechanism. Furthermore, the extension and adaptation
at runtime are not considered in the view-based software
engineering area.

2.3 Role Concept
The role concept is an extension of object-oriented design
considering objects and classes as naturals (instances of nat-
ural types) that can play roles (instances of role types) in a
specific compartment (instance of compartment type). Roles
represent the behavior of naturals and can be acquired or
abandoned multiple times. Moreover, roles interact with each
other within compartments. Compartments represent con-
tainers or contexts and separate concerns. An advantage is
that two naturals of the same type can have completely dif-
ferent behavior at runtime because of differently played roles.
The role concept we consider is based on CROM [23] with the
graphical notation in [22], which we use for our illustrations.
The behavioral, relational, and contextual properties of roles
are defined in 26 features which are the foundations of the role
concept. Henceforth, we utilize CROM to specify the RSUM
and the role-based programming language SCROLL [25] to
implement the approach for our running example. SCROLL
is an open source Scala library and implements most role
features [25]. It is flexible, lightweight, and easily extensible.
In our implementation, we use two main features of SCROLL:
(1) the play operator binds a role to its player, and (2) the
unary + operator before a method call performs a dynamic
dispatch to a suitable role played by the object. The ability
of roles to be attached and detached at runtime creates a
natural mechanism of extensibility and adaptability, which
is used for our requirements to adapt the described view-
based approaches at runtime. In addition, Scala allows the
extension of the source model, the synchronization, and the
views by loading classes at runtime. These features enable
the runtime model consistency, as deeply explained in more
detail in the next section.

3 ROLE-ORIENTED SINGLE UNDERLYING
MODEL (RSUM)

In this section, we describe the concept of an RSUM and
the advantages that we see in such a view-oriented approach.
For simplification, we only use the word view in the concept,
which can be seen as a runtime model from an underlying
source. Before that, we first present a running example not
related to M@RT, but one that showcases our approach and
the important features related to different small views.

Person

+name: String

Employee

+salary: Double

Library

+name: String
+employees

0..* +manager

0..1

L2: Library

name: String = "City Library"

E3: Employee

salary: Double = 45.000
firstName: String = "Bill"
lastName: String = "Smith"

employee

E4: Employee

salary: Double = 60.000
firstName: String = "Bob"
lastName: String = "Jones"

manager
+employee

L1: Library

name = "CityLib"

E1: Employee

name = "Alice"
salary = 45000

E2: Employee

name = "Bob"
salary = 60000

employee

employee

manager

Figure 3: Running example with meta- and instance model.

3.1 Running Example
For the running example, we use a simplified library model,
where a Library has different Employees that inherit from
an abstract Person class. The running example is presented
in Figure 3 with meta and instance model. In the instance
model, a library L1 with the name CityLib exists that has
two employees called Alice and Bob where Bob is the manager
of Alice. This example can be split into different views. One
view can contain the complete information from the instance
model while another view only includes all employees with
their manager and a third view only provides the library with
its employees without any manager information. We will use
this example to showcase our approach.

3.2 Concept
The concept of RSUM is demonstrated for our Library-
Example in Figure 4. It is divided into a core part that
is marked in a blue box in the lower part and into different
views that are visualized in the upper part of the figure.
The core contains central information and data structures
which are modeled as natural types and relational compart-
ments that represent the relational behavior of the RSUM.
In the RSUM approach all relations are transformed to re-
lational compartments, i.e., the manager and employees as-
sociations are transformed to the ManagerOfEmployee and
LibraryHasEmployee compartments, because all relations
between naturals except inheritance are not allowed in the
role concept. These relations must be moved into relation
compartments. The concept of relation compartments allows:

(1) Loading relations at runtime with class loader function-
ality in programming languages like Scala and Java.

(2) Extending naturals with new relations at runtime with
the playing of roles in relational compartments.

MRT’18, October 2018, Copenhagen, Denmark C. Werner and U. Aßmann

RSUM

OtherViewsOtherViews EmployeeAndManagerView

Library

name

Employee
salary

Person
name

LibraryHasEmployee

TargetSource

LibraryAndEmployeeView

Employee HasManagerLibrary EmployeeHas

OtherViews

View

ManagerOfEmployee

Target

RoleGroup (1..1)

Source

manageremployees
0..1

0..*

1 1

1

1

11 0..*0..*

0..*

0..1

RsumManagement

+createView(query)

RsumManager

+manage()

Extensions

…

Extensions
Extensions

Extension

…

Natural

Compartment

Role

Plays Relation

RoleGroup (n..m)

Role . . .

Relation

Role

1 1

n..m n..m

Role

n..m
Role cardinality

n..m

Figure 4: Concept of the role-oriented single underlying model (RSUM).

(3) Add behavior and states to relations as methods and
attributes in relational compartments.

(4) n-ary relations with more role types in the relational
compartment.

With these features, the relation compartments allow easy
runtime adaptation of the RSUM as underlying source. This
modification allows the construction of an RSUM from an
object-oriented model with converting relations to relation
compartments and the creation of views with elements that
can play roles in the views. Moreover, the RSUM consists of
an RsumManagement compartment, wherein each natural and
relational compartment plays an instance of the RsumManager
role type. In addition, it manages the instantiation of new
views because it holds references on all instances from the
RSUM and it adapts views at runtime. For clarity, only the
plays relations from Library and LibraryHasEmployee to
the RsumManager are drawn. These roles manage changes
between views by reacting on insert, delete, and modifica-
tion operations of naturals and relational compartments in
the core. Furthermore, they propagate changes to all active
views. The management compartment may also contain sev-
eral Extensions to be added depending on the natural types
and relation compartment types. These Extensions can im-
plement histories, versioning, logging, and many more to
observe user behavior and adaptation changes.

Two example views are represented in the upper part
of Figure 4. The views are modeled as compartments with
roles as the representations of the internal structure (e.g.,
the EmployeeAndManagerView presents only the manager re-
lation). In EmployeeAndManagerView, each Employee role is
played by a natural Employee and can have one HasManager
role outlining his or her manager and many HasManager roles
representing the subordinated employees. The HasManager
role is played by the ManagerOfEmployee compartment. All
relational compartments only contain a tuple of Source and
Target role visualized with cardinality 1, i.e., the number
of relational compartments is equivalent to the number of
instances that form a relationship and the roles can only be

RsumM:RsumManagement

EM1:ManOfEmp

T1: Target

S1: Source

Rm3: RsumManager

EaM: EaMView

E2:Employee

name=Alice
salary=45000

E1:Employee

name=Bob
salary=60000

Rm2: RsumManager

Rm1: RsumManager

Er1: Employee

Mr1: HasManager

Er2: Employee

View

4

4

1

5
3

3
2

3

4

1

Figure 5: Instance view of RSUM from running example.

played by naturals of the RSUM. All roles that do not have
a specific cardinality can be unlimited. The role group con-
straint with the cardinality (1..1) in the ManagerOfEmployee
compartment describes that an employee cannot be their own
manager, because he or she can not play both roles at the
same time. In addition, each role in a view also requires an
associated object in the RSUM core. This can be a natural
or a relational compartment. The roles in the views also do
not contain any information, because data can be retrieved
and changed directly from the core using the internal map-
ping of the plays relation. However, the concept forces every
view with write access to know which naturals or relation
compartments have to be created when creating roles in it.

In Figure 5, the instance model of the RSUM approach
and the creation process of the HasManager role (Mr1) are
visualized, whereby names from the concept are abbreviated
for space reasons. The representation shows the core on the
left and the EmployeeAndManagerView view on the right side.

Now, we show how to create an RSUM in six steps. For
creating Mr1, the Employee roles Er1 and Er2 are required:
(1) the players of these roles E1 and E2 are determined. The
view checks whether these players are really instances in the
RSUM. If this is the case, (2) a new ManagerOfEmployee

Model Synchronization with the Role-oriented Single Underlying Model MRT’18, October 2018, Copenhagen, Denmark

compartment is created, otherwise the process is stopped.
Within this, (3) new Source and Target roles are instantiated
and bound to the two naturals from (1). If it is determined
that the role group property is not fulfilled, the process is
terminated. Otherwise, (4) establishes the play relation to the
role in the view and sets the relationships to the Employee
roles. In (5), a new instance of the RsumManager role is bound,
and if Extension roles exist for this type, these are bound
directly to the RsumManager role, but this process is not
shown in Figure 5. The last step (6) iterates over all active
views and creates new roles in other views when necessary.
However, there is only one view that presents instances of
this relation compartment, i.e., this step does not create
more roles and bindings in this case and is not shown in
Figure 5. Yet, this process shows the incremental runtime
updates process underlining RQ2, because it only creates
elements that are connected to the specific action and do not
change other elements.

As presented in the RSUM concept and explanatory ex-
ample, the role approach offers a lot of features and benefits.
A natural has the ability to play arbitrarily many roles. This
ensures that naturals can play roles in all existing views,
which do not limit the number of views. The role concept
also allows roles and compartments to play roles which is used
for the Extensions. The creation of deep views in view-based
approaches has not yet been considered in this paper, as it is
not relevant for model synchronization and is not shown in
Figure 4. However, the property that roles themselves can
play roles, makes it easy to model and implement deep views.
The resulting layered architecture with deep roles makes no
sense on the small running example.

For implementing the concept, the runtime class loading
options of programming languages are used to extend and
adapt the approach in multiple directions, e.g., new naturals,
relation compartments, and views can be added to the RSUM
at runtime. These elements only need the mechanism to
acquire and abandon roles to adapt the RSUM and to load
and create new views at runtime (RQ1). In addition, it is
possible to create read-only views, which only allow access to
information with get functionality without the opportunity
to change the internal state with set functionality. Removing
views also just means removing roles and does not affect the
RSUM core. In contrast, the deletion of elements in the views
is propagated into the core and removes their core natural
and all bound roles. The insertion process does the opposite:
It creates and binds new management, extension, and view
roles in the core and the active views to the new elements
on the fly. This mechanism is another necessary part for
incremental updates of the RSUM core at runtime because
it connects the views to the RSUM and thus also the views
among each other (basis for RQ2).

The roles within the views have no copied data from the
RSUM and access the information of the naturals via the
plays relation. This ensures that no redundant information is
kept at runtime and that the status of the RSUM is consistent
(underpins RQ2). If an attribute is changed simultaneously
in two views, the last propagated change remains. A history

Listing 1: Interface of relation compartment.
1 trait IRelationCompartment extends Compartment {
2 var source : ISource = null
3 var target : ITarget = null
4
5 def delete () : Unit = {
6 if (source != null) {
7 plays . removePlayer (source)
8 source = null
9 }

10 if (target != null) {
11 plays . removePlayer (target)
12 target = null
13 }
14 + this deleteEverything ()
15 }
16
17 trait ISource extends IRelationRole {
18 def getTarget (): ITarget = IRelationCompartment .

this . target
19 def deleteRelation (): Unit =

IRelationCompartment . this . delete ()
20 }
21
22 trait ITarget extends IRelationRole {
23 def getSource (): ISource = IRelationCompartment .

this . source
24 def deleteRelation (): Unit =

IRelationCompartment . this . delete ()
25 }
26 }

mechanism as extension compartment allows to monitor such
changes. Our concept is based on materialized view types as
own models of compartments to instantiate views at runtime
and provide views with a predefined structure. Furthermore,
in the role concept, each natural with all bound roles forms a
compound object, which ensures that all roles reflect the same
object and no object schizophrenia occurs. This fundamental
mechanism allows to directly work on parts of the underlying
instance without the usage of a communication layer to
propagate changes through multiple layers or objects. The
whole concept presents the synchronization of views from a
single underlying source. However, if we create a combined
model from preexisting models, where redundant information
is removed, we can depict preexisting models as views from
the RSUM. This results in a synchronization approach, which
is able to generate new views/models and integrate new or
existing legacy models.

However, the concept presented in this section also has
some shortcomings. For each pair of elements involved in a
relation, a new relation compartment is required which leads
to an immense amount of compartments. It must also be
ensured that the players of the Source and Target roles in
the relation compartments match the players of the bound
role in a view, which must be guaranteed at runtime.

3.3 SCROLL Implementation
For our case study, we use SCROLL [25] to prototypically
implement the RSUM approach of the running example in-
troduced in Section 3.1.

In SCROLL, each compartment object contains a role
graph called plays that handles the calling of the role’s

MRT’18, October 2018, Copenhagen, Denmark C. Werner and U. Aßmann

Listing 2: Example of relation compartment.
1 class EmployeeHasManager (emp:Employee , man: Employee)

extends IRelationCompartment {
2 this . source = new Source ()
3 this . target = new Target ()
4 emp play this . source
5 man play this . target
6 def behavior () : Unit = { ... }
7 class Source () extends ISource { ... }
8 class Target () extends ITarget { ... }
9 }

methods and allows insertion and removal of nodes and
edges. This option makes function calls compartment-specific,
i.e., compartments do not allow other compartments to call
internal role behavior. For our approach, we combine the
role graphs to one that enables us to call all available role
methods with the unary + operator in front of a method
name. These combine commands are not presented in the
listings but are imperative for the correct implementation
of the RSUM. Moreover, SCROLL permits the execution
of more than one role method per API call, i.e., when an
instance plays more than one role of one type, a call of a
role’s method is successively executed for all bound roles.
This function is crucial for instances of the RsumManager,
because changes in the RSUM core must be propagated to
all extensions and views.

To apply the RSUM approach to an object-oriented model,
the object-oriented model must first be transferred to a core
model as shown in Figure 4. Therefore, all relations must be
expressed as relation compartments.

Listing 1 shows the interface of a relational compartment
that has to be implemented. The interface defines the Source
and Target roles and a function to delete the compartments.
In the delete method (Lines 5 to 15), the roles are deleted
from the role graph (Lines 7 and 11) and all bound roles of
the compartment will be deleted in the deleteEverything
method. This function uses the + operator to call a function
defined in another connected role or in the player object.
In this case, the deleteEverything method is implemented
in the RsumManager role, which must be played by every
instance in the core and is explained later in this section.
These internal roles only manage access to related roles and
forward delete functions to the compartment. This step is
necessary because once a natural is deleted in the RSUM, all
relationships of that element must also be deleted.

In Listing 2, the EmployeeHasManager relation compart-
ment is shown that must inherit from the interface of List-
ing 1. It gets the associated naturals during creation and
assigns them to new roles (Line 2 to 5). This ensures that the
structures at instance level are always bound correctly. The
behavior method should show that each relation compart-
ment can have its own behavior and state to extend relations
with new information.

To transfer the normal classes to the RSUM, hardly any
adjustments have to be made except for deleting the rela-
tionship attributes. Listing 3 shows the Library with getters

Listing 3: Class example of RSUM.
1 class Library (_name : String) {
2 private var name: String = _name
3 def getName (): String = name
4 def setName (n: String): Unit = {
5 name = n
6 }
7 }

Listing 4: Example role in view.
1 class LibraryRole (name: String) extends IViewRole {
2 /* Role specific functionality . */
3 def getNameView (): String = {
4 return + this getName ()
5 }
6 def setNameView (name: String): Unit = {
7 + this setName (name)
8 + this changeTrigger ()
9 }

10 }

and setters to access the name. These methods are used by
all played roles to change the state of the object.

After the RSUM has been created, views must be defined
to reproduce the filtered content. Each view type is given a
unique name to distinguish it from other types. Further, all
interfaces, no matter whether they are views or extensions,
have the getRole method that returns a corresponding role
for a class. With this method each view knows what instances
it represents and what roles these instances get in the view.
If some elements are not presented in the view, this method
does not return any role instance. In addition, this method
must be unique, which means that it can not be possible for a
class to receive several types of roles, or for one role type to be
returned for several classes. This mechanism allows creating
only one associated object in the core, when instantiating roles
in a view. Furthermore, each view compartment contains a list
of roles that includes all roles played in this compartment
instance. This list is used to prevent duplicate instantiations.

Listing 4 shows an example role from a view that can
be played by the natural Library in Listing 3. Each view
role inherits from the IViewRole interface for correct view
management. In addition, the listing shows how data of
players is accessed (Line 4) and changed (Line 6 to 9). Both
functions require the + operator to call a function defined in
another connected role or in the player object (e.g., setName
and getName are passed to the Library). The changeTrigger
method is implemented in the RsumManager role and activates
all Extension roles bound to this object once there. If the
views should react to changes of instances, this mechanism
can be used to update visualizations in views. Furthermore,
view roles still have delete functions which are not specified
in the listing. These functions trigger a cascade of changes in
the core model and delete all connected roles and relational
compartments if necessary. If a view is created as read-only
view, all delete and insert operations will not be generated in
the later view generation process. Without these functions,
it is not possible to manipulate elements in the RSUM.

Model Synchronization with the Role-oriented Single Underlying Model MRT’18, October 2018, Copenhagen, Denmark

Listing 5: Excerpt from the management compartment.
1 object RsumManagement extends MultiCompartment {
2 protected var extensions = ListBuffer [..]()
3 protected var activeViews = ListBuffer [..]()
4 protected var allViews = ListBuffer [..]()
5 protected var allRelations = ListBuffer [..]()
6 protected var allNaturals = ListBuffer [..]()
7 /* Insertion , creation , and deletion of views */
8
9 class RsumManager () {

10 def manageRsum (input : Object): Unit = {
11 if (input . isInstanceOf [IRelationCompartment])

{
12 allRelations = allRelations :+ input
13 /* Combine compartments here . */
14 } else {
15 allNaturals = allNaturals :+ input
16 }
17 extensions . foreach { e =>
18 var role: IExtensionRole = e.

getExtensionRole (input)
19 if (role != null)
20 input play role
21 }
22 activeViews . foreach { v =>
23 var role: IViewRole = v. getViewRole (input)
24 if (role != null)
25 input play role
26 }
27 }
28
29 def deleteEverything (): Unit = {
30 var player = this . getPlayer ()
31 var roles = plays . getRoles (player)
32 /* Remove player from list */
33 roles . foreach { r =>
34 plays . removePlayer (r)
35 if (r. isInstanceOf [IViewRole])
36 r. removeRole ()
37 else if (r. isInstanceOf [IRelationRole])
38 r. deleteRelation ()
39 else
40 r. deleteNatural ()
41 }
42 }
43
44 def changeTrigger (): Unit = {
45 + this runExtension ()
46 }
47 }
48 }

The code example in Listing 5 represents the management
object. This inherits, in comparison to all other compart-
ments, from the MultiCompartment which allows the con-
secutive execution of several role behaviors with identical
declaration and not only the execution of the first discov-
ered role method. This option is currently only needed by
the changeTrigger method in the RsumManager role (Line 44
to 46). This role sends the information about changes to
all extension roles of the object as explained before. The
extension roles react to this information in various ways
(e.g., saving the change or modify some other elements). Fur-
thermore, the RsumManagement object manages active views,
integrated views, extensions, naturals, and relations (Line 2
to 6). An integrated view can be activated at any time, which
inserts a new instance in the list of active views. The ac-
tive views describe instances of known view types in which

someone is currently working. The createView algorithm is
not shown in Listing 5 but works as follows: (1) iterating
over all relation compartments and binding them to roles
returned from the view, and (2) iterating over all naturals to
create and binding the last roles to the view. In the views,
the links of the players of the Source and Target roles are
created simultaneously, if they do not yet exist. In this pro-
cess, the main part of the calculations takes place in the
views. Furthermore, the management compartment contains
all RsumManager roles (Line 9), which coordinate the deletion
and insertion. The manageRsum method in the RsumManager
role is called as soon as a new core element is created, which
is passed to the function as an input and processed as follows:

(1) The new element is inserted into the corresponding list
and if it is a relation compartment, the role graphs will
be combined (Line 11 to 15).

(2) Matching Extension roles from the respective Exten-
sion compartments are bound (Line 17 to 21).

(3) Suitable roles are created and bound in all active views
(Line 22 to 26).

However, as soon as a delete operation is called, the delete-
Everything method is triggered. First, the player of the role
(Line 30) and all associated roles (Line 31) are determined.
Then the player is removed from the appropriate list in the
management compartment and the function iterates over all
roles to delete them from the graph (Line 29 to 42). For
different role types, individual delete operators are called,
which are only defined within these roles to guarantee the
error-free deletion from compartments.

For the example implementation, we also wrote an exten-
sion compartment, which saves every change of a natural and
thus creates a history. As soon as a change is made, a copy
of all values is stored in a list. This extension can be used
as a basis for a versioning module to reload older versions
of the RSUM. This scenario is of interest for a distributed
development scenario, in which changes can be traced and
older states can be used.

All these functionalities are necessary to ensure the incre-
mental updating of views at runtime and to avoid redundant
data, which underlines our research question (RQ2) and pro-
vides a foundation for further developments. In addition, the
role concept that SCROLL offers is the foundation for an
understandable and easily usable way to create views at de-
sign and runtime (RQ1). The limitations of this approach are
discussed in the section before. Moreover, the current state is
a hand written implementation to show the applicability of
the concept, but in the future the code should be generated
from a domain specific language for view specification.

4 RELATED WORK
The RSUM approach described in this paper connects the
research areas: single underlying model, view-based software
development, databases, and role-based modeling. Each topic
has its own background and related literature. We only refer
to the work not yet mentioned in Section 2.

MRT’18, October 2018, Copenhagen, Denmark C. Werner and U. Aßmann

In the M@RT area there are already some approaches
that deal with the synchronization of runtime models with
their running model. The MORSE [16] approach is a model-
aware service environment consisting of a model repository
and model-aware services interacting with the repository.
The repository manages model projects and artifacts that
are equipped with universal unique identifiers for differentia-
tion. The approach addresses traceability and collaboration
problems between models and takes over versioning of arti-
facts. Attached services interact with the model repository at
runtime and retrieve elements. MORSE includes managing
models and their versions at runtime with external access.
The SM@RT tool [26] is a synchronization tool between the
running model and a MOF-compliant. The developer defines
how elements are managed and manipulated in the tool. For
this step, the target system must provide a management API.
Each synchronization must be triggered before and after read-
ing and writing the model. Moreover, the tool consists of a
common library and a code generation engine, which together
build the synchronization and thus offer the automatic genera-
tion of synchronization engines. These map a running system
to model-based views, which represent completely separate
models. In the work of Vogel et al. [27], runtime models are
generated from the running system by triple graph grammars
(TTG). These runtime models reflect various properties of the
running system and are updated incrementally at runtime. In
this approach, the runtime models are completely separated
to avoid manipulating results. A notification mechanism re-
ports changes from the source model to the target model. In
addition, the approach can be extended by writing new TTG
rules. As an example, performance, architecture, and failure
models are generated, but in comparison to our approach
they separate runtime models from the running model.

Since the beginning of the view-based software develop-
ment research, different model view approaches have been
created and examined regarding their usefulness during the
software development process. Bruneliere et al. [6] present a
survey about model view approaches with a feature model
and sum up the view terminology and thereby also use the
terminology from Goldschmidt et al. [12]. They identify 16
approaches that meet their requirements, i.e., software is
based on MOF, defines view types, and computes conform-
ing views. In their conclusion, problems of model view ap-
proaches are named, such as inconsistent terminology, view
update problems, incremental view management, concrete
syntax generation, and security aspects. Our approach ad-
dresses two of these problems: the view update problem, and
incremental view management (with the RsumManagement
compartment). Furthermore, the role concept provides a
natural way to encapsulate information. We consider the
approaches with bidirectional, incremental, and immediate
updates in Table 1: EMF Profiles [24], mVTGG [1], Epsilon
Decoration [20], OSM [3], OpenFlexo [13], and VIATRA view-
ers [10]. As additional criteria, we analyze the utilization of
virtual views, the possibility to create deep views and the
occurrence of object schizophrenia. vVTGG [18] is the only
approach without incremental updates in Table 1, but it is

the only approach that does not have object schizophrenia.
OSM [3] was already mentioned in Section 1 and provides all
requirements except deep views, which are not mentioned in
their publications and they have object schizophrenia. They
use the delta-based lens approach by Diskin et al. [11] to
create an incremental, intermediate, and bidirectional update
mechanism for the SUM. All approaches except vVTGG [18]
are object schizophrenic, because the most approaches work
on new model instances and not directly on the base model
(e.g., EMF Profiles, Epsilon Decoration, and mVTGG). Other
approaches create virtual views with traceability information
between view and base model but also do not directly work
on the base model and must propagate their updates across
the traceability links (e.g., OSM, OpenFlexo, and VIATRA
viewers). VTGGs [18] [1] are a more dedicated form of Triple
Graph Grammars (TGGs), in which it is not possible to
invert the source and target model. VTGGs are presented in
two publications. In [1], mVTGG are implemented with an
object adapter pattern, whereas [18] presents vVTGGs using
the class adapter pattern, the use of which permits to remove
object schizophrenia. Moreover, TGGs save the traceability
information between two models in the correspondence graph
and in doing so allow immediate and bidirectional updates
between underlying source and view. In addition, the two
approaches allow deep views while mVTGGs are based on a
formal spezification and vVTGGs are not. Another approach
is EMF Profiles [24] which transforms the profile mechanism
from UML to EMF. This is done by extending EMF models
with profiles to create a reusable mechanism in EMF and
benefit from the UML profiles standard. The profiles are
persisted as separate materialized models which can be called
viewpoint over a single metamodel with the objective to ex-
tend it with annotations on existing elements. In addition,
they are a dynamic model extension and do not pollute the
base model. Their publication does not mention deep views,
however we think it is possible to integrate them. The Epsilon
Decoration [20] approach has model decoration support to
create annotations of models to add new information. The
decorations are represented in a generic way and the whole
approach is implemented on top of Epsilon. They provide
generic model handling functionalities like loading, storing,
querying, and updating which are directly inspired by rela-
tional databases. The decorated models behave like views on
the original model with new manually added information but
they save their modification in separated decorator models
and not directly in the original model. The authors do not
mention deep views in their publication but it should be pos-
sible to create them with decorator chains. OpenFlexo [13]
supports the federation of data from homogeneous techni-
cal spaces into virtual views, wherein no duplicated data is
produced. The complete step is done with a DSL creating
the views while an underlying model federation framework
allows homogeneous handling of data as models. Each view
is connected to its base models, but it is also possible to
connect the different base models to the view resulting in a
synchronization mechanism between the base models across
the view. These bindings allow incremental, immediate, and

Model Synchronization with the Role-oriented Single Underlying Model MRT’18, October 2018, Copenhagen, Denmark

Table 1: Comparison with State-of-the-Art.

vV
TG

G
20

06
[1

8]

EM
F

Pr
ofi

le
s

20
12

[2
4]

m
V

TG
G

20
14

[1
]

Ep
sil

on
D

ec
or

at
io

n
20

10
[2

0]

O
SM

20
10

[3
]

D
O

R
EE

N
20

17
[4

]

O
pe

nF
le

xo
20

16
[1

3]

V
IA

TR
A

vi
ew

er
s

20
14

[1
0]

R
SU

M

Bidirectional updates ■ ■ ■ ■ ■ ■ ■ ■ ■
Immediate updates ■ ■ ■ ■ ■ ■ ■ ■ ■
Incremental updates □ ■ ■ ■ ■ ■ ■ ■ ■
Virtual views ■ □ □ □ ■ ■ ■ ■ ■
Deep views ■ ∅ ■ ∅ □ □ □ ■ ■
No object schizophrenia ■ □ □ □ □ □ □ □ ■

■: yes, □: no, ∅: not applicable

bidirectional updates, but is not suitable for deep views. VI-
ATRA Viewer [10] has emerged from EMF IncQuery and
provides an efficient incremental view management technique
based on graph transformations. It uses derivation rules that
are defined with annotation on query patterns form EMF
IncQuery. Moreover, trace models are used between the base
models and the views to reason about changes and provide
synchronization support. Besides, it offers a way to serialize
and reuse views and thereby, produces materialized view
types with virtual and deep views as view chains.

The DOREEN approach [4] is a new deep view-point lan-
guage similar to and with the same properties as OSM that
uses the deep modeling technology for views and SUM. They
use projective views of the SUM, which are completely de-
fined by their content and its visualization. DOREEN is
a component-centric view approach and uses the compos-
ite pattern to increase conceptual simplicity and flexibility
and therefore has advantages in scalability, focusability, and
customizability. For model synchronization tasks between
SUM and views, round-trip engineering (RTE) strategies are
needed. Hettel et al. [15] introduce definitions for RTE. For
the transformation between two models, they distinguish be-
tween the relevant and non-relevant part of the two models.
If there are changes in the relevant part of model A, then
model B must be changed, too. Changes in the non-relevant
part have no consequences in other model which is important
for incremental updates. Furthermore, model transformations
languages like ATL, QVT, and TGG are used to transform
models in RTE systems.

In view-based software development, the views from a
SUM need to be updated over time. This problem is closely
related to the View Update Problem in relational databases.
In the year 1978, Dayal [9] defined specific criteria that need
to be satisfied by an updatable view to avoid any side effects.
An updatable view behaves exactly like a standard table in
a standard database. Therefore, Keller et al. [19] proposed
an interactive view definition mechanism and introduced

criteria to satisfy the update translations in the simplest
form, such as no database side effects, minimal changes, and
no unnecessary changes. But, after 40 years of research, an
easy and powerful solution is still missing.

In Section 2, we briefly described role models, their proper-
ties, and SCROLL. For our realization, we use SCROLL as a
role-based programming language but there are other options
to implement the features of roles. The Role Object Pattern
(ROP) [5] allows unanticipated changes at runtime. This flex-
ible design pattern extends a core object to dynamically add
and remove functionality in the form of new objects. The use
of the ROP creates a lot of design overhead and does not
allow the use of contexts. In contrast to ROP, SCROLL [25]
and Object Teams/Java (OT) [14] are both role-based pro-
gramming languages covering most of the 26 role features [23].
OT adds cross-cutting concerns to an existing application,
whereby software composition and aspect-orientation play
the central role. In OT, teams are compound objects similar
to compartment types and contain all participating roles. The
players are called base objects and play roles in the teams.
Furthermore, roles add methods that can be called from the
base class or forward information to the base class.

5 CONCLUSION AND FUTURE WORK
In this paper, we have described the advantages of using the
role concept as the foundation to realize a SUM-based soft-
ware engineering environment called the RSUM approach to
synchronize models as views over an underlying source. The
approach provides incremental runtime updates in views, and
runtime integration of new views. In addition, it introduces
a runtime adaptation mechanism in the view and the under-
lying source level without redundant data, whereby views
work on compound objects removing object schizophrenia.
Moreover, the role concept provides contextual, behavioral,
and relational properties that are used for modeling relational
compartments and views to separate concerns in views. The
usability of SUM-based software engineering depends on both,

MRT’18, October 2018, Copenhagen, Denmark C. Werner and U. Aßmann

flexibility and stability. Flexibility means to add new types of
views and models over time, whereas stability means to have
fixed and stable metamodels, to support standards, and to
have tool interoperability. The role concept and the related
tools like SCROLL are research prototypes. This reduces the
overall tool support and stability of the RSUM approach.

In future work, we need strategies to integrate legacy mod-
els into the RSUM. To achieve this, we work on a role-based
model synchronization and transformation approach to use a
uniform modeling and programming language for the whole
process. In addition, we want to provide DSLs to generate
views and view types without the currently hand-written
implementation overhead. This DSLs should allow filter op-
erations over the naturals and relational compartments to
present only parts of all instances.

ACKNOWLEDGMENTS
This work has been funded by the German Research Founda-
tion within the Research Training Group "Role-based Soft-
ware Infrastructures for continuous-context-sensitive Systems"
(GRK 1907).

REFERENCES
[1] Anthony Anjorin, Sebastian Rose, Frederik Deckwerth, and Andy

Schürr. 2014. Efficient Model Synchronization with View Triple
Graph Grammars. In Modelling Foundations and Applications.
Springer International Publishing, Cham, 1–17.

[2] Colin Atkinson, Ralph Gerbig, and Christian Tunjic. 2013. A
Multi-level Modeling Environment for SUM-based Software Engi-
neering. In 1st Workshop on View-Based, Aspect-Oriented and
Orthographic Software Modelling (VAO ’13). ACM, USA, 2:1–2:9.
https://doi.org/10.1145/2489861.2489868

[3] Colin Atkinson, Dietmar Stoll, and Philipp Bostan. 2010. Ortho-
graphic Software Modeling: A Practical Approach to View-Based
Development. In Communications in Computer and Information
Science. Springer Science & Business Media, 206–219.

[4] Colin Atkinson and Christian Tunjic. 2017. A Deep View-Point
Language for Projective Modeling. In 21st International Enter-
prise Distributed Object Computing Conference (EDOC). IEEE,
133–142. https://doi.org/10.1109/EDOC.2017.26

[5] Dirk Bäumer, Dirk Riehle, Wolf Siberski, and Martina Wulf. 1998.
The Role Object Pattern. In Washington University Dept. of
Computer Science.

[6] Hugo Bruneliere, Erik Burger, Jordi Cabot, and Manuel Wimmer.
2017. A feature-based survey of model view approaches. Software
& Systems Modeling (2017), 1–22. https://doi.org/10.1007/
s10270-017-0622-9

[7] Erik Burger. 2013. Flexible Views for Rapid Model-driven De-
velopment. In 1st Workshop on View-Based, Aspect-Oriented
and Orthographic Software Modelling (VAO ’13). ACM, USA,
1:1–1:5. https://doi.org/10.1145/2489861.2489863

[8] Erik Burger, Jörg Henss, Martin Küster, Steffen Kruse, and Lucia
Happe. 2016. View-based model-driven software development with
ModelJoin. Software & Systems Modeling 15, 2 (2016), 473–496.
https://doi.org/10.1007/s10270-014-0413-5

[9] Umeshwar Dayal and Philip A. Bernstein. 1978. On the updata-
bility of relational views. In 4th international conference on Very
Large Data Bases - Volume 4. VLDB Endowment, 368–377.

[10] Csaba Debreceni, Ákos Horváth, Ábel Hegedüs, Zoltán Ujhe-
lyi, István Ráth, and Dániel Varró. 2014. Query-driven In-
cremental Synchronization of View Models. In 2nd Workshop
on View-Based, Aspect-Oriented and Orthographic Software
Modelling. ACM, USA, 31:31–31:38. https://doi.org/10.1145/
2631675.2631677

[11] Zinovy Diskin, Yingfei Xiong, Krzysztof Czarnecki, Hartmut Ehrig,
Frank Hermann, and Fernando Orejas. 2011. From State- to Delta-
Based Bidirectional Model Transformations: The Symmetric
Case. Springer Berlin Heidelberg, 304–318. https://doi.org/10.
1007/978-3-642-24485-8_22

[12] Thomas Goldschmidt, Steffen Becker, and Erik Burger. 2012.
Towards a Tool-Oriented Taxonomy of View-Based Modelling. In
Modellierung 2012 (GI-Edition – Lecture Notes in Informatics),
Vol. P-201. Gesellschaft für Informatik e.V. (GI), Bonn, 59–74.

[13] Fahad R. Golra, Antoine Beugnard, Fabien Dagnat, Sylvain
Guerin, and Christophe Guychard. 2016. Addressing Modularity
for Heterogeneous Multi-model Systems Using Model Federation.
In Companion Proceedings of the 15th International Conference
on Modularity. ACM, 206–211.

[14] Stephan Herrmann. 2003. Object Teams: Improving Modularity
for Crosscutting Collaborations. Springer Berlin Heidelberg,
248–264.

[15] Thomas Hettel, Michael Lawley, and Kerry Raymond. 2008.
Model Synchronisation: Definitions for Round-Trip Engineer-
ing. Springer Berlin Heidelberg, 31–45. https://doi.org/10.1007/
978-3-540-69927-9_3

[16] T. Holmes, U. Zdun, and S. Dustdar. 2009. MORSE: A Model-
Aware service environment. In 2009 IEEE Asia-Pacific Services
Computing Conference (APSCC). 470–477. https://doi.org/10.
1109/APSCC.2009.5394083

[17] May ISO. 2011. Systems and software engineering–architecture
description. Technical Report. ISO/IEC/IEEE 42010.

[18] Johannes Jakob, Alexander Königs, and Andy Schürr. 2006. Non-
materialized Model View Specification with Triple Graph Gram-
mars. In Graph Transformations. Springer Berlin Heidelberg,
321–335.

[19] Arthur M. Keller. 1985. Algorithms for Translating View Updates
to Database Updates for Views Involving Selections, Projections,
and Joins. In 4th ACM SIGACT-SIGMOD Symposium on Prin-
ciples of Database Systems (PODS ’85). ACM, USA, 154–163.
https://doi.org/10.1145/325405.325423

[20] Dimitrios S. Kolovos, Louis M. Rose, Nikolaos Drivalos Matragkas,
Richard F. Paige, Fiona A. C. Polack, and Kiran J. Fernandes.
2010. Constructing and Navigating Non-invasive Model Dec-
orations. In Theory and Practice of Model Transformations.
Springer Berlin Heidelberg, 138–152.

[21] Max E. Kramer, Erik Burger, and Michael Langhammer. 2013.
View-centric Engineering with Synchronized Heterogeneous Mod-
els. In 1st Workshop on View-Based, Aspect-Oriented and Or-
thographic Software Modelling (VAO ’13). ACM, USA, 5:1–5:6.
https://doi.org/10.1145/2489861.2489864

[22] Thomas Kühn, Stephan Böhme, Sebastian Götz, and Uwe Aß-
mann. 2015. A Combined Formal Model for Relational Context-
dependent Roles. In 2015 ACM SIGPLAN International Con-
ference on Software Language Engineering (SLE 2015). ACM,
USA, 113–124. https://doi.org/10.1145/2814251.2814255

[23] Thomas Kühn, Max Leuthäuser, Sebastian Götz, Christoph
Seidl, and Uwe Aßmann. 2014. A Metamodel Family for Role-
Based Modeling and Programming Languages. Springer Inter-
national Publishing, Cham, 141–160. https://doi.org/10.1007/
978-3-319-11245-9_8

[24] Philip Langer, Konrad Wieland, Manuel Wimmer, Jordi Cabot,
et al. 2012. EMF Profiles: A Lightweight Extension Approach for
EMF Models. Journal of Object Technology 11, 1 (2012), 1–29.

[25] Max Leuthäuser and Uwe Aßmann. 2015. Enabling View-based
Programming with SCROLL: Using Roles and Dynamic Dis-
patch for Etablishing View-based Programming. In 2015 Joint
MORSE/VAO Workshop on Model-Driven Robot Software En-
gineering and View-based Software-Engineering. ACM, USA,
25–33.

[26] Hui Song, Yingfei Xiong, Franck Chauvel, Gang Huang, Zhenjiang
Hu, and Hong Mei. 2010. Generating Synchronization Engines
between Running Systems and Their Model-Based Views. In
Models in Software Engineering. Springer Berlin Heidelberg, 140–
154.

[27] Thomas Vogel, Stefan Neumann, Stephan Hildebrandt, Holger
Giese, and Basil Becker. 2010. Incremental Model Synchroniza-
tion for Efficient Run-Time Monitoring. In Models in Software
Engineering. Springer Berlin Heidelberg, 124–139.

https://doi.org/10.1145/2489861.2489868
https://doi.org/10.1109/EDOC.2017.26
https://doi.org/10.1007/s10270-017-0622-9
https://doi.org/10.1007/s10270-017-0622-9
https://doi.org/10.1145/2489861.2489863
https://doi.org/10.1007/s10270-014-0413-5
https://doi.org/10.1145/2631675.2631677
https://doi.org/10.1145/2631675.2631677
https://doi.org/10.1007/978-3-642-24485-8_22
https://doi.org/10.1007/978-3-642-24485-8_22
https://doi.org/10.1007/978-3-540-69927-9_3
https://doi.org/10.1007/978-3-540-69927-9_3
https://doi.org/10.1109/APSCC.2009.5394083
https://doi.org/10.1109/APSCC.2009.5394083
https://doi.org/10.1145/325405.325423
https://doi.org/10.1145/2489861.2489864
https://doi.org/10.1145/2814251.2814255
https://doi.org/10.1007/978-3-319-11245-9_8
https://doi.org/10.1007/978-3-319-11245-9_8

	Abstract
	1 Introduction
	2 Background
	2.1 Single Underlying Model
	2.2 View-based Software Development
	2.3 Role Concept

	3 Role-oriented Single Underlying Model (RSUM)
	3.1 Running Example
	3.2 Concept
	3.3 SCROLL Implementation

	4 Related Work
	5 Conclusion and Future Work
	Acknowledgments
	References

