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Abstract. A lot of attention has been devoted to heuristic methods for discov-
ering semantic mappings between ontologies. Despite impressive impeate

the mappings created by these automatic matching tools are still far from bein
perfect. In particular, they often contain wrong and redundant mgppies. In

this paper we present an approach for improving such mappings lagjiogl
reasoning in the context of Distributed Description Logics (DDL). Our mefls
orthogonal to the matching algorithm used and can therefore be usechbirae

tion with any matching tool. We explain the general idea of our approach-info
mally using a small example and present the results of experimentsateddin

the OntoFarm Benchmark which is part of the Ontology Alignment Evaluation
challenge.

1 Motivation

The problem of semantic heterogeneity is becoming more aoré pressing in many
areas of information technologies. The Semantic Web is onéyarea where the prob-
lem of semantic heterogeneity has lead to intensive relsearenethods for semantic
integration. The specific problem of semantic integratiartfte Semantic Web is the
need to not only integrate data and schema information,datso provide means to
integrate ontologies, rich semantic models of a particdéanain. There are two lines
of work connected to the problem of a semantic integratioonmdlogies:

— The (semi-) automatic detection of semantic relations betwontologies (e.g., [9,
6,11,12,7]).

— The representation and use of semantic relations for re@agand query answering
(e.g.,[14,10,5, 3, 2)).

So far, work on representation of and reasoning with magphes focussed on
mechanisms for answering queries and using mappings towenspbsumption rela-
tionships between concepts in the mapped ontologies. Theteods always assumed
that the mappings used are manually created and of highty(ialiparticular consis-
tent). In this paper we investigate logical reasoning abmjtpings that are not assumed
to be perfect. In particular, our methods can be used to cfedkmatically created)
mappings for formal and conceptual consistency and deterimiplied mappings that
have not explicitly been represented. We investigate sugppings in the context of
Distributed Description Logics [1,13], an extension ofditeonal description logics



with mappings between concepts in different T-boxes. Thetfanality described in
this paper will become more important in the future becauseerand more ontologies
are created and need to be linked. For larger ontologiesrtduegs of mapping will not
be done completely by hand, but will rely on or will at leastdopported by automatic
mapping approaches. We see our work as a contribution toaetoimatic approaches
for creating mappings between ontologies where possibppmgs are computed auto-
matically and then corrected manually making use of metfimdshecking the formal
and conceptual properties of the mappings.

In previous work we have proposed a number of formal progexf mappings in
Distributed Description Logics that we consider usefuljtatging the quality of a set
of mappings [16]. In this paper, we refine and extend this vilodeveral directions.

Debugging of mapping¥Ve propose a process for (semi-)automatically debugging au
tomatically created mappings making use of some of the ptiegementioned above.
In particular we use the notion of mapping consistency teatgbroblems caused by
the mappings. For each potential problem, we determine thamal set of mapping
rules responsible for the problem (minimal conflict sety. &ach conflict set, we try to
identify which mapping rule is incorrect and remove it forme tmapping.

ImplementationOn top of the DRAGO reasoning system [15] we built a prototgpe
mapping debugger for computing minimal conflict sets wigpet to an inconsistency
caused by a mapping as well as some heuristics for autonggi&ring of an incon-
sistent mapping. We further added a minimization functiibjéor computing minimal
mapping sets from redundant ones.

ExperimentsWe tested the approach using the OntoFarm data set, a seteohlsech
OWL ontologies describing the domain of conference managesystems [17]. We
used the CtxMatch matching tool to automatically createpirays between each of the
ontologies. We further automatically determined problémsarticular unsatisfiable
concepts) created by the mapping and tried to fix them autoatigtusing the debug-
ging process proposed in this paper. In the concluding dtépecexperimental study,
we tried to compute for each mapping its logically-equivai@inimal version.

The structure of the paper is as follows. We start with a néehll of basic def-
initions of Distributed Description Logics and explanatoof the reasoning mecha-
nisms. Then we describe the intuitions of our debugginghmization approaches us-
ing a small example. Finally, we report on some preliminaqysgimental evaluation of
the techniques proposed in this paper and summarize thiésresu

2 Distributed Description Logic

Distributed Description Logic framework (DDL) is a formaldl for representing and
reasoning with multiple ontologies pairwise linked by setamappings. In this sec-
tion, we briefly recall some key definitions and propertie®BAL relying on the origi-
nal studies in [1, 13].



2.1 Syntax and Semantics

Given a sefl of indexes, used to enumerate a set of ontologi®isaibuted Descrip-
tion Logicsis then a collectiof DL, } ;< of Description Logics. Each ontologys for-
malized by a T-boxZ; of DL;, so that the initial set of ontologies in DDL corresponds
to a family of T-boxesI” = {7; };c<;. To distinguish the descriptions from varioisin

the family, DDL utilizes a prefix notation to pin descript®to ontologies where they
are considered in, e.g.,; X, : X C Y. Semantic relations between pairs of ontolo-
gies a represented in DDL by bridge rulesbAdge rulefrom i to j is an expression of
the following two forms:

i X ij ;'Y — aninto-bridge rule
i: X ij :Y — anonto-bridge rule
whereX andY are concepts of ontologies and7; respectively. The derived bridge

rulei : X — j : Y can be defined as the conjunction of corresponding into- and
onto-bridge rule.

Intuitively, the into-bridge rule : Bachelor £, j : Student states that, from
the j-th point of view the concepBachelor in i is more specific than its local concept

Student. Similarly, the onto-bridge rulé : ScientificEvent =, j : Conference
expresses the more generality relation.

A distributed T-boxg = (7 ,*B) consists of a collection of T-boxeBs = {7;}icr
and a collection of bridge ruleéB = {B;; },;cr between them.

The semantics of DDL is based on the key assumption that eatcihogy 7; in
the family islocally interpreted by interpretatiof; on itslocal interpretation domain
ATi, The semantic correspondences between heterogeneoligidmeains, e.g., the
representations of a registration fee in US Dollars and iroEare modeled in DDL by
a domain relation.

A domain relationr;; represents a possible way of mapping the elementa’of
into the domainAZi: r;; C A% x A%i such thatr;; denotes{d’ € A% | (d,d') €
ri; }; for any subseD of A%, r;;(D) denoted ), , 7;(d); and for anyR C A% x
At ri5(R) denotedJ g e g 7ij(d) x 7i5(d'). For instance, itA”* and A”2 are the
representations of a registration fee in US Dollars and iroFthenr;, could be a rate
of exchange function, or some other approximation relation

A distributed interpretatiori = ({Z; }ics, {ri; }ijer) Of a distributed T-box¢ =
(T ,*B) consists of a family of local interpretatiofis on local interpretation domains
ATi, one for eachy;, and a family of domain relations; between these local domains.
A distributed interpretatiof is said to satisfy a distributed T-b& = (7, B), written
J E %, if all T-boxes in7 are satisfied

JET, f ,FACB forall ACBeT;

and all bridge rules i3 are satisfied:



Given a distributed T-bo% = (7', B), one can perform some basic Distributed DL
inferences. A concept: C is satisfiablewith respect to if there exist a distributed
interpretationJ of ¥ such thatC?: # (). A concepti : C is subsumedy a concept
i : D with respect td¥ (T |= i : C C D) if for every distributed interpretatiofi of ¥
we have thatCZ: C D%,

2.2 DDL Inference Mechanisms

Although both in DL and Distributed DL the fundamental ragisg services lay in
verification of concepts satisfiability/subsumption wittd certain ontology, in DDL,
besides the ontology itself, the reasoning also dependdhmm ontologies that affect
it through semantic mappings. This affection consist indbéity of bridge rules to
propagate the knowledgeeross ontologies in form of subsumption axioms.
The simplest case illustrating the knowledge propagatiddDL is the following:
i:AC B, z‘:Aij:G,i:ng:H 1)
j:GCH

In languages that support disjunction, the simplest prapag rule can be gener-
alized to the propagation of subsumption between a concepaaisjunction of other
concepts in the following way:

i:AC B U...UBy, i:A—=5j:G,i:By—=j:Hy(1<k<n) o
j:GEHll_I...UHn

The important property of the described knowledge propagas that it is direc-
tional, i.e., bridge rules fromto j support knowledge propagation only frartowards
j. Ithas been shown in [13] that adding the inference pat@rto(existing DL tableaux
reasoning methods lead to a correct and complete methoddsoning in DDL. This
method has been implemented in the DRAGO DDL reasoner.

3 The Debugging Process

In this section we will explain the general idea of our apptofor improving automat-
ically created mappings based on reasoning about mappirgstributed Description
Logics using a simple example. In particular, we considerdwtologies in the domain
of conference management systems, the same domain we daxperiments in. For
each ontology; andj, we only consider a single axiom, namely:

1 : Author C Person and j: Person C —Authorization

These simple axioms that describe the concept of a persevoidifferent ontolo-
gies — one stating that an author is a special kind of persdthenother one stating that
the concepts Person and Authorization (to access subrpéjeers) are disjoint concept
— are enough to explain the important features of our approEtte approach consists
of the following steps.



3.1 Mapping Creation

In the first step, we use any existing system for matchinglogtes to create an initial
set of mapping hypotheses. In particular, we are interastethppings between class
names, because these are the kinds of mappings that we cam @aout using DDL
framework. In order to support automatical repair of inéstent mappings later on,
the matching algorithm chosen should ideally not only retarset of mappings, but
also a level of confidence in the correctness of a mappingtieosake of simplicity,
we assume that we use a simple string matching method thgpares the overlap
in concept names and computes a similarity value that derbeerelative size of the
common substring Mappings are created based on a threshold for this valuevina
assume to be 1/3. Applying this method to the example willltés the following two
mappings with corresponding levels of confidence:

i : Person — j : Person,1.00
i : Author — j : Authorization, 0.46

We further assume that the mapping method also applies sonotusal heuristics
to derive additional mappings and propagates the levelsmfiadence accordingly. For
instance, the fact that: Person is a superconcept af: Author which is assumed to
be equivalent tg : Authorization may be used to derive the following mapping:

i: Person i] : Authorization, 0.46

In the same way, the fact that Author is a subconcept af: Person and the fact
thati : Person is assumed to be equivalentto Person may be used to the following
addition mapping:

i : Author £>j : Person,1.00

We can easily see that the process has produced two incomegagtings, namely
the ones with a confidence of 0.46. It could be argued thatasy to get rid of these
incorrect mappings by raising the threshold to 0.5 for ins¢éa This however is no
sustainable solution to the problem, because there mightdmpings with a level of
confidence below 0.5 that are correct, on the other hande timght still be incor-
rect mappings with a confidence of more than 0.5. Insteadlyihgeon artificially set
thresholds, we propose to analyze the impact of created imggppn the connected
ontologies and to eliminate mappings that have a malicioflisence.

3.2 Diagnosis

The mapping set described in the last step now serves as @& foasinalyzing the
effect of mappings and detecting malicious mappings. Thiggss is similar to the
well known concept of model-based diagnosis which has djreaccessfully been ap-
plied to the task of detecting wrong axioms in single ont@egSimilar to existing ap-
proaches for diagnosing ontologies, our starting poinuasatisfiable concepts which

! of course we use more sophisticated methods in the real experiments



are interpreted as symptoms for which a diagnosis has to inguied. Compared to
the general task of diagnosing ontologies, we are in a ludsjtion, because we have
to deal with a much smaller set of potential diagnosis. Irigalar, we claim that the
ontologies connected in the first step do not contain urfisdile concepts. If we now
observe unsatisfiable concepts in the target ontdlagyl assuming that the ontologies
themselves are correct, we know that they have to be caussdrby mappings in the
mapping set.

To illustrate this situation, we can have a look at our exanagiain. Using existing
techniques for reasoning in DDL, we can derive that the coin&athorization is glob-
ally unsatisfiable, i.e;j : Authorization® = (), because we havéuthorzation T
—Person and at the same time, we can inféuthorization T Person. There are
two reasons for this, namely:

j 1 Authorization®s = r;;(i : Author®') C r;;(i : Person®') = j : Person®i

and

j « Authorization®s C 7i;(i Person’i) = j : Person®s

Interpreting the inconsistency of the concegptAuthorization as a symptom, we
can now try to identify and repair the cause of this incoesisy. For this purpose, we
compute irreducible conflict set for this symptom. Here aaducible conflict set is
a set of mappings that makes the concept unsatisfiable antidnadditional property
that removing a mapping from the set makes the concept salisfigain. the arguments
above it is easy to see that he have the following irreduaibtélict sets:

{i: Person — j : Person,i: Author — j : Authorization}
and
{i: Person — j : Person,i : Person ij : Authorization}

In classical diagnosis, all conflict sétsre computed and the diagnosis is computed
from these conflict sets using the hitting set algorithm.tRercase of diagnosing map-
pings this is neither computationally feasible nor doesdvjale the expected result. In
our example, the hitting set would consist of the mappinderson — j : Person
which, as we sill see later, is the only mapping that actuzdlyies some correct infor-
mation.

Our solution to the problem is to use an iterative approaahd¢bmputes an often
not minimal hitting set by determining one conflict set atnagiand immediately fixing
it in the way described in the next section. In our example, dlgorithm will first
detect the second conflict and fix it, afterwards, the metthatks whether the concept
j : Authorization is still inconsistent. As this is the case, the second cdrgét will
be detected and fixed as well removing the problem.

2 the formal semantics of DDL guarantees that the addition of mapping®thead to unsatis-
fiable concepts in the source ontology
% in classical diagnosis often only minimal conflict sets are considered



3.3 Heuristic Debugging

As mentioned above, the result of the diagnosis step is adunible conflict sets, in
particular a set of mappings that make a concept unsatisfeadd with the additional
property that removing one mapping from this set solves tbblpm in the sense that
the concept becomes satisfiable. The underlying idea of ganoach is now that un-
satisfiable concepts are the result of wrong mappings. Teansthat each irreducible
conflict set contains at least one mapping rule that does atabrrect semantic relation
between concepts and therefore should not be in the set giinggp The goal of the
debugging step is now to identify this malicious mapping eerdove it from the over-
all mapping set. If we chose the right mapping for removaldhbality of the overall
mapping set should be improved, because a wrong mappingeleasrbmoved. In the
case of our example, the first irreducible conflict set thditlvé considered consists of
the following two mappings one of which we have to remove:

i : Person — j : Person,1.00
1 : Author — j : Authorization,0.46

There are different ways now, in which a decision about thepimgy to remove
could be made. The easiest way is to use an interactive agprehere the conflict
sets are presented to a human user who decides which mapmoty e removed.
In our case, the user will easily be able to decide that thepingp : Author —
j : Authorization is not correct and should be removed. In the second iteratien
following two mappings will be in the irreducible conflicttse

i : Person — j : Person,1.00

1 : Person ij : Authorization, 0.46

For this set the user will be able to see immediately thatéleersd mapping should
be removed, because it is not correct. This approach sowial,tbut in the presence of
large mapping sets, providing the user with feedback abotgtial problems in terms
of small conflict sets is of great help and often reveals moisl that are hard to see
when looking at the complete mapping set.

We can also try to further automate the debugging procesettingd the system
decide, which mapping rule to eliminate. In cases where thghing system already
provides a measure of confidence, this is again quite simplaje can simply remove
the mapping rule with the lowest degree of confidence. In agechis is again the rule
i+ Author — j : Authorization and removing it will lead to a better mapping set.
It is not always possible, however, to rely on the confiderro@iged by the matching
system, either because the system simply does not providerdmecause the levels
of confidence provided are not informative. In our experitagwe often had the situ-
ation where all mapping even though they were conflicting &@dnfidence of 100%
attached. In this case, we have to think of a new way of rankiagpings. An approach
that we used in our experiments that turned out to work qui# & to compute the
semantic distance of the concept names involved using Welrdixhsets. For the ex-
ample above it is clear that this heuristic will also lead moexclusion of the second



rule, because the class names in the first rule are equivatertherefore have the least
semantic distance possible. In cases where no distinctioive made using this heuris-
tic, we have to switch back to the interactive mode and askitlee which mapping to
remove. In any cases, the debugging step leaves us with ke sirapping that does
not create any inconsistencies. In order to get a complétef ®®rrect mappings, we
can now infer all additional mappings that follow from thiseowhich leads us to the
corrected final set of mappings in our case this final set ifahewing.

i : Person — j : Person,1.00

1 : Author ij : Person,1.00

In summary, the process above is a way to improve the qudlgytomatically gen-
erated mapping sets by means of intelligent post-procgskising formal properties
of mappings and logical reasoning we are able to detect wneqgpings by analyzing
their impact and tracking unwanted effects back to the nrappiles that caused them.
In this our method is not yet another ontology matching mettut it is actually or-
thogonal to existing developments in the area of ontologichiag as it can be applied
to any set of mappings. The approach can be extended in sdirecions. First of all
we can use symptoms other than concept satisfiability astmgtaoint for diagnosis.
Further, we can use the method on joint sets of competing ingppreated by different
matching algorithms. This will help us to get a better cogeraf the actual semantic
relations and the trust in the quality of the different métghalgorithms provides us
with an additional criterion for selecting mappings to bgcdirded.

3.4 Minimization

A further improvement of the debugged mapping can be acti®yeremoving re-
dundant mappings - mappings that logically follow from aethgppings. In [16] we
defined the notion of minimality of a mapping that we use iis ttontext to remove re-
dundant mappings. In the example for instance, the two maggpderived using struc-
tural heuristics do not really add new information to thetsgs because they can be
derived from the two equivalence mappings that have beeateddirst. In particular

1 : Person = j : Authorization, is redundant information, because:

i : Author®i C i : Person® 3

= r;;(Author®') C r;j(Person®i) 4)
rij(Person®i) = j : Person®’ (5)

= r;;(Author) C j : Person®i (6)

This means that for reasoning with automatically creategpimgys, we only have
to take into account the equivalence mapping between treopearoncept in the two
ontologies, because it is the basis for inferring the othre. ¢-or this reason, we re-
move all mappings that can be shown to be redundant in thes gbatthey can be
derived from using other mappings from the set of mappingsamy continue with
the resulting minimal mapping set that still carries all seenantics of the complete set.



4 Experiments

In this section we report on some preliminary experimentalwation of the mapping
debugging/minimization techniques presented in the pliagesections. All the exper-
iments have been conducted on the prototype of the debugjgériizer implemented
on top of the DRAGO DDL reasoner [15].

4.1 Experimental Setting

To perform experiments, we used a set of ontologies devdlopde OntoFarm project
[17] which are used as a part of Benchmark in Ontology Aligntrtevaluation chal-
lenge? In particular, we selected several ontologies modelingithaain ofconference
organization

[Ontology  [Description Logics Expressivifumber of classeslumber of propertids
CMT ALCIF(D) 30 59
CONFTOOL SIF(D) 39 36
CRS ALCTF(D) 14 17
EKAW SHIN 73 33
PCS ALCZF(D) 24 38
SIGKDD ALCZ(D) 51 28

Given this ontology test set, we apply the following expental scenario. Using
the CtxMatch matching tool [4], we automatically computepmiags between pairs of
ontologies in the test set. Among the created mappings, rtiecfiuidentify those ones
which are capable of producing unsatisfiable classes aneftiie need to be debugged
first. In the process of debugging, malicious bridge rulamappings are automatically
diagnosed and removed in accordance with the heuristicgdgfg discussed in Sec-
tion 3. In the concluding step of the experimental study, wphathe minimization
algorithm to compute for each mapping a logically-equiktiginimal set of bridge
rules. Note that for those mappings which demand the debgdst the minimization
is applied to their repaired descendants.

4.2 Results

The results of applying the heuristic debugging and minati@n techniques to the
automatically generated mappings are summarized in Tadhe Table 2. More infor-
mation about the test data and results can be obtainechgishie applications section
of the DRAGO reasoner web page.

During the debugging process we performed the followingsuesments: the ini-
tial amount of bridge rules in the mapping to be debugged,baimf classes which
become unsatisfiable due to the mapping, and finally the $étsdge rules which are
diagnosed as malicious and are automatically removed byehegging algorithm. Af-
ter the removal of malicious bridge rules, a mapping becaeeaired in a sense that it
is not capable of producing unsatisfiability anymore. Assathin Table 1, the results of

“http://nb.vse. cz/ ~svabo/ oaei 2006/
Shttp://sra.itc.it/projects/drago/applications.htm
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CMT :
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CMT :
CMT :
CMT :
CMT :
CMT :
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Person = Proceedings
ProgramCommitteeChair £ Social_Event

= .
Person — Conference_Proceedings

CONFTOOL-CRS

CONFTOOL : University = CRS : event
CONFTOOL : Social_event = CRS program
CONFTOOL : Author -5+ CRS : event
CONFTOOL : Person =N CRS : event
CONFTOOL : Participant -=» CRS : event
CONFTOOL : Event = CRS : participant

CRS-CMT

CRS :
CRS :
CRS :

document = CMT : Acceptance
document = CMT : ProgramCommitteeChair

program = oMT: ProgramCommitteeChair

CRS-CONFTOOL

CRS
CRS
CRS

CRS

: conference £, CONFTOOL : Organization
: person £, CONFTOOL : Event

: person =, CONFTOOL : Poster

CRS :
CRS :
CRS :
: event = CONFTOOL : Person

document —=>» CONFTOOL : Event
author =+ CONFTOOL : Event
participant £, CONFTOOL : Event

PCS-CONFTOOL

PCS :
PCS :
PCS :
PCS :
PCS :

Conference £, CONFTOOL : Organization
Report £. CONFTOOL : Event

Report £, CONFTOOL : Organization
PERSON =+ CONFTOOL : Poster
Accepted_paper £, CONFTOOL : Event

PCS-EKAW

PCS :
PCS :
PCS :
PCS :
PCS :

PERSON -2 EKAW : Flyer

PERSON 2% EKAW : Multi — author_V olume
PERSON =2 EKAW : Proceedings

Web_site =R EKAW : Event

PERSON 2% EKAW Conference_Proceedings

SIGKDD-CMT

SIGKDD : Program_Committee = oMT: ProgramCommitteeChair

SIGKDD-CONFTOOL

SIGKDD : Conference £, cONFTOOL : Organization
SIGKDD : Person = CONFTOOL : Poster
SIGKDD : Deadline_Author_noti fication £. CONFTOOL : Person

SIGKDD-CRS

SIGKDD : Document —=> CRS : program

SIGKDD-EKAW

SIGKDD : Person = EKAW : Flyer

SIGKDD : Person —= EKAW : Multi — author_Volume
SIGKDD : Person = EKAW : Proceedings

SIGKDD : Deadline_Author_noti fication 5. EKAW : Person
SIGKDD : Person — EKAW : Conference_Proceedings

Table 1. Debugging results.
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CMT-CONFTOOL 45 | 34 | 76% | EKAW-CMT 115 | 96 | 83%
CMT-CRS 52 38 73% EKAW-SIGKDD 127 | 95 75%
CMT-SIGKDD 59 | 45 | 76% | PCS-CONFTOOL 40 | 25 | 63%
CMT-EKAW* 111 | 94 85% PCS-CRS 38 21 55%
CONFTOOL-CMT 48 | 34 | 71% | PCS-SIGKDD 56 | 36 | 64%
CONFTOOL-CRS 65 | 40 | 62% | PCS-CMT 73 | 58 | 79%
CONFTOOL-SIGKDD 75 | 43 | 57% | PCS-EKAW 115 | 96 | 83%
CONFTOOL-PCS 45 | 27 | 60% | SIGKDD-CMT* 59 | 45 | 76%
CRS-CMT 50 | 34 | 68% | SIGKDD-CONFTOOL 69 | 41 | 59%
CRS-CONFTOOL 50 | 37 | 74% | SIGKDD-CRS 56 | 34 | 61%
CRS-SIGKDD 57 | 34 | 60% | SIGKDD-PCS 56 | 36 | 64%
CRS-PCS 38 | 21 | 55% | SIGKDD-EKAW" 122 | 94 | 77%

Table 2. Minimization results (starred mappings were first repaired applying thegtgng).

applying the heuristic debugging approach proposed iri@e8tare quite reassuring —
all of the mappings automatically removed by our method ateadly incorrect ones.

To estimate minimization rate we measured the initial nundbdridge rules and
the amount of logically entailed bridge rules discoveredapplying the minimization
technigue. As summarized in Table 2, the amount of the extailidge rules in a certain
automatically generated mapping varies from 50 t&&06 the initial number of bridge
rules in this mapping.

5 Discussion

We have presented a method for automatically improvingekalt of heuristic match-
ing systems using logical reasoning. The basic idea is airnul existing work on de-
bugging ontologies and uses some non-standard inferent®dsefor reasoning about
mappings introduced in previous work. The method feeds erfabt that most exist-
ing matching algorithms ignore the logical implicationsnefw mappings. This gap is
filled by our method that detects malicious impacts of geeeranappings and traces
them back to their source. As we have shown in the experimentemost all cases
(in fact in all cases observed in the experiment) the unveaattects were caused by
wrong mappings and we were able to remove them automatittallyimproving the
correctness of the generated mapping. Actually, the idassioly logical reasoning in
the matching process is not new and has been proposed bg ¢hegr, [7, 8]), the way
itis used in our work, however, is unique, as it is the onlyrapph that takes the effects
of mappings into account. We believe that this additiorg ian significantly improve
the quality of matching methods and should be integratedistirg matching algo-
rithms as far as they are concerned with expressive ontgdfat support consistency
checking. In fact, the expressiveness of the language asedcode the ontologies to
be matched seems to be the only limitation of our approackiwtan only be applied
if the language supports consistency checking. In our éxgerts, we have seen that
we can improve the correctness of matching results by remyowrong mappings. So
far, we did not quantify this improvement, this has to be dorfature work.
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