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Abstract. Object Constraint Language (OCL) supports UML model navigation, 
queries, and constraints. OCL has precise unambiguous semantics and supports 
definition of constraints at the model level. However, OCL is arguably the least 
adopted UML notation in practice. We argue that while the language constructs, 
concepts, and semantics are well founded, the language’s surface textual notation 
significantly hampers comprehension. Its navigational features mean that users must 
track a linear textual syntax against a visual model with a 2-D layout. 

This paper proposes a novel visual surface notation that maintains its foundational 
strengths in supporting navigation and querying, and improves on its representation 
and comprehension. The proposed visual surface notation is superimposed on its UML 
model context to enable the visualization of one or more constraints along with its 
related contextual model elements. Improving on constraints readability and 
comprehension ultimately improves constraints adoption in practice, and it enhances 
the learning experience in classrooms. 

The contributions of this paper are a novel constraints surface notation, a 
supporting meta-model, and an evaluation of the proposed approach using a controlled 
experimentation. 

 
 
1 Introduction 
 
UML is an ecosystem of standards and tools to support model-based software and systems 
engineering. UML includes thirteen diagrams that address various aspects of systems 
development. Model Driven Architecture promotes the use of models, rather than code, as the 
primary development artifact. The premise includes improvements in software quality and 
reliability, as well as improvements in engineers’ productivity. Towards that goal, a set of new 
standards and supporting tools are emerging that formalize model semantics, effectively 
reducing the abstraction gap between models and code. Action Language for Foundational 
UML (ALF) is a textual language with precise semantics that are based on a subset of the UML 
meta-model 10. ALF supports many statements commonly supported in many existing object-
oriented languages, but also supports statements at higher level of abstraction that are more 
commonly found in models such as class diagrams and state machines. 

The need for precise models is well founded. Models that lack precision are consequently 
ambiguous, subject to misinterpretation, and have limited role in contributing to automated code 
generation. Object Constraint Language (OCL), like ALF, is a textual language that defines 
model-level constraints. It supports model/graph navigation, and includes executable functions 
on collections and sets 11. 

Despite OCL’s capabilities, its adoption in practice is rather limited. OCL is arguably the 
least used UML notation in practice 12. To use OCL, engineers must trace sequential textual 
constraints and navigate against a visual model of the system. We hypothesize that the textual 



notation of the language is a key hindrance, as well as poor tooling and weak specifications. 
Existing approaches to visualize such constraints are limited or ambiguous, and does not address 
the fundamental limitations of comprehension and usability.	

The contributions of this work are a novel approach and a demonstration for OCL-based 
constraints visualization, a supporting UML metamodel extension, and an evaluation of 
comprehension value using a controlled experiment. The novel surface notation is 
superimposed on the corresponding UML model elements (the context diagram). We 
demonstrate by example how the novel notation and visualization approach improves on 
constraints comprehension. We also demonstrate how the proposed approach improves on 
existing state of the art in constraints modeling and visualization. We also introduce a meta-
model of the proposed notation as an extension to the UML metamodel. 

The rest of the paper is organized as follows. In Section 2 we provide a background on OCL. 
We discuss related works in Section 0. The proposed visual notation is presented in Section 4. 
The proposed language specification and meta model are presented in Section 5 and 6 
respectively. We discuss the limitations of the proposed approach in Section 7. We conclude 
and layout future works in Section 8. 

 
2 Background 
 
In this section, we introduce a necessary background on OCL and its key statement classes. 
OCL was initially developed at IBM, and was later merged into the UML standard suite 13. 
OCL started as a complement of the UML notation with the goal to overcome the limitations of 
UML (and in general, any graphical notation) in terms of precisely specifying detailed aspects 
of a system design [3]. Initially, OCL’s scope was limited to specifying constraints for UML 
Models. OCL is now a key modeling notation for many model-driven engineering (MDE) 
technologies, such as model transformation, validation, model-based querying and reporting.	

Visual languages are generally desirable as they tend to be easier to comprehend and are 
typically superior as a communication medium. However, visual language designers face an 
engineering trade-off between language precision and the number of unique language 
concepts/constructs and their corresponding visual elements. To improve precision, the 
language must support more of such elements, making the language harder to learn, harder to 
understand, and ultimately undermine the primary objective of the language itself. For that 
reason and due to its origin and mathematical foundation, OCL is a textual language and it is 
designed specifically to complement diagrams with precise constraints statements [4].	

OCL is declarative; it does not support imperative constructs such as assignment statements 
and supports the following key constructs: 1) Invariants, conditions that must be true at all times; 
2) Derivation rules that define computations of model elements; 3) Model querying, or 
operations on collection data sets; and 4) Pre and post condition definitions. OCL supports 
mathematical expressions, binary operations, as well as OCL specific operations (such as 
oclIsNew(), oclIsUndefined()), standard operations, collection operations, and 
iteration operations on collections. Furthermore, OCL has four collection types: Set, 
OrderedSet, Bag, and Sequence. The following is a simple OCL Constraint that define an upper 
limit for the number of patients in a hospital. 

 

context Hospital 
inv maxPatients: self.patients->size() <= self.beds 

 
 



3 Related Work 
 
Constraints are frequently expressed in natural language, even when system designs are 
expressed in UML modeling notations 14. Despite its appropriateness, OCL has not attracted 
any significant interests in practice 1. In fact, it has been argued that OCL is the least adopted 
UML standard notation 15. This has motivated researchers to investigate approaches to improve 
OCL comprehension and representations. 

Visual OCL proposes a visual representation of various OCL textual constructs 1. 
Constraints are presented in the form of compartments that contain tags that correlate to 
elements in the UML diagram. These tags are connected to one another to demonstrate their 
association with one another and construct the visual constraint. Visual OCL are independent 
models (i.e. separate from the context) with no support for context diagram navigation. Users 
of Visual OCL, in addition to learning the OCL syntax, must also learn the non-trivial mapping 
from OCL statements to Visual OCL compartments and these associated tags. 

Constraints Diagrams 1619 is another visual constraint modeling notation that uses 
rectangular boxes containing nodes and arrows representing relationships between elements of 
a class diagram can be arranged to construct a constraint nearly equivalent to an OCL constraint. 
Later theoretical and empirical investigations suggest significant improvements to 
comprehension associated with Constraints Diagrams models 21. 

Fish et al 2 18 conducted a cognitive evaluation of the textual OCL notation against two 
visual constraints modeling approaches; Visual OCL and Constraint Diagrams. The evaluation 
focused on the effectiveness of the visualization using a number of characteristics, including 
completeness, ease of expression, information retrieval factors, reasoning, learning, and ability 
to combine multiple sub-constraints. While Constraints Diagrams were more expressive, they 
lacked flexibility and navigability of the corresponding Visual OCL models. 

Bottoni et al propose a UML metamodel extension to support constraints. Their approach 
minimizes the introduction of new visual elements by extending the UML Collaboration 
Diagram metamodel 17. Their approach proposes new visual elements to represent various OCL 
operations (Fig. 1). 

 

 
Fig. 1: A Visualization of OCL using Collaborations [17] 

VMQL is another approach to visualize OCL constraints proposed by Störrle 20. Despite being 
less expressive than OCL, VMQL has demonstrated significant improvements in 
comprehension and maintainability.  
 
4 Proposed Superimposed Visual OCL Notation 
 
We propose vOCL, a novel visual surface notation for OCL. The key novelty in this approach 
is twofold. First, vOCL language is expressed as part of the context UML model, and not as a 



separate model entity. As such, the language supports visualizing one or more constraints on 
parts or on whole models. Second, the language reduces dependence on the existing OCL textual 
notation, and define new modeling elements to represent a foundational core of OCL constructs. 
The rational for this language design is to minimize the distinction between the model and its 
constraints, and improve language comprehension. As such, the language is designed as 
extensions to the UML instance model [5]. Practical implications of this approach include 
facilitating the integration of the language into existing UML modeling tools. 

The following section demonstrates key language constructs. Demonstration of the language 
design approach is demonstrated by a running example in section 5. 

 

4.1 Key vOCL Elements 
 
We cover three types of constraints – invariants, and pre and post conditions. The following 
table summarizes key vOCL statements and their corresponding OCL syntax. vOCL is adapted 
from OCL and thus deviations from actual OCL constructs are kept to a minimum. The language 
introduces a few new symbolic elements to aid model navigation, such as starting node and 
navigational arrows. Table 1 summarizes key vOCL constraints. 
 

Table 1. vOCL core constraint constructs 

 vOCL 
Elements 

OCL Syntax vOCL Symbol Description 

 Basic Elements 

1 
Context of 
constraint 
statement 

Context: 
<<class name>> or 

<<class::method()>>  

Indicates which class or 
method the constraint applies 

to – denoted in bold 

2	
Initial element of 

invariant 
constraint 

inv (name optional): 
<<constraint>> 

 

Indicates starting point of 
constraint statement 

3	 Directional flow 
of constraint No OCL Syntax 

 

Navigational arrow to follow 
constraint  

4 

Participating 
element in 
constraint 
statement 

Attribute 
name/Collection name 

 

Element that is part of 
constraint – could be a class 

attribute or a collection 

5 Operations and 
operators 

select(), size(), 
forAll(), <=, etc. 

 

Operation that is to be 
applied to a participating 
element in the constraint 

6 Pre and Post 
Condition 

pre: <<condition>> 
post: <<condition>> 

 

Pre-condition starts at left, 
post-condition at right 

 Operations 
 Standard Operations 

7 Instance count count(e) 
 Returns count of instances of 

e in collection 

8	 Exclusion excludes(e)  
Returns true if e is not in the 

collection 

9 Inclusion includes(e) 
 

Returns true if e is in the 
collection 

10 Empty collection isEmpty() 
 

Returns true if collection 
contains no elements 



 vOCL 
Elements 

OCL Syntax vOCL Symbol Description 

11 Non-empty 
collection 

notEmpty() 
 

Returns true if collection 
contains at least one element 

12 Summation sum() 
 

Returns the sum of all 
elements in the collection 

13 Size of collection size() 
 

Returns the number of 
elements in the collection 

	 Collection Operations 

14 Insert at end of 
collection 

append(e) 
 

Appends element e at the end 
of collection 

15 Convert to bag asBag() 
 Returns collection as Bag: 

Not Ordered, Not Unique 

16 Convert to 
ordered set 

asOrderedSet() 
 

Returns collection as 
Ordered Set: Ordered, 

Unique 

17 Convert to 
sequence 

asSequence() 
 Returns collection as 

Sequence: Ordered,  
Not Unique 

18 Convert to set asSet() 
 

Returns collection as Set: 
Not Ordered, Unique 

19 Element at index i at(i) 
 

Returns the element at index 
i 

20 New collection 
excluding e 

excluding(e) 
 

Returns new collection 
without any instances of e 

21 New collection 
including e 

including(e) 
 

Returns new collection with 
an instance of e 

22 First element first() 
 

Returns the first element of 
collection 

23 Index of element e indexOf(e) 
 

Returns the index of the first 
appearance of an instance of 

e 

24 Insert element at i insertAt(i, e) 
 

Returns collection with 
element e at index i 

25 Last element last()  
Returns the last element of 

collection 

26 Insert at beginning 
of collection 

prepend(e) 
 

 
Prepends element e at the 
beginning of collection 

 Iteration Operations 

27 Collection of 
elements in self 

collect(expr) 
 

Returns a bag of elements for 
with expr is true 

28 Existential exists(expr)  
Returns true if the collection 
has at least one element for 

which expr is true 

29 Universal forAll(expr) 
 

Returns true if expr is true 
for all elements in the 

collection 

30 Unique isUnique(expr) 
 

Returns true if expr has a 
unique value for each 

element in the collection 



 vOCL 
Elements 

OCL Syntax vOCL Symbol Description 

31 Iterator 
Iterate 

(i:Type;a:Type|expr) 

 

Base iteration operation 

32 One element one(expr) 
 

Returns true if only one 
element in the collection 

satisfies the expr	

33 Selection of 
elements 

select(expr) 

 Returns a collection with all 
elements for which expr is 

true 

34 Sorting collection sortedBy(expr) 

 

Returns a collection sorted 
according to expr 

 
4.2 vOCL-UML Model Integration 
 
The vOCL meta model (discussed later) is designed as a set of extensions to the UML meta-
model. As any constraint statements, vOCL can only be visualized on the context diagram. In 
the case of vOCL, the constraints and the model are unified in a single diagram; or rather, the 
vOCL constraints are superimposed on the model. One or more vOCL constraints can be applied 
to the same UML context diagram. To demonstrate this approach, consider the following simple 
UML class diagram model and constraint. 

context Hospital 
inv maxPatients: self.patients-
>size() <= self.beds 

 
 

 
Fig. 2: Example of vOCL and UML model integration 

Two classes, Hospital and Patient, of which, Hospital has a collection called “patients” of 
type Patient. Consider the constraint mentioned earlier where the number of patients a hospital 
has must be less than or equal to the number of beds. The corresponding vOCL model is 
demonstrated in Fig. 2. vOCL is integrated directly on top of the context diagram. The class 
Hospital is bolded to indicate that this is the context element – or self using OCL syntax.	

To demonstrate pre and post conditions in vOCL, consider the OCL statement and the 
corresponding vOCL in Fig. 3. This OCL constraint specifies that before the execution of the 
admitPatient() method, the number of beds in the hospital should be greater than 0. This 
must be true in order to carry out the method. It also states that when the method terminates, the 
new collection of patients should be equal to the old collection of patients (thus the OCL “pre” 
keyword indicating the collection before execution) but will now include the new patient p that 
was added. The inclusion is denoted by the including() operation symbol which requires a new 
parameter– in this case, it is the value p – the value in the method’s parameters.	
	



 

(b) Pre condition 

 
(b) Post condition 

context Hospital::admitPatient(p:Patient) 
 
pre: self.beds > 0 
post: self.patients = self.patients@pre->including(p) 

Fig. 3: Pre and post condition example 

5 vOCL language Specification 
 
In this section, we introduce the language elements and components using a running example, 
and provide the language meta-model. 
 

5.1 Running example 
 
Fig. 4 is a model of an EmergencyRoom with one Director who supervises a number of nurses 
of type ChargeNurse. These charge nurses supervise a number of nurses of type Nurse, each of 
which can attend to more than one patient. The class nurse has multiple attributes that are 
inherited by ChargeNurse, a subclass of Nurse. We use this model to demonstrate vOCL 
standard operation elements, collection and iteration operations. 
 



 
Fig. 4: Emergency Room model 

5.2 Standard Operations 
 
Standard operations on collections uses predicate logic to specify invariants. For example, we 
specify the number of nurses to be greater than the number of patients in the ER. This requires 
that the size of the set of patients to always be less than the size of the set of nurses. 

 
context EmergencyRoom 
inv self.patients->size() >= self.nurses->size() 

Fig.  5: vOCL constraint demonstrating standard operations 

 

5.3 Collection Operators 
 
Collection Operators uses predicate logic to specify properties of collections. For example, a 
requirement for the method addNurse() may be that at time of completion, the method must 
have successfully added the new nurse at the end of the “nurses” collection. The OCL constraint  



 

 

 
context ChargeNurse::addNurse(n:Nurse) 
post: self.nurses = self.nurses@pre-> asOrderedSet()-> append(n) 

 
Fig. 6: vOCL constraint demonstrating collection operation 

for this requirement is stated in figure 6. It states that a post condition for this method is that the 
“nurses” collection must be equal to the “nurses” collection before the execution of the method 
taken as an ordered set. 

The append() operation can only be applied to an ordered set or a sequence, which is 
why that operation is done before appending a new nurse. For the exact guidelines on OCL 
collection operations, refer to the published OCL specifications [6] 

5.4 Iterator Operators 
 
OCL iterator operations on collections are used when we need to iterate over every element one 
by one for a specific condition. Just as with collection operations, these are predefined iteration 
operations built on top of the default iterator function. To demonstrate how some of the iterator 
operators can be used using vOCL consider the following OCL statement that declares that all 
the nurses under the supervision of a charge nurse must all have unique IDs. The isUnique() 
operation does all the work of integrating for the user. It iterates over each element one by one 
to ensure that the attribute given in the operation’s arguments is in fact unique for each member 
of the collection.  
 

 



context ChargeNurse 
inv self.nurses -> isUnique(n:Nurse|n.ID) 

 
Fig. 7: vOCL constraint demonstrating isUnique() operation 

As a second example, the OCL below uses the forAll() operator to state that for the set of all 
nurses employed by the ER, all nurses must have the same shift as their supervising charge 
nurse. 
 

 

context EmergencyRoom 
inv self.nurses -> forAll(n:Nurse|n.shift = n.supervisor.shift) 
 

Fig. 8: vOCL constraint demonstrating forall() operation 

This constraint is more involved than previous examples. We start by applying the iterator 
operation forall() to the collection of nurses (the ones employed by the emergency room, as that 
is the context of our constraint). Next, we see, by following the navigational arrows, that the 
attribute “shift” must be equal to another integer. So far, we have a constraint that reads: “for 
all nurses, their shift number must be equal to another integer.” That other integer comes in the 
right-hand side of the equal operator. Just as OCL uses dot notation to refer to attributes of a 
class, vOCL allows this same function through the use of directional arrows going from a class 
object to its attribute. The fact that ChargeNurse is a subclass of Nurse and yet Nurse has a 
supervisor of type ChargeNurse makes this example relatively complex. Directional arrows 
coming into and out of the elements should be navigated in a clockwise order. 
 
6 vOCL Meta-Model 
 
vOCL contains various types of visual elements that have a relationship to one another. Aside 
from that, vOCL is very closely tied to UML and OCL constructs. Below is a meta-model for 
vOCL that shows the organization of the notation. 
 



 
Fig. 9: vOCL Meta-model 

 
The meta-model describes the core constructs of vOCL. As mentioned before, the two main 
types of constraints used in this paper were invariants, and method pre and post conditions. 
vOCL constraints can also be extended to create security constraints and state machine guards, 
but those are outside the scope of this paper and are ultimately potential future work. Current 
OCL provides support for invariants, method conditions, and state machine guards, making that 
a direct relationship with the vOCL equivalencies described in this paper. vOCL invariants and 
method constraints are associated with a vOCL context and an initial marker. Just as in OCL, a 
single context can support multiple constraints, hence the one to many relationship; however, 
each individual constraint is associated with one initial marker. The contents of the a vOCL 
constraint are composed out of class elements and operations on these elements. We take vOCL 
operations from ones already supported by standard OCL. These operations are applied to class 
elements through the use of navigational arrows. This model gives an overview of the key 
constructs of vOCL and their relationship to one another. 
 
7 Limitations 
 
Many visual expression languages have been proposed in the past with almost all of them not 
gaining traction, arguably with the exception of SDL 22. The proposed visual language suffers 
from some of important issues that we present in the following.  

First, the use of the bolded elements (classes, attributes, etc) to designate a self instance 
works for a single instance but fails to generalize. Another related limitation is the ability to 
represent two constraints at the same time on the same UML model. The current proposal 
assumes only a single constraint. One option to represent multiple constraints is to distinguish 
them using different colors. 

Another important limitation is the ability to realize this proposal in a working modeling tool. 



The proposed language extends the UML instance model which could make implementing the 
proposal in a working tool a challenge. While the proposal is intuitive, it does not consider many 
facets and needs of implementing the visualization in any modeling tool. 

A third limitation is related to the presented meta model. The proposed meta model omits 
important elements. For example, the Iteration Operation lacks iterators, accumulator, and body. 
More importantly, and since the proposed vOCL adopts the OCL semantics as-is, a better meta 
model maybe constructed from the OCL metamodel. 

Finally, this proposal uses small and simple OCL statements. It is possible that the visual 
representation becomes very cumbersome as the context diagram and constraint become larger 
and more complex. 
 
8 Conclusion and Future Work 
 
One factor limiting OCL broader adoption is in the language textual notation. OCL notation 
tent to be mathematical and not readily consumable by software engineers. More over, the 
language design means that its users must constantly shift their focus between the visual UML 
diagram and the textual OCL notation. 

This paper represents work to address this fundamental limitation in the language usability. 
In this work, we attempt to represent the constraints on top on the UML context diagram. This 
would minimize or eliminate the need for the users to shift their focus between two different 
diagrams. vOCL, the proposed notation, guides users through the navigational elements of the 
language. 

There are potentially two concerns with the proposed notation. First, the visual model may 
become too cumbersome as for more complex constraints. In those situations, the textual 
notation may in fact be more effective. A second concern relates to the realization of the 
proposed visual language. vOCL requires that the constraint be modeled on top of the UML 
context diagram. The implementation of such language will require delicate considerations of 
the UML model elements and their lay outs. 

Our future work includes extending OCL with stochastic and uncertainty elements. There 
are existing works that extend OCL with probabilities and uncertainties. We plan to build on 
this work to extend vOCL with those elements.  
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