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Abstract Ontologies, at least in the form of taxonomies, have proved
rather successful, and are employed in many fields, as far apart as biology
and finance. Reaching an agreement over a single ontology has proved
difficult, and to obtain actual interoperability it is necessary to map the
different ontologies. Mapping one entity between a source ontology and
one in a target ontology means to compare the first entity with all the
entities in the second ontology: matchers analyse different aspects of the
entities to identify the similarities. A single matcher can analyse only
some aspects, and often has to rely on uncertain information. Therefore
combining the outcomes of different matchers can yield better results.
In this paper I present a framework that uses Dempster-Shafer as a model
for interpreting and combining results computed by the matchers.

1 Introduction

Ontologies have proved to be a powerful tool, and they have become common.
For example, ontologies in the form of taxonomies are used by Google and Yahoo
to categorise websites and by Amazon and eBay to classify their products.

However, the development and the acceptance of a common ontology has
failed to occur, and consequently a number of different ontologies are used. To
exploit the richness provided by the ontologies it is necessary to build bridges
between them. The various attempts to reconcile ontologies can be divided into
merging, integrating and mapping, with mapping laying at the basis.

This paper! presents a framework for ontology mapping that uses Dempster-
Shafer to interpret and combine the results computed by different matchers.

2 Ontology mapping as decision making under
uncertainty

A mapping algorithm receives two ontologies and returns the relations (equiv-

alence, etc) between their concepts. Stated otherwise, the algorithm finds the

subsets @1, ..., P, of the Cartesian product O; x O» that contain the relations
between the items in O; and O,. This is obtained calling a matcher function

that verifies to what degree y each pair <tf)1 , tz)2> belongs to the subset @,¢;:
matcher : t Xt X $pep = p (1)

! full version available at: http://pyontomap.sourceforge.net



Mapping algorithms use different methods to identify relations between terms in
the different ontologies. These methods assume that ontologies share similarities
that can be found. For example, the similarities can be in the labels of the
entities, in their formal definition, or in their description.

A general method for finding a mapping between a given entity t € Ogpyrece
and an unknown entity ¢; € Oyqarger is to compare the given ¢ with all the entities
in Oyqrget, and to keep the pair that belongs to the most significant relation (for
example equivalence), with the highest membership degree p:

mapper : t X Oarget — (tj, Tel, 1) (2)

More sophisticated methods can verify the consistency of the choice, and keep
the strongest mapping that does not conflict with other mappings.
Different approaches of ontology mapping in literature can be classified by:

D> the binary relations they search: some look only for similarity [3], other look
for more complex ontological relations [6].

> the methods they use for taking the decision: some use only string compari-
son, others use thesauruses, others analyse the similarities in the structure of
the ontologies [9], others learn to classify from the instances of the concepts
[4], while most of the recent ones combine these techniques [3,5,6].

> The type of membership degree they use. Some use hard thresholds: the sub-
sets &1,...,P, are crisp sets, and a pair either belongs to the set or does
not [6]. Others implicitly consider these subsets as fuzzy sets, and pair can
belong to these sets with different degrees of membership [3].

A more detailed review of these approaches can be found in [10,7].

3 Mapping issues

A matcher analyses only some aspects of the hypothetical relation between two
terms, and may lack important information. For example, comparing strings
omits the fact that terms have a conventional meaning attached to them. There-
fore, it becomes important to combine the results from different matchers, in
order to exploit all the available information. To combine the results it is neces-
sary to interpret them in a semantically uniform way. Matchers return different
types of results: they can return natural numbers, boolean values, ratios. A pos-
sible interpretation, as described in [3], is to consider the result a measure of the
plausibility of the correspondence between the terms in a pair.

We have seen in section 2 that to map a term ¢, a matcher is called to evaluate
pairs from ¢ X Oyarget. However, it may often be the case that a matcher cannot
distinguish between pairs: for example, EDITDISTANCE will return the same
result “1” for (rate, race),(rate, rave), etc. According to the previous subsection,
the interpretation is that the pairs must have the same plausibility.

Moreover, results that are near can be interpreted as sharing the same plau-
sibility. For example, it is not meaningful to assign a different confidence to pairs
with distance of 5 and 6: both are unlikely to be the mapping. Thus, it is possible
to define intervals whose internal values correspond to the same plausibility.



A matcher may also be unable to give evaluation for a pair, as it lacks in-
formation: in this case, all hypotheses are equally probable. Matchers may also
have different degrees of reliability. The reliability measures how probable is that
an assertion made by a matcher is correct [2].

4 A mathematical framework to combine the matchers

There are different mathematical theories that can be used as a framework for
a system that must handle the uncertainty issues discussed in section 3, among
which the Bayesian approach and Dempster-Shafer are the strongest candidates.
Dempster-Shafer [12] has been considered for different uses (medical diagnosis
[1], query answering [8]) and it is particularly adapt to tackle them. Using this
theory to model the mapping process it is possible to give a uniform interpreta-
tion, consistent with the uncertainty inherent in the problem, to the results of
the matchers and to combine them in a mathematically sound way.

In Dempster-Shafer the mass is distributed on sets of propositions. The mass
distribution function m(-) distributes a mass in the interval [0,1] to each element
of the power set 2€ of the set of propositions @ = {;,60a,...,0,} called frame of
discernment. The total mass distributed is 1 and the closed world assumption is
generally made (mass 0 is assigned to the empty set (). The mass m(©) assigned
to the frame is the mass that cannot be to assign to any particular subset of 6.
Different mass distributions are combined using Dempster’s rule of combination.

The model is applied to the function in expression 2 that searches an unknown
entity ¢; from an ontology Oygrger that best matches a given term ¢ in an ontology
Osource- The frame of discernment @ of the problem becomes the Cartesian
product ¢ X Oqqrget, Where each proposition is a pair (t,;).

Interpreting the results

In Dempster-Shafer, mass assigned to a proposition means support to the belief
that the proposition is true. In this model, the matcher is considered an “expert”
that gives an opinion about the similarity of terms. The similarity measure must
be converted into a measure of the belief in the correctness of the mapping.

As we have seen in section 3, a matcher cannot distinguish pairs of terms
that yield the same results and it may be indifferent to pairs with similar re-
sults. Therefore, the range of possible results of a matcher is split into intervals.
An interval iy corresponds to a mass my: pairs whose results fall into the inter-
val are grouped in the same set s, and the belief in the fact that the correct
mapping belongs to the set s is given by my. For example, for EDITDISTANCE
the intervals and their masses are {([0,0],0.48),([1,2],0.3),..,{([5,..],0.0)}.

A matcher may lack the information needed to evaluate correctly a pair. In
this case, the mass is not allocated, and it should be transferred to the frame
of discernment @. Matchers can have different degrees of reliability: the mass
distributed by a matcher should be discounted by a specific reliability factor.
The discounted mass becomes unallocated mass, and should be interpreted as
ignorance and transferred to the frame of discernment ©.

The framework is independent of the matchers used: they are considered plug-
in functions that compare pairs. Their results are interpreted using an interface



layer, that converts them into mass distributors. A matcher interface MI is the
tuple (I, p), where I is the set of intervals {(r,,m1),..., (r,,m,)} of the results
range with the corresponding mass, and p is the reliability of the matcher used
to discount the distributed masses.

The intervals, their masses and the reliability can be computed running the
matchers over ontologies with known and validated mappings.

The mass distributions are then combined using Dempster’s rule:

m (C) = —2sanm=c™ Ama(D)
172A0B;&0m1(’4)m2(3)

A problem of Dempster’s rule is that normalisation can yield counterintuitive
results when combining contradictory evidences [13], a common situation when
aggregating results from different matchers. A possible solution is to avoid the
normalisation. This means to drop the closed world assumption [11] by making
Bel (0) # 0 possible.

3)

Choosing the mapping

Once the masses have been distributed and combined, it is necessary to extract
the most likely entity from the mass distribution. Dempster-Shafer makes it
possible to compute the belief and the plausibility about a set A C O:

Bel(A) = 3" pram(B) PI(A) =1 - Bel(A) = }_prazom(B)

The plausibility forms the upper bound for the belief in A. In some interpreta-
tion, the interval [Bel(A), PI(A)] is the ignorance about A.

In the current framework, belief and plausibility are computed for singletons.
The best mapping is chosen ordering the pairs by plausibility, and discarding all
the pairs with plausibility and belief below an arbitrary threshold, and with
ignorance higher than an arbitrary threshold. This thresholding guarantees that
pairs with high plausibility, but low belief are discarded.

5 Testing

The framework described in this paper is independent of the matchers used.
However, to test the general concept, the algorithm has been implemented and
it is freely available?. The tests were executed, with different sets of matchers,
comparing two pairs of ontologies, after manually creating the mappings between
their entities for comparison. The first pair are ontologies 101 and 205 from
the Ontology Alignment Evaluation Initiative®. The second pair of ontologies
were created for experiments of interaction between agents. The ontologies are
available at the project url.

6 Conclusion

In this paper I have discussed the issues that ontology mapping systems must
address, and I have proposed a generic framework that allows to combine differ-
ent matching algorithms. The framework is independent of the actual matchers

2 http://pyontomap.sourceforge.net
3 http://oaei.ontologymatching.org/2006/
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used. The main result of the framework is to give a consistent interpretation
to results returned by different matchers and to provide a mechanism for com-
bining them. The framework’s implementation is under development, and uses
an ad hoc set of matchers, and while the results are still provisional and need
improvement, the framework behaviour is consistent with the goals.
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