
vOCL: A novel approach for UML
constraints modeling

1Omar Badreddin, 2Gerardo Barraza, 3Wahab Hamou-Lhadj,
1,2 University of Texas, El Paso, TX, USA

1 obbadreddin@utep.edu
2 gbarraza5@miners.utep.edu

3 Concordia University, Montreal, QC, Canada
3 wahab.hamou-lhadj@concordia.ca

Abstract. Object Constraint Language (OCL) supports UML model navigation,
queries, and constraints. OCL has precise unambiguous semantics and supports
definition of constraints at the model level. However, OCL is arguably the least
adopted UML notation in practice. We argue that while the language constructs,
concepts, and semantics are well founded, the language’s surface textual notation
significantly hampers comprehension. Its navigational features mean that users must
track a linear textual syntax against a visual model with a 2-D layout.

This paper proposes a novel visual surface notation that maintains its foundational
strengths in supporting navigation and querying, and improves on its representation
and comprehension. The proposed visual surface notation is superimposed on its UML
model context to enable the visualization of one or more constraints along with its
related contextual model elements. Improving on constraints readability and
comprehension ultimately improves constraints adoption in practice, and it enhances
the learning experience in classrooms.

The contributions of this paper are a novel constraints surface notation, a
supporting meta-model, and an evaluation of the proposed approach using a controlled
experimentation.

1 Introduction

UML is an ecosystem of standards and tools to support model-based software and systems
engineering. UML includes thirteen diagrams that address various aspects of systems
development. Model Driven Architecture promotes the use of models, rather than code, as the
primary development artifact. The premise includes improvements in software quality and
reliability, as well as improvements in engineers’ productivity. Towards that goal, a set of new
standards and supporting tools are emerging that formalize model semantics, effectively
reducing the abstraction gap between models and code. Action Language for Foundational
UML (ALF) is a textual language with precise semantics that are based on a subset of the UML
meta-model 10. ALF supports many statements commonly supported in many existing object-
oriented languages, but also supports statements at higher level of abstraction that are more
commonly found in models such as class diagrams and state machines.

The need for precise models is well founded. Models that lack precision are consequently
ambiguous, subject to misinterpretation, and have limited role in contributing to automated code
generation. Object Constraint Language (OCL), like ALF, is a textual language that defines
model-level constraints. It supports model/graph navigation, and includes executable functions
on collections and sets 11.

Despite OCL’s capabilities, its adoption in practice is rather limited. OCL is arguably the
least used UML notation in practice 12. To use OCL, engineers must trace sequential textual
constraints and navigate against a visual model of the system. We hypothesize that the textual

notation of the language is a key hindrance, as well as poor tooling and weak specifications.
Existing approaches to visualize such constraints are limited or ambiguous, and does not address
the fundamental limitations of comprehension and usability.	

The contributions of this work are a novel approach and a demonstration for OCL-based
constraints visualization, a supporting UML metamodel extension, and an evaluation of
comprehension value using a controlled experiment. The novel surface notation is
superimposed on the corresponding UML model elements (the context diagram). We
demonstrate by example how the novel notation and visualization approach improves on
constraints comprehension. We also demonstrate how the proposed approach improves on
existing state of the art in constraints modeling and visualization. We also introduce a meta-
model of the proposed notation as an extension to the UML metamodel.

The rest of the paper is organized as follows. In Section 2 we provide a background on OCL.
We discuss related works in Section 0. The proposed visual notation is presented in Section 4.
The proposed language specification and meta model are presented in Section 5 and 6
respectively. We discuss the limitations of the proposed approach in Section 7. We conclude
and layout future works in Section 8.

2 Background

In this section, we introduce a necessary background on OCL and its key statement classes.
OCL was initially developed at IBM, and was later merged into the UML standard suite 13.
OCL started as a complement of the UML notation with the goal to overcome the limitations of
UML (and in general, any graphical notation) in terms of precisely specifying detailed aspects
of a system design [3]. Initially, OCL’s scope was limited to specifying constraints for UML
Models. OCL is now a key modeling notation for many model-driven engineering (MDE)
technologies, such as model transformation, validation, model-based querying and reporting.	

Visual languages are generally desirable as they tend to be easier to comprehend and are
typically superior as a communication medium. However, visual language designers face an
engineering trade-off between language precision and the number of unique language
concepts/constructs and their corresponding visual elements. To improve precision, the
language must support more of such elements, making the language harder to learn, harder to
understand, and ultimately undermine the primary objective of the language itself. For that
reason and due to its origin and mathematical foundation, OCL is a textual language and it is
designed specifically to complement diagrams with precise constraints statements [4].	

OCL is declarative; it does not support imperative constructs such as assignment statements
and supports the following key constructs: 1) Invariants, conditions that must be true at all times;
2) Derivation rules that define computations of model elements; 3) Model querying, or
operations on collection data sets; and 4) Pre and post condition definitions. OCL supports
mathematical expressions, binary operations, as well as OCL specific operations (such as
oclIsNew(), oclIsUndefined()), standard operations, collection operations, and
iteration operations on collections. Furthermore, OCL has four collection types: Set,
OrderedSet, Bag, and Sequence. The following is a simple OCL Constraint that define an upper
limit for the number of patients in a hospital.

context Hospital
inv maxPatients: self.patients->size() <= self.beds

3 Related Work

Constraints are frequently expressed in natural language, even when system designs are
expressed in UML modeling notations 14. Despite its appropriateness, OCL has not attracted
any significant interests in practice 1. In fact, it has been argued that OCL is the least adopted
UML standard notation 15. This has motivated researchers to investigate approaches to improve
OCL comprehension and representations.

Visual OCL proposes a visual representation of various OCL textual constructs 1.
Constraints are presented in the form of compartments that contain tags that correlate to
elements in the UML diagram. These tags are connected to one another to demonstrate their
association with one another and construct the visual constraint. Visual OCL are independent
models (i.e. separate from the context) with no support for context diagram navigation. Users
of Visual OCL, in addition to learning the OCL syntax, must also learn the non-trivial mapping
from OCL statements to Visual OCL compartments and these associated tags.

Constraints Diagrams 1619 is another visual constraint modeling notation that uses
rectangular boxes containing nodes and arrows representing relationships between elements of
a class diagram can be arranged to construct a constraint nearly equivalent to an OCL constraint.
Later theoretical and empirical investigations suggest significant improvements to
comprehension associated with Constraints Diagrams models 21.

Fish et al 2 18 conducted a cognitive evaluation of the textual OCL notation against two
visual constraints modeling approaches; Visual OCL and Constraint Diagrams. The evaluation
focused on the effectiveness of the visualization using a number of characteristics, including
completeness, ease of expression, information retrieval factors, reasoning, learning, and ability
to combine multiple sub-constraints. While Constraints Diagrams were more expressive, they
lacked flexibility and navigability of the corresponding Visual OCL models.

Bottoni et al propose a UML metamodel extension to support constraints. Their approach
minimizes the introduction of new visual elements by extending the UML Collaboration
Diagram metamodel 17. Their approach proposes new visual elements to represent various OCL
operations (Fig. 1).

Fig. 1: A Visualization of OCL using Collaborations [17]

VMQL is another approach to visualize OCL constraints proposed by Störrle 20. Despite being
less expressive than OCL, VMQL has demonstrated significant improvements in
comprehension and maintainability.

4 Proposed Superimposed Visual OCL Notation

We propose vOCL, a novel visual surface notation for OCL. The key novelty in this approach
is twofold. First, vOCL language is expressed as part of the context UML model, and not as a

separate model entity. As such, the language supports visualizing one or more constraints on
parts or on whole models. Second, the language reduces dependence on the existing OCL textual
notation, and define new modeling elements to represent a foundational core of OCL constructs.
The rational for this language design is to minimize the distinction between the model and its
constraints, and improve language comprehension. As such, the language is designed as
extensions to the UML instance model [5]. Practical implications of this approach include
facilitating the integration of the language into existing UML modeling tools.

The following section demonstrates key language constructs. Demonstration of the language
design approach is demonstrated by a running example in section 5.

4.1 Key vOCL Elements

We cover three types of constraints – invariants, and pre and post conditions. The following
table summarizes key vOCL statements and their corresponding OCL syntax. vOCL is adapted
from OCL and thus deviations from actual OCL constructs are kept to a minimum. The language
introduces a few new symbolic elements to aid model navigation, such as starting node and
navigational arrows. Table 1 summarizes key vOCL constraints.

Table 1. vOCL core constraint constructs

 vOCL
Elements

OCL Syntax vOCL Symbol Description

 Basic Elements

1
Context of
constraint
statement

Context:
<<class name>> or

<<class::method()>>

Indicates which class or
method the constraint applies

to – denoted in bold

2	
Initial element of

invariant
constraint

inv (name optional):
<<constraint>>

Indicates starting point of
constraint statement

3	 Directional flow
of constraint No OCL Syntax

Navigational arrow to follow
constraint

4

Participating
element in
constraint
statement

Attribute
name/Collection name

Element that is part of
constraint – could be a class

attribute or a collection

5 Operations and
operators

select(), size(),
forAll(), <=, etc.

Operation that is to be
applied to a participating
element in the constraint

6 Pre and Post
Condition

pre: <<condition>>
post: <<condition>>

Pre-condition starts at left,
post-condition at right

 Operations
 Standard Operations

7 Instance count count(e)
 Returns count of instances of

e in collection

8	 Exclusion excludes(e)
Returns true if e is not in the

collection

9 Inclusion includes(e)

Returns true if e is in the
collection

10 Empty collection isEmpty()

Returns true if collection
contains no elements

 vOCL
Elements

OCL Syntax vOCL Symbol Description

11 Non-empty
collection

notEmpty()

Returns true if collection
contains at least one element

12 Summation sum()

Returns the sum of all
elements in the collection

13 Size of collection size()

Returns the number of
elements in the collection

	 Collection Operations

14 Insert at end of
collection

append(e)

Appends element e at the end
of collection

15 Convert to bag asBag()
 Returns collection as Bag:

Not Ordered, Not Unique

16 Convert to
ordered set

asOrderedSet()

Returns collection as
Ordered Set: Ordered,

Unique

17 Convert to
sequence

asSequence()
 Returns collection as

Sequence: Ordered,
Not Unique

18 Convert to set asSet()

Returns collection as Set:
Not Ordered, Unique

19 Element at index i at(i)

Returns the element at index
i

20 New collection
excluding e

excluding(e)

Returns new collection
without any instances of e

21 New collection
including e

including(e)

Returns new collection with
an instance of e

22 First element first()

Returns the first element of
collection

23 Index of element e indexOf(e)

Returns the index of the first
appearance of an instance of

e

24 Insert element at i insertAt(i, e)

Returns collection with
element e at index i

25 Last element last()
Returns the last element of

collection

26 Insert at beginning
of collection

prepend(e)

Prepends element e at the
beginning of collection

 Iteration Operations

27 Collection of
elements in self

collect(expr)

Returns a bag of elements for
with expr is true

28 Existential exists(expr)
Returns true if the collection
has at least one element for

which expr is true

29 Universal forAll(expr)

Returns true if expr is true
for all elements in the

collection

30 Unique isUnique(expr)

Returns true if expr has a
unique value for each

element in the collection

 vOCL
Elements

OCL Syntax vOCL Symbol Description

31 Iterator
Iterate

(i:Type;a:Type|expr)

Base iteration operation

32 One element one(expr)

Returns true if only one
element in the collection

satisfies the expr	

33 Selection of
elements

select(expr)

 Returns a collection with all
elements for which expr is

true

34 Sorting collection sortedBy(expr)

Returns a collection sorted
according to expr

4.2 vOCL-UML Model Integration

The vOCL meta model (discussed later) is designed as a set of extensions to the UML meta-
model. As any constraint statements, vOCL can only be visualized on the context diagram. In
the case of vOCL, the constraints and the model are unified in a single diagram; or rather, the
vOCL constraints are superimposed on the model. One or more vOCL constraints can be applied
to the same UML context diagram. To demonstrate this approach, consider the following simple
UML class diagram model and constraint.

context Hospital
inv maxPatients: self.patients-
>size() <= self.beds

Fig. 2: Example of vOCL and UML model integration

Two classes, Hospital and Patient, of which, Hospital has a collection called “patients” of
type Patient. Consider the constraint mentioned earlier where the number of patients a hospital
has must be less than or equal to the number of beds. The corresponding vOCL model is
demonstrated in Fig. 2. vOCL is integrated directly on top of the context diagram. The class
Hospital is bolded to indicate that this is the context element – or self using OCL syntax.	

To demonstrate pre and post conditions in vOCL, consider the OCL statement and the
corresponding vOCL in Fig. 3. This OCL constraint specifies that before the execution of the
admitPatient() method, the number of beds in the hospital should be greater than 0. This
must be true in order to carry out the method. It also states that when the method terminates, the
new collection of patients should be equal to the old collection of patients (thus the OCL “pre”
keyword indicating the collection before execution) but will now include the new patient p that
was added. The inclusion is denoted by the including() operation symbol which requires a new
parameter– in this case, it is the value p – the value in the method’s parameters.	
	

(b) Pre condition

(b) Post condition

context Hospital::admitPatient(p:Patient)

pre: self.beds > 0
post: self.patients = self.patients@pre->including(p)

Fig. 3: Pre and post condition example

5 vOCL language Specification

In this section, we introduce the language elements and components using a running example,
and provide the language meta-model.

5.1 Running example

Fig. 4 is a model of an EmergencyRoom with one Director who supervises a number of nurses
of type ChargeNurse. These charge nurses supervise a number of nurses of type Nurse, each of
which can attend to more than one patient. The class nurse has multiple attributes that are
inherited by ChargeNurse, a subclass of Nurse. We use this model to demonstrate vOCL
standard operation elements, collection and iteration operations.

Fig. 4: Emergency Room model

5.2 Standard Operations

Standard operations on collections uses predicate logic to specify invariants. For example, we
specify the number of nurses to be greater than the number of patients in the ER. This requires
that the size of the set of patients to always be less than the size of the set of nurses.

context EmergencyRoom
inv self.patients->size() >= self.nurses->size()

Fig. 5: vOCL constraint demonstrating standard operations

5.3 Collection Operators

Collection Operators uses predicate logic to specify properties of collections. For example, a
requirement for the method addNurse() may be that at time of completion, the method must
have successfully added the new nurse at the end of the “nurses” collection. The OCL constraint

context ChargeNurse::addNurse(n:Nurse)
post: self.nurses = self.nurses@pre-> asOrderedSet()-> append(n)

Fig. 6: vOCL constraint demonstrating collection operation

for this requirement is stated in figure 6. It states that a post condition for this method is that the
“nurses” collection must be equal to the “nurses” collection before the execution of the method
taken as an ordered set.

The append() operation can only be applied to an ordered set or a sequence, which is
why that operation is done before appending a new nurse. For the exact guidelines on OCL
collection operations, refer to the published OCL specifications [6]

5.4 Iterator Operators

OCL iterator operations on collections are used when we need to iterate over every element one
by one for a specific condition. Just as with collection operations, these are predefined iteration
operations built on top of the default iterator function. To demonstrate how some of the iterator
operators can be used using vOCL consider the following OCL statement that declares that all
the nurses under the supervision of a charge nurse must all have unique IDs. The isUnique()
operation does all the work of integrating for the user. It iterates over each element one by one
to ensure that the attribute given in the operation’s arguments is in fact unique for each member
of the collection.

context ChargeNurse
inv self.nurses -> isUnique(n:Nurse|n.ID)

Fig. 7: vOCL constraint demonstrating isUnique() operation

As a second example, the OCL below uses the forAll() operator to state that for the set of all
nurses employed by the ER, all nurses must have the same shift as their supervising charge
nurse.

context EmergencyRoom
inv self.nurses -> forAll(n:Nurse|n.shift = n.supervisor.shift)

Fig. 8: vOCL constraint demonstrating forall() operation

This constraint is more involved than previous examples. We start by applying the iterator
operation forall() to the collection of nurses (the ones employed by the emergency room, as that
is the context of our constraint). Next, we see, by following the navigational arrows, that the
attribute “shift” must be equal to another integer. So far, we have a constraint that reads: “for
all nurses, their shift number must be equal to another integer.” That other integer comes in the
right-hand side of the equal operator. Just as OCL uses dot notation to refer to attributes of a
class, vOCL allows this same function through the use of directional arrows going from a class
object to its attribute. The fact that ChargeNurse is a subclass of Nurse and yet Nurse has a
supervisor of type ChargeNurse makes this example relatively complex. Directional arrows
coming into and out of the elements should be navigated in a clockwise order.

6 vOCL Meta-Model

vOCL contains various types of visual elements that have a relationship to one another. Aside
from that, vOCL is very closely tied to UML and OCL constructs. Below is a meta-model for
vOCL that shows the organization of the notation.

Fig. 9: vOCL Meta-model

The meta-model describes the core constructs of vOCL. As mentioned before, the two main
types of constraints used in this paper were invariants, and method pre and post conditions.
vOCL constraints can also be extended to create security constraints and state machine guards,
but those are outside the scope of this paper and are ultimately potential future work. Current
OCL provides support for invariants, method conditions, and state machine guards, making that
a direct relationship with the vOCL equivalencies described in this paper. vOCL invariants and
method constraints are associated with a vOCL context and an initial marker. Just as in OCL, a
single context can support multiple constraints, hence the one to many relationship; however,
each individual constraint is associated with one initial marker. The contents of the a vOCL
constraint are composed out of class elements and operations on these elements. We take vOCL
operations from ones already supported by standard OCL. These operations are applied to class
elements through the use of navigational arrows. This model gives an overview of the key
constructs of vOCL and their relationship to one another.

7 Limitations

Many visual expression languages have been proposed in the past with almost all of them not
gaining traction, arguably with the exception of SDL 22. The proposed visual language suffers
from some of important issues that we present in the following.

First, the use of the bolded elements (classes, attributes, etc) to designate a self instance
works for a single instance but fails to generalize. Another related limitation is the ability to
represent two constraints at the same time on the same UML model. The current proposal
assumes only a single constraint. One option to represent multiple constraints is to distinguish
them using different colors.

Another important limitation is the ability to realize this proposal in a working modeling tool.

The proposed language extends the UML instance model which could make implementing the
proposal in a working tool a challenge. While the proposal is intuitive, it does not consider many
facets and needs of implementing the visualization in any modeling tool.

A third limitation is related to the presented meta model. The proposed meta model omits
important elements. For example, the Iteration Operation lacks iterators, accumulator, and body.
More importantly, and since the proposed vOCL adopts the OCL semantics as-is, a better meta
model maybe constructed from the OCL metamodel.

Finally, this proposal uses small and simple OCL statements. It is possible that the visual
representation becomes very cumbersome as the context diagram and constraint become larger
and more complex.

8 Conclusion and Future Work

One factor limiting OCL broader adoption is in the language textual notation. OCL notation
tent to be mathematical and not readily consumable by software engineers. More over, the
language design means that its users must constantly shift their focus between the visual UML
diagram and the textual OCL notation.

This paper represents work to address this fundamental limitation in the language usability.
In this work, we attempt to represent the constraints on top on the UML context diagram. This
would minimize or eliminate the need for the users to shift their focus between two different
diagrams. vOCL, the proposed notation, guides users through the navigational elements of the
language.

There are potentially two concerns with the proposed notation. First, the visual model may
become too cumbersome as for more complex constraints. In those situations, the textual
notation may in fact be more effective. A second concern relates to the realization of the
proposed visual language. vOCL requires that the constraint be modeled on top of the UML
context diagram. The implementation of such language will require delicate considerations of
the UML model elements and their lay outs.

Our future work includes extending OCL with stochastic and uncertainty elements. There
are existing works that extend OCL with probabilities and uncertainties. We plan to build on
this work to extend vOCL with those elements.

References

1. Battoni. P, Koch. M, Parisi-Presicce. F, Taentzer, G. Visualization of OCL Using Collaborations. M.

Gogolla and C. Kobryb (Eds): UML 2001, LNCS, 2185, pp. 257-271, 2001. Springer-Verlag Berlin
Heidelberg 2001.

2. Fish. A, Howse. J, Taentzer. G, Winklemann. J. Two Visualizations of OCL: A Comparison.
3. Cabot, Jordi, and Martin Gogolla. Object constraint language (OCL): a definitive guide. Formal

methods for model-driven engineering. Springer Berlin Heidelberg, 2012. 58-90.
4. Warmer, Jos, and Anneke Kleppe. "OCL: The constraint language of the UML." (1999): 10-+.
5. Object Management Group. OMG Unified Modeling Language (UML). Version 2.5. March, 2015.
6. Object Management Group. OML Object Constraint Language (OCL). Version 2.4. February 2014.
7. Pandey, R. K. "Object constraint language (OCL): past, present and future." ACM SIGSOFT Software

Engineering Notes 36.1 (2011): 1-4.
8. Lodderstedt, Torsten, David Basin, and Jürgen Doser. "SecureUML: A UML-based modeling

language for model-driven security." «UML» 2002—The Unified Modeling Language (2002): 426-
441.

9. Toval, Ambrosio, Víctor Requena, and José Luis Fernández. "Emerging OCL tools." Software &
Systems Modeling 2.4 (2003): 248-261.

10. Seidewitz, E. (2014, October). UML with meaning: executable modeling in foundational UML and
the Alf action language. In ACM SIGAda Ada Letters(Vol. 34, No. 3, pp. 61-68). ACM.

11. Papajorgji, P. J., & Pardalos, P. M. (2014). The Object Constraint Language (OCL). In Software
Engineering Techniques Applied to Agricultural Systems (pp. 121-134). Springer US.

12. Brucker, A. D., Clark, T., Dania, C., Georg, G., Gogolla, M., Jouault, F., ... & Wolff, B. (2014). Panel
discussion: Proposals for improving OCL. In Proceedings of the MODELS 2014 OCL Workshop
(OCL 2014) (Vol. 1285, pp. 83-99). CEUR-WS. org.

13. Object Management Group. Object Constraint Language™ (OCL™), Version 2.4, Release Date:
February 2014. Available: http://www.omg.org/spec/OCL/2.4/

14. Brucker, A. D., Clark, T., Dania, C., Georg, G., Gogolla, M., Jouault, F., ... & Wolff, B. (2014). Panel
discussion: Proposals for improving OCL. In Proceedings of the MODELS 2014 OCL Workshop
(OCL 2014) (Vol. 1285, pp. 83-99). CEUR-WS. org.

15. Bajwa, I. S., Bordbar, B., & Lee, M. G. (2010, October). OCL constraints generation from natural
language specification. In Enterprise Distributed Object Computing Conference (EDOC), 2010 14th
IEEE International (pp. 204-213). IEEE.

16. Kent, S. (1997, October). Constraint diagrams: visualizing invariants in object-oriented models.
In ACM SIGPLAN Notices (Vol. 32, No. 10, pp. 327-341). ACM.

17. P. Bottoni, M. Koch, F. Parisi-Presicce, and G. Taentzer. A Visualization of OCL using
Collaborations. In M. Gogolla and C. Kobryn, editors, UML 2001 – The Unified Modeling Language,
LNCS 2185, pages 257 – 271. Springer, 2001.

18. A. Fish and J. Flower. Investigating reasoning with constraint diagrams. In Visual Language and
Formal Methods, ENTCS, pages 53–67, Rome, Italy, 2004. Elsevier.

19. Fish, A., & Howse, J. (2004). Towards a default reading for constraint diagrams. Diagrammatic
Representation and Inference, 1-33.

20. Störrle, H. (2011, September). Expressing model constraints visually with VMQL. In Visual
Languages and Human-Centric Computing (VL/HCC), 2011 IEEE Symposium on (pp. 195-202).
IEEE.

21. Fetais, N. (2013). Evaluation of the usability of constraint diagrams as a visual modelling language:
theoretical and empirical investigations (Doctoral dissertation, University of Sussex).

22. Ellsberger, Jan, Dieter Hogrefe, and Amardeo Sarma. SDL: formal object-oriented language for
communicating systems. Prentice Hall, 1997.

