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Abstract. Apart from sharing common concepts, current approaches
to multi-level modelling differ with respect to specific features and the
terminology. Both are an obstacle for the further development of the field.
This paper presents a selection of possible requirements for advanced
multi-level modelling languages. It is intended as a contribution to a
broader discussion of requirements and to the development of a common
research agenda.

1 Introduction

Various languages and tools have been proposed to support multi-level mod-
elling [1], [2], [3], [4], [5]. Apart from differences regarding specific aspects, they
all share a few essential properties. First, they allow for an arbitrary number of
classification levels. Second, every class, no matter on what level, is an object at
the same time. Third, they allow for deferred or deep instantiation, which means
that attributes of a class do not have to be instantiated with the direct instances
of that class, but only later in instances of instances. Furthermore, in most cases,
approaches to multi-level modelling support “strict meta-modelling” [6], that is,
every object in a multi-level model is assigned a classification level. The lack
of a unified or even standardized language for meta-modelling is an obstacle to
the further dissemination of multi-level modelling. At the same time, it fosters
the competition between different approaches, which is better suited to advance
the field than a standard that is likely to freeze a certain state. Nevertheless,
competition creates a problem, if it hinders collaboration. The development of
a language for multi-level modelling, and even more so, the implementation of
corresponding tools requires a substantial effort. Therefore, it seems natural that
the developers of a certain approach favour their concepts and tend to protect
them against others. Against this background, it seems more promising to start
the competition not only with the presentation of language specifications, but
during requirements analysis already. First, the more researchers are involved
in the analysis of requirements, the more likely it is to identify relevant issues.
Second, from a psychological perspective, it seems to be easier to develop a con-
sensus on requirements than on the comparative evaluation of existing artefacts
– at least as long as the creators of these artefacts are involved.



This paper is intended to serve as a contribution to starting a community
initiative on discussing requirements for future, possibly unified multi-level mod-
elling languages that go beyond the common concepts outlined above. The re-
quirements resulted from analysing limitations experienced with the use of the
multi-level modelling language FMMLx [7], as well as from discussions during
various workshops and meetings. The requirements are illustrated in part with
diagrams that were created with the FMMLx . Fig. 1 gives an overview of essen-
tial elements of the concrete syntax. Colors are used to represent classification
levels.
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Fig. 1. Illustration of the notation of the FMMLx

2 Requirements

The proposed requirements are restricted to those that belong to the core of a
language. Additional requirements that concern the size of a language, or the
management and analysis of models are not accounted for. To stay within the
space limitations, various requirements had to be omitted. Some of those will be
mentioned in the conclusions.

2.1 Contingent levels

Every class specified in the FMMLx has to be assigned an explicit classification
level. There is a good reason for this constraint, sometimes referred to as “strict
multi-level modelling” [6, p. 28]. With respect to the semantics of a class, it makes
a clear difference whether it is meant as a class on M1 or on any Mn with n >
1. In natural language we can cope with the ambiguity of terms like “Product”,
which can be used to refer to a particular product, a type of product or even to
the set of all kinds of product types. In conceptual modelling it is preferable to
avoid ambiguity. Nevertheless, there are cases where the need to assign a strict,



invariant level to a class is problematic, because it prevents an abstraction that
would be useful, e.g., to increase reusability. The appropriate number of classifi-
cation levels does not only depend on the variety of the subject, but also on the
need to express variety. Sometimes, the design of two classification hierarchies of
similar objects results in a top level meta class that makes sense for both hier-
archies, but that would be located in one hierarchy on a level different from the
one needed in the other hierarchy. The example in fig. 2 illustrates this problem.
In the example, the class Product on M4 is instantiated into PeripheralDevice
on M3 and into Desk on M2. According to the experience gathered during the
last years this is not an exotic exception, but occurs regularly.

P_73992S

P_73992S

serialNo = 
partSalesPrice = 

^PX_66^

79.99

M3

M2

M1

     salesPrice: Float
     serialNo: String
     partSalesPrice: Float
     hasIdentity: Boolean

Product

^MetaClass^

1
0

M0

0

     salesPrice: Float
     serialNo: String
     partSalesPrice: Float
depth: Float
width: Float

Desk

^Product^

1
0

hasIdentity = true

0

     serialNo: String
     partSalesPrice: Float

Nomad

salesPrice = 
depth = 
width = 

179.99

^Desk^

0

600

0

65.00
140.00

DN_9455T

serialNo = 
partSalesPrice = 

DN_9455T

^PX_66^

n.def.

     salesPrice: Float
     serialNo: String
     partSalesPrice: Float
writeOnly: Boolean

PeripheralDevice

^Product^

1
00
0

hasIdentity = true

     salesPrice: Float
     serialNo: String
     partSalesPrice: Float
resolution: Integer

Printer

^PeripheralDevice^

1
0
0

writeOnly = true

     serialNo: String
     partSalesPrice: Float

PX_66

salesPrice = 
resolution = 

89.99

^Printer^

0

600

0

M4

P_73992S

Fig. 2. Illustration of problem produced by strict levels



R1 In addition to having classes with a definite level, it should be possible to
define classes with a contingent level. A contingent level allows for adapting
the concrete level of a class to different contexts of use. Rationale: It happens
that two classes on different classification levels could be classified by the
same meta class. However, this can be achieved only, if the meta class does
not have a definite classification level. Instead, its level would have to be
contingent with respect to the instantiation context.

Corresponding solutions are proposed by [8] who suggest to allow for “leaping”
levels, and by [9] who add flexibility by replacing numbers to qualify levels with
labels.

Priority: high
Challenge: The definition of a class as level-contingent has a substantial im-

pact on a model’s integrity. It is not necessarily the case that an attribute de-
fined in a contingent class can be instantiated on any level. If, for example, an
attribute is intended to store the average customer satisfaction with a certain
bicycle model or bicycle type, it would make sense only to instantiate om M1 or
above.

Challenge: The requirement demands for a cross-level constraint language.

2.2 “Classless” classes

Like with any object-oriented models, the design of multi-level models requires
the creation of classes. In traditional, one-level models, a class is implicitly in-
stantiated from one specific meta-class. In multi-level models, a new class is
instantiated from a class that exists in the model already. As a consequence,
the design of a multi-level model requires a top-down approach, that is, one has
to start with classes on the topmost classification level. Then, classes on lower
levels have to be added step by step. There are cases where it may be perceived
as inappropriate to be forced to a top-down approach. Sometimes, the topmost
classes are not known in advance. Instead, they may result through an act of
abstraction from lower level classes. In other words, it would be helpful, if a top-
down approach was supplemented by a bottom-up approach. That would require
allowing for the preliminary creation of classes without an explicit meta-class.

R2 It should be possible to define preliminary classes without a meta-class.
Rationale: Sometimes, a bottom-up approach seems to be more appropriate
than a top-down approach.

Priority: high
Challenge: From a technical perspective, it is not possible that a class does

not have a meta-class. Therefore, some preliminary meta-class has to be assigned,
which would be later replaced by the final meta-class. Hence, a corresponding
modelling tool needs to support meta-class migration.



2.3 Distinction of instantiation levels within associations

Like attributes and operations, associations could be defined as intrinsic, too.
The example in fig. 3 illustrates the idea. The classes BusinessProcess and
Position are both located on M2, that is, they are supposed to be instantiated
into process types and position types. The intrinsic association between both is
to express that a particular process instance on M0 is assigned to a particular
instance of a position type, also on M0. This is indicated by the zero printed in
white on the black square next to the association name. It is not a rare exception
that an association should be instantiated on different levels with both associated
classes. The example in fig. 3 includes the association “responsible for”. It is to
express that a particular position instance on M0 is responsible for a type of
platform on M1.
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Fig. 3. Different instantiation levels of an intrinsic association

R3 Intrinsic associations should allow the specification of different instantiation
levels for both participating classes. Rationale: It is common in natural lan-
guage to link two concepts (or object references) on different classification
levels in one sentence. Accordingly, it can be a relevant requirement to link
two objects on different classification levels in an multi-level model. If the
association can be defined on a higher level already, that is, if the association
is intrinsic, it follows directly that it must be possible to support different
instantiation levels.

This feature is already part of the current implementation of the FMMLx in
the Xmodeler and proved to be very useful.

Priority: high

2.4 Avoiding redundant specification

It happens that classes within a classification hierarchy share the same proper-
ties, that is, the same attributes, operations, or associations. A frequent example



is an attribute like “name”, which may be required for a class, its instances and
all further instances down the instantiation line. Further examples comprise op-
erations that perform statistics on object populations. It might be required for
every class within a classification hierarchy to provide methods that calculate the
number of direct instances or the cumulated number of all instances of instances
of a class (see example in fig. 4).
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Fig. 4. Example of repeated specification of the same properties

R4 It should be possible to indicate that certain properties of a class are to be
inherited to its instances. Rationale: Inheriting features where it is appro-
priate enables preventing redundancy.

Note that inheriting properties is different from intrinsic properties. An in-
trinsic property is not directly instantiated where it is defined, but only at the
specified instantiation level. An inheritied property can be part of many classes.
Therefore, it can be instantiated multiple times. Intrinsic properties must not
be explicitly inherited, since explicit inheritance of intrinsic properties would be
redundant and would therefore compromise the comprehensibility of a model.
In an ideal case, the implementation of operations can be inherited, too (as it
would be the case with the example in fig. 4).

Priority: high
In the current implementation of the FMMLx , this problem is relaxed im-

plicitly. Certain properties, such as the attribute name, are defined with the cen-
tral class Class in Xcore. Every class that is defined with the FMMLx inherits
through MetaClass from Class. However, this approach works only for proper-
ties that are generic enough to be inherited to all classes of an entire system.

2.5 Support for the specification of association types

Associations are of pivotal relevance for the design of languages and models.
Current languages do not provide specific support for the specification of as-
sociation types. If an association is characterized by specific semantics, it has



to be expressed by additional constraints. Table 1 gives an overview of general
association types.

name description semantics variants behaviour
interaction no specific semantics none, restricted to

cardinalities
state depen-
dency, e.g. mar-
riage, sex

transparent cre-
ation of links

aggregation particular objects
that are part of an-
other object, e.g. a
wheel that is part of
a particular car

special case of inter-
action

state depen-
dency; depen-
dent on corre-
sponding com-
position

transparent cre-
ation of links

composition an abstraction over
aggregation, e.g. the
construction of a car
model may allow for
1 .. * wheel types

similar to aggrega-
tion, however, on
a different level of
abstraction (a type
is an aggregation of
other types)

state depen-
dency, e.g. any
type of wheel
that is certified
for a certain
speed

transparent cre-
ation of links
including own-
ership, require-
ments for MLM

delegation transparently access
data or behaviour of
another object

special case of in-
teraction; delegator
delegates behaviour
(and, hence, state)
to delegatee

state depen-
dency, e.g. age,
qualification,
authorization

transparent cre-
ation of links;
object creation;
message dis-
patch

delegation to
class

transparently access
data or behaviour
that is common to
all instances of a
class, e.g. a price of
a product exemplar
that is specified with
the corresponding
class

similar to delega-
tion, however on
a different level of
abstraction. Dele-
gatee (object) dele-
gates behaviour to
its class

delegation may
be restricted
to classes that
are marked as
delegatees

transparent cre-
ation of links;
object creation;
message dis-
patch; requires
rules to define
dispatch order;
MLM require-
ments

Table 1. Example association types

In addition to general association types, there are domain-specific association
types. Their semantics depends on domain-specific requirements, which may
vary. Hence, the language should offer meta-association types that allow the
creation of various association types of the same kind. Also, the semantics of
a domain-specific association type may depend on properties of the associated
classes. Table 2 illustrates the idea of domain-specific association types with a
few examples.

R5 The language should provide generic association types. At best, these types
would be provided as instances of an association meta type. Rationale: In-
cluding generic association types promotes modelling productivity and model



name kinds of classes description variations
married to Person, Person marriage depends on cer-

tain requirements, e.g. sex,
age

different constraints on
sex, multiplicities, age

holds Person, Driving Li-
cence

holding a driving licence
requires people to satisfy
certain requirements

constraints on min. and
max. age, gender, different
types of driving licences

Table 2. Examples of domain-specific association types

integrity. Meta association types provide modellers with more flexibility,
since they allow to vary the semantics of generic association types.

R6 It should be possible to define domain-specific association types. In order to
cover the variance of domain-specific association types, it could be helpful, if
a language provides meta-association types on a higher level, that would al-
low the instantiation of meta-association types. Rationale: The specification
of domain-specific association types promotes model integrity.

Priority: medium
Challenge: The specification of meta-associations is very demanding, because

association types can hardly be defined on their own, that is, without regard to
the classes they connect. For meta-associations, that would require adequate
meta-classes, which, however, can hardly be predicted in advance.

2.6 Semantic enrichment of properties

Properties of a class in a multi-level system may serve different purposes. An
attribute that is instantiated in a class may represent properties of that class,
a property value shared by all instances of the class, or constraints on possible
property values in instances. The example in fig. 5 illustrates this issue with
respect to attributes. The attribute minQualityLevel is instantiated with all
instances and serves the specification of a constraint on possible values of in-
stances of these instances (all types of printers in that system). The attribute
serialNum, though being an intrinsic attribute, is supposed to be instantiated in
individual values for each instance (particular printers). Finally, attributes like
pagesPerMin are to be instantiated into values that are shared by all instances
of the class a particular value was assigned to.

Similar distinctions can be made for operations. The values delivered or used
by corresponding access operations would represent corresponding aspects. As-
sociations may also be used to create links between an object (e.g. representing
a country) and a class (e.g. representing a specific product type), where the link
is semantically shared by all its instances.

R7 A language should allow for clearly distinguishing between attributes that
are regularly instantiated into individual values of instances, that are instan-
tiated into values of instances that actually represent common values of their
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instances, and those that serve the specification of constraints on attribute
values. At the same time, corresponding access operations should be quali-
fied accordingly. Rationale: These different kinds of properties have specific
semantics that would be lost, if there was no way to express it somehow,
which in turn could compromise the integrity of systems.

This requirement is fairly easy to satisfy and promises clear benefits.
Priority: high
There are also different kinds of operations. Generic categories of operations

include instantiation, read access, write access, update or release.

R8 It should be possible to assign categories to operations. Rationale: Distin-
guishing categories of operations enables more meaningful model queries and
fosters models integrity.

Priority: high
————————————————————————————————

3 Conclusions

Despite its undisputed benefits, multi-level modelling has still not reached the
mainstream of conceptual modelling and software engineering. Therefore, it
would be important to bundle resources and to start a collaboration beyond



existing approaches. That recommends not only focussing on "main open ques-
tions in multi-level modeling" [10, p. 54] including the appropriate size of a
language, but also on requirements for future extensions of multi-level modelling
languages. These activities are suited to foster the evolution of a common re-
search agenda and a unified terminology – even though some of the requirements
are already satisfied by existing approaches. The requirements presented in this
paper are only a starting point. Various requirements had to be omitted because
of space limitations. To name two examples only: it would be useful to allow for
the specification of attributes with classes above M1, and, more important, there
is need for a multi-level object constraint language.
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