
Model Finding and Model Completion with USE

Martin Gogolla1, Loli Burgueño2, and Antonio Vallecillo2

1 University of Bremen, Germany. gogolla@informatik.uni-bremen.de
2 Universidad de Málaga, Spain. {loli,av}@lcc.uma.es

Abstract. This short contribution demonstrates central options in the
tool USE (Uml-based Specification Environment) for exploring UML
models within software development. It particularly uses so-called classi-
fying OCL terms for building validation and verification scenarios and for
completing partial models. The contribution demonstrates the tool’s op-
tions with an example: statecharts together with a simple syntax model
and a model for capturing finite fractions of the statechart semantics.

1 Introduction

In this paper, we demonstrate the options available in the tool USE [10,11] (Uml-
based Specification Environment) for UML and OCL models and the concept of
classifying terms (CTs) [12], which permit generating relevant and distinguished
sample object models for a given specification, together with the completion ca-
pabilities of the USE model validator for specifying particular validation (”Are
we building the right product; aim: build test cases) and verification (”Are we
building the product right; aim: verify a property) scenarios. With them we are
able to quickly develop distinguishable and structurally non-equivalent object
models that satisfy certain system properties. More precisely, classifying OCL
terms permit defining equivalence classes with those models that, from the mod-
eller’s perspective, are equivalent. Then, the USE model validator is able to
generate one representative object model for each equivalence class, hence sig-
nificantly simplifying the number of test cases, and improving the effectiveness
of the model checking process. In this contribution we illustrate these ideas for
exploring models within software development. We demonstrate the tool options
with a simple example: statecharts together with a simple syntax model and a
model for capturing finite fractions of the statechart semantics. One central ad-
vantage we see in our approach is that we offer mainstream languages like UML
and OCL to formulate models and use these languages also to give feedback.

The structure of the rest of this paper is as follows. Section 2 presents the
background work: CTs and the USE model validator completion capabilities.
Section 3 shows how a system can be tested with cts and object model comple-
tion. Section 4 compares our work to similar related proposals. Finally, Sect. 5
concludes the paper.



Fig. 1. A metamodel for Statecharts with trace semantics.

2 Modeling with USE

2.1 Running example

Our running example is shown in Fig. 1 with a class model and names of needed
OCL invariants. The model serves to describe the syntax of statecharts (left part
of the class model) and a semantics for statecharts in terms of a finite number of
traces (right part). The top left object model in Fig. 2 shows on the left an exam-
ple for a statechart and on the right an example trace. One could also say that
the left side represents design time elements and the right side runtime items.
The OCL invariants for the syntax part require unique state names, existence
of a single initial and a single final state, deterministic transitions, and each
state to lie between the initial and the final state. The OCL invariants for the
semantics part require each trace to be a cyclefree string of pearls (TraceNode
objects linked together looking like a string of pearls), to be connected to the
initial state and to show events corresponding to the transition events. Our view
on the model is that we have specified syntax and semantics of a particular
statechart language. Our tool allows the developer to systematically explore the
model by building test cases in form of object models and thereby to validate
and verify model properties and get confidence into the model.

2.2 Classifying terms

Usual approaches to generate object models from a metamodel explore the state
space looking for different solutions. The problem is that many of these solu-
tions are in fact very similar, only incorporating small changes in the values of
attributes and hence “equivalent” from a conceptual or structural point of view.

Classifying terms (CTs) [12] constitute a technique for developing test cases
for UML and OCL models. CTs are arbitrary OCL queries on a class model
calculating a characteristic value for each object model. Each expression can
be boolean, allowing the definition of up to two equivalence classes, or of type
integer, where each resulting number defines one equivalence class. Each equiv-
alence class is defined by the set of object models with identical characteristic



Fig. 2. Four different object models constructed with classifying terms.



values, selecting one canonical representative object model. Hence, the resulting
set of object models is composed from one object model per equivalence class,
and therefore they represent significantly different test cases. Besides, they par-
tition the full input space. For example, the following classifying terms could be
defined for our metamodel.

context State inv initialEqFinal :
let INI=State . allInstances−>any ( s | s . isInitial=true ) in
let FIN=State . allInstances−>any ( s | s . isFinal=true ) in
INI=FIN -- invariants oneInitial and oneFinal give determinateness

context Transition inv twoThreeOrFourEvents :
let numEvents=Transition . allInstances−> -- collect yields Bag

collect ( t | t . event )−>asSet ( )−>size ( ) in
numEvents=2 or numEvents=3 or numEvents=4

Each of these two CTs may be true or false. Together, they define four equiv-
alence classes. First, we want to distinguish between statecharts in which the ini-
tial and the final state coincide, and others with different initial and final states.
Second, we want to have some sample models in which there are 2, 3 or 4 events,
and other models in which there could be less than 2 or more than 4 events.
The model validator, which is the tool in charge of exploring the search space
and generating object models, will simply return one representative of each of
the four equivalence classes. Note that CTs do not always pretend to generate
models that are representative of the complete metamodel, they might be used
to generate models that contain interesting features w.r.t. concrete scenarios of
interest to the modeller, and which are only relevant in a sub-part of the given
specification. They are also useful for finding object models that should not
happen in theory, i.e. counterexamples for our specification.

2.3 The USE model validator

Object models are automatically generated from a set of CTs by the USE model
validator, which builds and inspects object models and selects one representative
for each equivalence class. For this, as described in [12], each CT is assigned a
boolean or an integer value, and the values of the CTs are stored for each solution.
Using the CTs and these values, constraints are created and given to the Kodkod
solver [19] along with the class model during the validation process. The solver
prunes all object models that belong to the equivalence classes for which there
is already a representative element. The construction process always terminates
and yields a finite number of representative object models.

The validator has to be given a so-called ‘configuration’ that determines how
the classes, associations, data types and attributes are populated. In particular,
for every class a mandatory upper bound for the number of objects must be
stated. Both the USE tool and the model validator plugin are available for
download from http://sourceforge.net/projects/useocl/.

3 Systematically exploring a model with USE

In order to illustrate our proposal, let us consider the object models shown
in Fig. 2. These structurally different object models have been automatically

http://sourceforge.net/projects/useocl/


Fig. 3. Completion of an incomplete object model to a full object model.

generated by using 4 boolean-valued CTs (and a configuration fixing attribute
values, links, and lower and upper bounds for the number of objects in a class):

context State inv twoStates : State . allInstances−>size=2
context State inv threeStates : State . allInstances−>size=3
context TraceNode inv oneTrace : TraceNode . allInstances−>

select ( tn | tn . src−>isEmpty ( ) and tn . trg−>notEmpty )−>size=1
context TraceNode inv twoTraces : TraceNode . allInstances−>

select ( tn | tn . src−>isEmpty ( ) and tn . trg−>notEmpty )−>size=2

In principle, 24 = 16 equivalence classes are possible. However, this number
will not be reached, because, for example, the classifying terms twoStates and
threeStates cannot be true at the same time. Figure 2 shows 4 found solutions.



Essentially, the upper row shows the solutions with 2 states and the lower row
the solutions with 3 states; and the left column displays the solutions having
1 trace and the right column the solutions with 2 traces.

Another important option in USE is to specify an incomplete object model
with missing attribute values, objects or links, and to ask the USE model valida-
tor to complete the incomplete model into a full model. Fig. 3 shows an example.
In the right side of the upper part, two example traces for two Paper objects
submitted to a Conference together with an incomplete statechart in the left
are shown. In the lower part the result of asking the model validator to complete
the object model is pictured. The model validator has found attribute values
and link-objects for association classes in order to satisfy all model constraints.
Our view is that the full statechart has been automatically deduced from two
example traces and an incomplete statechart description. The price we have to
pay is that we have to present an exhaustive set of invariants. The full models
are available.

4 Related work

The USE model validator is based on the transformation [13] of UML and OCL
into Kodkod [19]. Related pproaches rely on foundations like logic programming
and constraint solving [4,5], relational logic and Alloy [1], term rewriting [16]
or graph grammars [8]. To reason about UML/OCL models, there are different
alternatives, for instance, translating them into standard first-order logic using
theorem provers [2,3,14], or map them to many-sorted first-order logic [7]. There
are (semi-)automatic proving approaches for UML class properties based on
the basis of description logics [15], on the basis of relational logic and pure
Alloy [1] using only a subset of OCL, and focusing on model inconsistencies
with Kodkod [18]. The approaches in [6,17] use metamodels and solvers for
software improvement. A classification of model checkers with respect to model
verification tasks can be found in [9]. None of these approaches offers our options,
i.e. to automatically scroll through several valid object models in one verification
task. More details of our approach are given in [11].

5 Conclusions and future work

Exploring the execution space of any non-trivial system is a difficult task. In
this paper we have shown how the tool USE can be employed, in conjunction
with classifying terms, to specify particular validation and verification scenarios,
allowing system analysts to look for object models that satisfy certain properties,
or their absence. There are several lines of work that we plan to address next.
First, we would like to validate our proposal with more examples, in order to
gain a better understanding of its advantages and limitations, and to identify
different contexts of use in which our approach works well and others in which the
results are not satisfactory (and why). Second, we plan to improve tool support
to further automate all tests, so human intervention is kept to the minimum.
Finally, we need to define a systematic approach of defining classifying terms for
exploring object models using the outlined ideas.



References

1. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On Challenges of Model Trans-
formation from UML to Alloy. Software and System Modeling 9(1) (2010) 69–86

2. Beckert, B., Keller, U., Schmitt, P.H.: Translating the object constraint language
into first-order predicate logic. In: Proc. 2nd Verification WS. (2002) 113–123

3. Brucker, A.D., Wolff, B.: HOL-OCL: A formal proof environment for UML/OCL.
In Fiadeiro, J.L., Inverardi, P., eds.: 11th Int. Conf. FASE. LNCS 4961, Springer
(2008) 97–100

4. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: A Tool for the Formal Verification
of UML/OCL Models using Constraint Programming. In: ASE’07. (2007) 547–548

5. Cicchetti, A., Ruscio, D.D., Eramo, R., Pierantonio, A.: JTL: A bidirectional and
change propagating transformation language. In Malloy, B.A., Staab, S., van den
Brand, M., eds.: 3rd Int. Conf. SLE. LNCS 6563, Springer (2010) 183–202

6. Cuadrado, J.S., Guerra, E., de Lara, J.: Quick fixing ATL model transformations.
In Lethbridge, T., et al., eds.: 18th MoDELS, IEEE. (2015) 146–155

7. Dania, C., Clavel, M.: OCL2MSFOL: A mapping to many-sorted first-order logic
for efficiently checking the satisfiability of OCL constraints. In: Proc. MODELS’16.
(2016) 65–75

8. Ehrig, K., Küster, J.M., Taentzer, G.: Generating instance models from meta
models. Software and System Modeling 8 (2009) 479–500

9. Gabmeyer, S., Brosch, P., Seidl, M.: A Classification of Model Checking-Based
Verification Approaches for Software Models (2013) Proc. 1st VOLT Workshop.

10. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based specification environ-
ment for validating UML and OCL. Science of Computer Programming 69 (2007)
27–34

11. Gogolla, M., Hilken, F.: Model Validation and Verification Options in a Con-
temporary UML and OCL Analysis Tool. In Oberweis, A., Reussner, R., eds.:
Modellierung (MODELLIERUNG’2016), GI, LNI 254 (2016) 203–218

12. Hilken, F., Gogolla, M., Burgueño, L., Vallecillo, A.: Testing models and model
transformations using classifying terms. SoSyM (2016) http://link.springer.

com/article/10.1007%2Fs10270-016-0568-3.
13. Kuhlmann, M., Gogolla, M.: From UML and OCL to relational logic and back. In:

Model Driven Engineering Languages and Systems. LNCS 7590, Springer (2012)
415–431

14. Kyas, M., Fecher, H., de Boer, F.S., Jacob, J., Hooman, J., van der Zwaag, M.,
Arons, T., Kugler, H.: Formalizing UML models and OCL constraints in PVS.
Electr. Notes Theor. Comput. Sci. 115 (2005) 39–47

15. Queralt, A., Artale, A., Calvanese, D., Teniente, E.: OCL-Lite: Finite reasoning
on UML/OCL conceptual schemas. Data Knowl. Eng. 73 (2012) 1–22

16. Roldán, M., Durán, F.: Dynamic Validation of OCL Constraints with mOdCL.
ECEASST 44 (2011)

17. Steimann, F., Hagemann, J., Ulke, B.: Computing repair alternatives for mal-
formed programs using constraint attribute grammars. In: OOPSLA’16@SPLASH.
(2016) 711–730

18. Straeten, R.V.D., Puissant, J.P., Mens, T.: Assessing the Kodkod Model Finder
for Resolving Model Inconsistencies. In: ECMFA. (2011) 69–84

19. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In Grumberg, O.,
Huth, M., eds.: 13th Int. Conf. TACAS. LNCS 4424, Springer (2007) 632–647

http://link.springer.com/article/10.1007%2Fs10270-016-0568-3
http://link.springer.com/article/10.1007%2Fs10270-016-0568-3

	Model Finding and Model Completion with USE

