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Abstract. This paper deals with taxonomy alignment. It presents struc-
tural techniques of an alignment method suitable with a dissymmetry in
the structure of the mapped taxonomies. The aim is to allow a uniform
access to documents belonging to a same application domain, assuming
retrieval of documents is supported by taxonomies.

1 Introduction

Our work focuses on taxonomy alignment techniques. Indeed, we assume that
the description of the content of most todays information systems is often not
very much specified and is based on very simple ontologies reduced to classi-
fication structures, i.e. taxonomies. Moreover, we suppose that the structures
of the taxonomies that have to be aligned are heterogeneous and dissymmet-
ric, one taxonomy being deep whereas the other one is flat. In this context, the
approaches which relied on OWL data representations exploiting all the ontol-
ogy language features don’t apply. Similarity of two entities cannot be identified
based on their similar properties or on the status of their respective parents
and siblings, because these data are not available. We can only use the following
available data: labels of concepts in both taxonomies, the structure of the deeper
taxonomy and external linguistic resources such as WordNet.
The contribution of this paper is a mapping process composed of a sequence of
various techniques designed to make best use of the characteristics of the tax-
onomies: very specialized taxonomies with only sub-class links, concepts with
labels which are expressions composed of a lot of words, words common to a
lot of labels. We classify the found mappings into two groups according to their
relevance: probable mappings and potential mappings to be confirmed. The map-
ping process is generic, usable across application areas. It has been evaluated on
real-world taxonomies and on test taxonomies extracted from a repository about
ontology matching [6]. Experiments showed that the proposed techniques give
very relevant mappings when the aligned taxonomies have the same character-
istics as the taxonomies having motivated our approach.

2 The alignment approach

The objective of our approach is to generate mappings between taxonomies. For
us, a taxonomy is a pair (C, HC) consisting of a set of concepts C arranged in a



subsumption hierarchy HC . A concept is only defined by two elements: a label
and subclass relations. The label is a string which can be an expression com-
posed of several words. Subclass relations establish links with other concepts.
It is the single semantic association used in the hierarchy. A taxonomy is gen-
erally represented by an acyclic graph where concepts are nodes connected by
directed edges corresponding to subclass links. Given two structurally dissym-
metric taxonomies, the objective is to map the concepts of the less structured
one, the source taxonomy TS , with concepts of the more structured one, the
target taxonomy TT . The alignment process is oriented from TS to TT . The goal
is to find one-to-one mappings. Relations can be of two kinds: equivalence (isEq)
and subclass (isA). So, for each concept cS in TS , we try to find a corresponding
concept, cT in TT , linked to cS with an equivalence or a subclass relation.

Alignment is based on the Lin similarity measure [1] computed between
each concept cS in TS and all the concepts in TT . This measure compares the
tri-grams of the labels and has been adapted to take into account the importance
of words inside expressions. From the measurements we compute MC, the set of
mapping candidates of a concept cS in TS . MC includes concepts of TT which
have a high similarity value with cS (only the three most similar concepts b1,
b2, b3 are retained) and Inc, the set of concepts of TT with a label included
in the label of cS . Various techniques (terminological and structural cf.Fig.1)
are then applied in sequence to select the most relevant concept among all the
mapping candidates [3]. We are going to show that the most relevant concept
is not necessarily the one with the highest similarity measure. Terminological

TaxoMap(TS, TT )
1. For each cS ∈ TS do

2. For each cT ∈ TT do SimLinLike(cS , cT )
3. MC ← MappingCandidates(cS)
4. If TerminologicalTechniques(cS , MC) then stop
5. Else StructuralTechniques(cS, MC)

Fig. 1. The Alignment process

techniques are executed first. In default of place, they will not be detailed here.
These techniques lead to mappings which are generally reliable but not always
sufficiently numerous. Therefore, they are completed by the structural mappings
described in the next section. These latter techniques define a mapping as a
correspondence between close concepts. If the suggested mapping from cS to cT

is wrong, then the right mapping will be a relation from cS to c′
T
, with c′

T
close

to cT in the taxonomy. It is a guide for the user who will not have to browse the
whole target taxonomy when studying the results of the system.

3 Exploiting structural features

The two techniques presented in this section are structure based techniques
leading to the discovery of subclass mappings. The first technique is performed
on TT whose structure is supposed to be the deepest. Then we use WordNet

[2], exploiting its structure and its semantic relations.



3.1 Exploiting the structure of the target taxonomy: STRT

This technique, denoted STRT , works on MC, the set of mapping candidates of
a concept cS in TS . The idea is to exploit the location of the elements of MC in
TT . Their proximity in the graph is considered to be a semantic proximity. We
therefore try to identify the sub-graph rooted in a node associated to a concept
which is not too general and such that this sub-graph groups a maximum of
nodes of MC. It will represent a relevant context shared by most of the mapping
candidates. We then consider that the involved concept cS may be mapped with a
node of this sub-graph. STRT relies on the computation of the Lowest Common
Ancestor, LCA, of a set of nodes in a graph, which is the node of greatest depth
which is an ancestor of all the nodes of the set. Our goal is to find a LCA

of the elements of MC which is not too high in the taxonomy. However the
LCA node of a set of elements is all quite high in the graph since the elements
are very distant from each other. We propose a measure, the relative density
(DR), to evaluate sub-graphs grouping nodes of a sub-set of MC. For each sub-
graph rooted in Anc, the LCA node, and grouping MCAnc nodes, we compute
DR(Anc).

DR(Anc) relies on three criteria: (1) the number of elements in MCAnc,
(2) SimLin Like, the similarity between the elements in MCAnc and cS ,(3) the
distance as the number of edges on the paths from each element of MCAnc to
Anc.

The sub-graph rooted in the Anc with the highest DR is considered to be the
most relevant. CMaxAnc, the node of this sub-graph with the highest similarity
measure, will be the candidate selected for the mapping. If it belongs to Inc,
the set of concepts with a label included into the label of cS , it is suggested as
a possible parent of the involved concept cS . Otherwise, CMaxAnc is proposed
as a possible sibling and its parent (not necessarily Anc) will be suggested as
a possible parent of cS . As an example, Fig. 2 represents the sub-graph of TT

grouping the elements of MC = {b1, b2, b3} ∪ Inc = {beef } for cS = beef adipose

tissue. The node Fresh meat is the LCA for all the elements of MC with a

Fig. 2. Common ancestors and relative density

distance of 7. However, beef is the LCA of three mapping candidates {beef , b2,
b3} with a distance of only 2. DR(beef) is the highest (cf.Fig.2). beef connective

tissue is the node of this sub-graph with the highest similarity value to cS . So beef

adipose tissue will be a sibling of beef connective tissue and linked to beef with a



subclass relation. Note that this technique avoids mappings with concepts with
a little higher similarity measure but meaningful in a context different from the
one common to most of the MC (as b1 in the example).

3.2 Exploiting the structure of WordNet: STRW

The techniques seen up till now are not enough if the concepts are similar seman-
tically but not syntactically. So, at that point, we propose to run STRW . STRW

relies on the hyperonymy/hyponymy WordNet structure to find the concept of
TT semantically similar to each concept of TS not yet mapped. STRW will be
able to map, for example, cantaloupe with watermelon which are not synonyms
but two specializations of melon.

Running STRW assumes that the application root node, denoted rootA, has
already been identified. It is the most specialized concept in WordNet which gen-
eralizes all the concepts contained in the involved application domain. STRW

searches WordNet for the hypernyms of each term of TS not yet mapped and of
each term of TT (according to all their senses) until rootA is reached. For exam-
ple, the result of a search on cantaloupe is two sets of hypernyms corresponding
to two different senses.
Sense 1: cantaloupe→sweet melon→melon→gourd →plant→ organism→Living thing

Sense 2: cantaloupe→sweet melon→melon→edible fruit→green goods→ food

Fig. 3. A sub-graph of Twn where cantaloupe and watermelon are related

Only the paths from the invoked terms to rootA will be selected because they
represent the only senses which are accurate for the application (sense 2 in the
example, the application root node being food). So a sub-tree, denoted Twn, is
obtained. It is composed of all the terms and the relations of the retained paths
(cf.Fig.3). For each concept cS , STRW selects in Twn the most similar concept
belonging to TT using Wu&Palmer’s measure [5].

According to the simW&P measure, the concept that is the most similar to
a node cS is its parent. Moreover, we showed in [3] that the similarity is higher
between cS and any of its siblings or any of the descendants close to its siblings
than between cS and its grandparent, until a depth p that can be computed
for each node cS in function of its depth in the tree. In the same way, we can
compute the depth p’ from which the similarity of the great-grandparent must be
considered, and so on. Using these properties, we proposed an efficient strategy
in [3] which does not require the computation of many similarity measurements.



4 Experiments and Discussion

Two kinds of experiments have been performed. First, experiments have been
made in the setting of the e.dot project1, on two real-world taxonomies in the
field of predictive microbiology. Second, we applied our techniques on test tax-
onomies [6]. The latter are not structurally dissymmetric and cover a large do-
main. The application conditions of the techniques are not achieved but our ob-
jective is to make these tests in order to sketch some ideas to do improvements
and to widen the scope of our approach. These experiments have shown where
our specific strengths and weaknesses are. Whatever taxonomy we aligned, our
approach was able to retrieve almost all the equivalence mappings given with the
taxonomies. Furthermore, its strong point is to propose as a bonus a lot of other
mappings (subclass mappings). Some mappings have a high precision and are
then certain (likely mappings generated by the terminological techniques). Other
ones (potential mappings generated by the structural techniques) are less certain
(low precision) and have to be validated. This confirms the order in the applica-
tion of our techniques. Concerning the structural techniques, STRT proved to
be very useful and leads to relevant mappings when concepts have labels com-
posed of a lot of words and when some words are common to many labels. On
the opposite, STRW is all the more appropriate since the application domain is
small. The real-world taxonomies which have motivated our approach gather all
these characteristics, unlike the others. Better results are then obtained.

5 Conclusion

We described two structural techniques to align structurally asymmetric tax-
onomies. These techniques are original because different from a search of struc-
tural similarity in models. They are executed to suggest additional mappings.
These mappings are not certain but they can be a good complement, if human
involvement is possible, as experiments showed. We will continue this work by
adapting and extending our techniques according to the experiment results. Our
first objective is to be able to align taxonomies relative to larger application
domains.
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