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Abstract. Bayesian networks (BNs) can capture interdependencies among
ontology mapping methods and thus possibly improve the way they
are combined. Experiments on ontologies from the OAEI collection are
shown, and the possibility of modelling explicit mapping patterns in
combination with methods is discussed.

1 Introduction

Most existing systems for ontology mapping combine various methods for achiev-
ing higher performance in terms of recall and precision. Our approach relies on
Bayesian networks (BNs) as well-known formal technique that can capture in-
terdependencies among random variables. A Bayesian network (BN) [3] is a di-
rected acyclic graph with attached local probability distributions. Nodes in the
graph represent random variables with mutually exclusive and exhaustive sets of
values (states). Edges in the graph represents direct interdependences between
two random variables. We believe that this approach can bring additional ben-
efits compared to ad hoc combination of methods, mainly resulting from better
adaptability (training from data within a well-established formal framework).

Two approaches that use BNs for Ontology Mapping have recently been re-
ported. The first is OMEN [4], which mainly serves for enhancing existing map-
pings. Its input are results of another mapping tool, while its output are more
precise mappings as well as and new mappings. Nodes in the BN represent pairs
of concepts that can potentially be mapped. Edges follow the taxonomy given in
original ontologies. The network structure thus mimics that of ontologies them-
selves, though heuristics for graph pruning are employed in this transformation.
For constructing conditional probability tables (CPTs) for each node meta-rules
are used, such as : “if two nodes match and so do two arrows coming out of these
nodes then the probability that nodes at the other end of the arrows match is
increased”. The second project, BayesOWL ([5]), is rather a framework for on-
tology mapping than a mapping method per se. The probabilistic ontological
information is assumed to be learnt (in forms of probabilistic constraints) from
web data using a text-classification-based learner; this information is translated
to BNs. Mappings among concepts from two different ontologies then can be
discovered using so-called evidential reasoning across two BNs.



Fig. 1. Example of mapping pattern across two ontologies

2 Modelling Dependencies among Mapping Methods

Our approach differs from prior approaches in the sense that we don’t apply
BN modelling to ontologies or their mappings themselves but rather to different
mapping methods. The BNs are assumed to contain nodes (or sub-networks) rep-
resenting the results of individual methods plus one representing the final output.
This will allow us not only to combine the methods (in the probabilistic frame-
work) but also to talk about conditionally in/dependent methods, a minimal
required subset of methods and the like. The mapping methods can have vary-
ing degree of granularity: we focus on low-level methods, understood as mapping
justifications. Moreover, in the work-in-progress part of our research, we account
for mapping patterns encompassing small structural fragments of ontologies. The
patterns will capture, to some degree, similar information as OMEN meta-rules,
we however prefer to model them directly within the BN formalism.

We distinguish among families of methods (string-based, linguistic-resource-
based, graph-based, logic-based etc.) sharing some generic principle and input
resources. Each family encompasses multiple low-level methods; for example, a
string-based method can be built upon diverse string distance measures. We
dedicate a separate node of the BN to each low-level method, viewed here as
mapping justification. We believe that such methods are a meaningful target
for BN modelling, as their statistical dependencies are likely to reflect plausible
relationships even interpretable by a human.

The notion of mapping pattern is a natural counterpart to that of intra-
ontology (‘design’) pattern [1]. Mapping patterns have been implicitly proposed
by Ghidini & Serafini [2], who even consider mappings among different modelling
constructs (such as concept-to-relation). A mapping pattern is, essentially, a
structure containing some (at least one) constructs from each of the two (or
more) ontologies plus some (candidate) mapping among them. The simplest
mapping pattern only connects one concept from each of the two ontologies. An
example of a bit more complex mapping pattern is in Figure 1. The left-hand
side (class A) is from O1 and the right-hand side (class B and its subclass X) is
from O2. We try to map class A simultaneously to class B and to class X.



The input to the process of BN training for ontology mapping are positive and
negative examples with results of individual methods (‘mapping justifications’),
and possibly also the network structure, unless we want to learn it as well. The
positive examples correspond to pairs for which mapping has previously been
established, while the negative ones are (all or a subset of) pairs that have been
identified as non-matching. Then CPTs and possibly the structure are learnt. In
the phase of using the trained BN, the mapping justifications for unseen cases
(pairs of concepts) are counted and inserted into the BN as evidence. The result
of alignment is calculated via propagation of this evidence.

3 Experiments

For experiments we choose ontologies from the OntoFarm collection (http:
//nb.vse.cz/~svabo/oaei2006/), which is currently part of the OAEI 2006
setting. It models the domain of conference organisation; individual ontologies
were designed independently by different people and based on different resources:
personal experience with conference organisation, conference web pages or con-
ference organisation support tools.

We restricted the first experiments to ten string distance measures imple-
mented in the SecondString library (http://secondstring.sourceforge.net/:
Levenshtein, Jaro, Jaccard, Char-Jaccard, Smith-Waterman, Monge-Elkan, SLIM,
TokenFelligiSunter, UnSmoothedJS and TFIDF. Because of the local nature
of distance string measures, capturing context by means of mapping patterns
does not seem to bring great benefits; we thus only focused on the combination
of low-level methods. We extracted classes from two ontologies (ekaw.owl and
ConfOf.owl). Our training data consist of 798 pairs, of which 149 were manu-
ally labelled as positives and 649 as negatives. They were ‘semi-randomly’ picked
from different parts of the ontology; the overall number of possible pairs would
be about 2500 (the product of concept counts in both ontologies). The results
were transformed from the [0, 1] scale to two categories: ‘true’ if the value is over
0.5 and ‘false’ if the value is lower or equal to 0.5.

To learn the BN we use the Hugin tool (http://www.hugin.com/): the struc-
ture was trained using the NPC method and CPTs were trained using the EM
algorithm. We learnt two Bayesian networks in this way. The first one has been
enforced the naive Bayesian structure, which assumes independence of methods;
only the CPTs were learned from data. For the second network, we also learnt
the structure; in this way we could also explore interdependencies among low-
level methods. The learnt structure is in Figure 2. From the structure and the
defintion of so-called Markov blanket [3] we can conclude that if we know the
mapping justifications of TFIDF, Smith-Waterman, Jaccard, Jaro, and SLIM,
other methods do not matter. Methods unrelated to some other method (Token-
FelligiSunter and UnSmoothedJS) are not in the BN at all.

To evaluate the performance of each proposed Bayesian classifier we used the
one-leave-out method. For the naive Bayesian classifier, we got the best result
with probability threshold 80%: 73% precision, 60% recall (F-measure was then



Fig. 2. BN - automatically learnt structure

Fig. 3. Fragment of BN reflecting the mapping pattern from Fig. 1

0.66) and 88% accuracy. For the Bayesian classifier with learnt structure we
got 84% precision, 53% recall (F-measure was 0.65) and 89% accuracy as best
result, for whatever threshold between 40% and 70%. Both our classifiers out-
perform trivial classifiers that always predict true or false, respectively. Overall,
the Bayesian classifier with learnt structure outperformed the naive Bayesian
classifier. On the other hand, the best individual method (Jaccard) performed
the same as the Bayesian classifier with learnt structure (84% precision, 53% of
recall and 89% accuracy) with threshold around 50%. By this result, we can say
that the combination (using BN) of string distance measures does not bring a
direct benefit. However, the (second) Bayesian classifier is less sensitive to the
change of threshold, while Jaccard moves towards 100% precision but rather low
recall of 23% as soon as the threshold increases to 60%.



4 Conclusions and Future Work

We suggested to use low-level methods as ‘mapping justifications’ in order to
train a Bayesian network on a sample of mappings to produce new mappings.
Results of preliminary experiments with string distance measures as low-level
methods are not entirely convincing in terms of performance, which can be ex-
plained by strong correlation among these methods; this correlation was actually
discovered when learning the BN structure. The main role of this initial phase
of research was to gain deeper insight into the problems addressed. The possi-
bility to model explicit mapping patterns in combination with methods was also
studied but not yet reflected in experiments.

In the future, we plan to employ, in the role of mapping justifications, not
only string-based (low-level) techniques, but also e.g. graph-based or thesauri-
based techniques. A more challenging task is however to design BNs reflecting the
structure of patterns. Each method (and the final result) will be represented with
a set of nodes corresponding to the given pattern. For example, a fragment of
BN reflecting the mapping pattern from Fig. 1 is depicted in Fig. 3. It considers
not only the equivalence relation but also the (proper) subsumption relation,
and has four nodes that represent the alignment of each pair and each relation
(equivalence of A and B, equivalence of A and X, subsumption of A and B and
subsumption of A and X). align1 represents the equivalence mapping between A
and B. align1sub represents the subsumption mapping between A a B (B ⊃ A).
align2 represents the equivalence mapping between A a X. Finally, align2sub
represents the subsumption mapping between A a X (A ⊃ X). Edges then
should automatically be learnt for the pairs of nodes align1 and align2sub,
and align2 and align1sub, respectively, due to strict dependencies.
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