
Automatic Generation of Dispatching Rules for
Large Job Shops by Means of Genetic

Algorithms

Erich C. Teppan1 and Giacomo Da Col1

Alpen-Adria Universität Klagenfurt, Austria
{erich.teppan,giacomo.da}@aau.at

Abstract. Generating optimized large-scale production plans is an im-
portant open problem where even small improvements result in signifi-
cant savings. Application scenarios in the semiconductor industry com-
prise thousands of machines and hundred thousands of job operations
and are therefore among the most challenging scheduling problems re-
garding their size. In this paper we present a novel approach for au-
tomatically creating composite dispatching rules, i.e. heuristics for job
sequencing, for makespan optimization in such large-scale job shops. The
approach builds on the combination of event-based simulation and ge-
netic algorithms. We introduce a new set of benchmark instances with
proven optima that comprise up to 100000 operations to be scheduled
on up to 1000 machines. With respect to this large-scale benchmark, we
present the results of an experiment comparing well-known dispatching
rules with automatically created composite dispatching rules produced
by our system. It is shown that the proposed system is able to come
up with highly effective dispatching rules such that makespan reductions
of up to 38% can be achieved, and in fact, often near optimal or even
optimal schedules can be produced.

Keywords: job shop scheduling · optimization · dispatching rules · sim-
ulation · large-scale

1 Introduction

The scheduling of jobs [2] is an important task in almost all production systems
in order to optimize various objectives such as resource consumption, makespan
(time to finish all products), tardiness (lateness of products), or flow time. Driven
by the demands of the semiconductor industry, our general aim is the design of
practically applicable algorithms for job shop scheduling problems for domains
comprising thousands of machines and hundred thousands of job operations.

In real world domains like semiconductor manufacturing, common problem
instances for a weekly workload are of the order of 104 operations on 102 ma-
chines in the back-end, i.e. where the products are made ready for shipping, and
105 operations on 103 machines in the front-end, i.e. where the chips are actu-
ally produced. To the best of our knowledge, the size of such large-scale job shop



2 Erich C. Teppan and Giacomo Da Col

scheduling problem instances go beyond existing benchmarks. For example, the
well-known benchmark targeting on makespan optimization from [11] comprises
up to 50 jobs and 20 machines, which results in 1000 job operations in total.
The famous Taillard benchmark [24] contains job shop instances of sizes up to
100 jobs on 20 machines which results in 2000 job operations. When focusing
on tardiness optimization, somewhat bigger instances can be found. For exam-
ple, the benchmark described in [29] comprises up to 20000 job operations. In
this paper we introduce a benchmark comprising instances with up to 100000
operations to be scheduled on up to 1000 machines.

Many approaches have been used to solve scheduling problems. Aiming at
optimal solutions, constraint based approaches (e.g. [1, 22]), branch and bound
(e.g. [4]), branch and cut (e.g. [23]) or mixed integer programming (e.g. [18])
have a long and successful history. Another declarative solving approach that
was tried with so far limited success is answer set programming [12, 13]. How-
ever, hybridized approaches between answer set- and constraint programming
(see e.g. [27, 25]) show some potential for dealing even with large-scale schedul-
ing instances [26, 8]. Calculating optimal schedules is typically far out of reach
for large-scale domains. For near optimum solutions, current state of the art
approaches are based on tabu and large neighborhood search (e.g. [28, 3, 10]),
simulated annealing or genetic algorithms (e.g. [21]). Such local search methods
have shown to be effective whilst exhibiting low memory consumption. Though,
for the successful application of local search methods on large-scale production
environments the quality of the initial schedule that is iteratively optimized by
some local search methodology is most important. Starting with, for example,
a random schedule that is 200% off the optimum would not be sufficient since
it would take much too long to reach a near optimum schedule that is accept-
able. Note that because of the highly dynamic production regimes and the often
occurring changes (e.g. machine break down) in nowadays production environ-
ments rescheduling is needed every few minutes. Yet, if starting with a schedule
of good quality, local search methods can be applied to squeeze out the still
remaining potential of the production environment.

One widely employed state-of-the-art technique for dealing with large and
complex scheduling problems in nowadays manufacturing environments is the
application of dispatching rules (e.g. [15, 17, 19]). Dispatching rules are greedy
heuristics for step-wise deciding which is the operation to be processed next by
a machine. One big advantage of dispatching rules is that they can be computed
typically in linear time. There are basically four ways for using dispatching rules:

1. Dispatching rules are directly applied by operator staff for steering the pro-
duction process. As soon as a machine becomes idle, the operator decides
which of the runnable operations in the dispatch list of the machine is to be
loaded next.

2. Schedules are built by doing simulations based on different dispatching rules.
A schedule, which is found to be good enough, is then carried out.



Automatic Generation of Dispatching Rules for Large Job Shops 3

3. An initial schedule of good quality is created by means of dispatching rules
and iteratively optimized by local search methods. The optimized schedule
is then carried out.

4. In a search framework dispatching rules can be used as search heuristics.

Hence, a deep understanding of dispatching rules is crucial for many different
scheduling approaches and scenarios. Furthermore, the fully automatic genera-
tion of effective dispatching rules is a highly important open question. In this
paper we focus on the automatic creation of dispatching rules for the optimiza-
tion of the makespan (i.e. minimization of time needed for accomplishing all
operations) in very large job shops.

The job shop scheduling problem (JSP) is among the most famous NP-hard
[14] combinatorial problems and can be defined as follows:

– Given is a set M = {machine1, . . . ,machinem} of machines and a set J =
{job1, . . . , jobj} of jobs.

– Each job j ∈ J consists of a sequence of operations Oj = {j1, . . . , jlj}
whereby jlj is the last operation of job j.
Practically, jobs can be interpreted as products and operations can be inter-
preted as their production steps. With respect to a job j and its operation
ji, the operation ji+1 is called successor and the operation ji−1 is called
predecessor.

– Each operation o has an operation length lengtho ∈ N.
– Each operation o is assigned to a machine machineo ∈ M by which it is

processed.
– A (consistent and complete) schedule consists of a starting time starto for

each operation o such that:
• An operation’s successor starts after the operation has been finished,

i.e. with respect to a job j and the operations ji and ji+1:
∗ startji+1 ≥ startji + lengthji

• Operations processed by the same machine are non-overlapping,
i.e. with respect to two operations o1 6= o2 with machineo1 = machineo2:
∗ starto1 6= starto2
∗ starto1 < starto2 → starto1 + lengtho1 ≤ starto2

– Makespan, i.e. the time period needed for processing all operations, is mini-
mized. I.e.:

• max
j∈J,o∈Oj

{starto + lengtho} → min

The JSP is a special case of scheduling in manufacturing lines, in particular
wafer fab scheduling in the semiconductor domain (see Figure 1). The flexible
JSP is a direct generalization of the JSP. In the flexible JSP for an operation
type there can be many machines. Yet, for the flexible JSP it still holds that
a machine can only perform one operation type. Allowing also that a machine
can perform various operation types, as it is possible to change the setup of



4 Erich C. Teppan and Giacomo Da Col

Fig. 1. How job shops relate to wafer fabs

machines, leads to the flexible JSP with sequence dependent setup times. Wafer
fab scheduling introduces further concepts and constraints. For example, in wafer
fabs it is common to have different types of machines. ’Single’ machines only
allow to perform one operation at a time. In (flexible) JSPs there are only ’single’
machines. In wafer fabs there are also other types of machines, for example, batch
machines that allow to perform a set of operations of the same type at the same
time.

From the theoretical point of view, wafer fab scheduling is not more complex
than the classic JSP. To see this, it is convenient to look at the decision problem
versions of the optimization problems. The corresponding decision problems are
about answering the question whether a solution below a certain makespan is
existing. Having an oracle in NP to guess a solution it is obviously possible to
check correctness of the solution in polynomial time. Thus, the corresponding
decision problems are both in NP1. Consequently, coping with the complexity
of the JSP is the key for coping with large-scale wafer fab scheduling.

In the following, we present a novel approach for fully automatic generation
of composite dispatching rules. Composite dispatching rules are based on un-
derlying basic dispatching rules, like for example ’shortest-job first’, and thus
can be seen as hyper-heuristics [5]. The approach uses genetic algorithms, but in
contrast to the approaches like [20] where genetic algorithms are used to directly
find good schedules, in our approach the genetic algorithm is used to find a good
dispatching rule, that in turn is used to produce the schedule. The proposed

1 We can easily define an optimization procedure on top of the decision problems that
calculates the optimal makespan by applying binary search that has only logarithmic
complexity.



Automatic Generation of Dispatching Rules for Large Job Shops 5

approach is conceptually similar to our previous work in [9], where we propose
a genetic algorithm for learning hyper-heuristics for configuration problems.

After discussing the architecture of the proposed approach, we report on
the design and the results of a large-scale job shop experiment in which we
investigated the performance of our prototype system. The novel benchmark
incorporates job shop problem instances that have proven optimal makespans
and comprise up to 100000 operations to be scheduled on up to 1000 machines.
Furthermore, they differ in the average number of operations per job, which has
a big impact on the practical hardness of the problem instances. For all cases, we
can show that the proposed approach outperforms any tested basic dispatching
rule known from literature, and in fact, often (near-) optimal solutions can be
found even for extremely large job shop problems.

2 Architecture

Fig. 2. System architecture

Figure 2 shows the overall architecture of our prototype system. The two
main components are an event-based simulator and a genetic algorithm. For some
input problem instance, the system produces two outcomes: the best schedule
found and the corresponding dispatching rule.

2.1 Simulation Engine

The event-based simulation engine implements a simulation model in which each
machine possesses one queue. Initially, only the starting operations, i.e. those
without predecessors, are enqueued. After finishing an operation on a machine,
the successor operation is enqueued on its machine. As soon as a machine be-
comes idle and its queue is not empty the next operation to be run is selected
among the operations in the queue. This selection is based on a priority value
calculated by a (composite) dispatching rule.



6 Erich C. Teppan and Giacomo Da Col

2.2 Basic Dispatching Rules

Composite dispatching rules in our system basically constitute weighted combi-
nations of 12 basic rules. These basic dispatching rules are:

1. shortest processing time (SPT): Prefer the operation with the shortest pro-
cessing time.

2. longest processing time (LPT): Prefer the operation with the longest pro-
cessing time.

3. shortest job first (SJF): Prefer the operation of which the job possesses the
shortest total processing time.

4. longest job first (LJF): Prefer the operation of which the job possesses the
longest total processing time.

5. least total work remaining (LTWR): Prefer the operation for which the sum
of the operation length and successor operations’ lengths is the least.

6. most total work remaining (MTWR): Prefer the operation for which the sum
of the operation length and successor operations’ lengths is the most.

7. relative least total work remaining (RLTWR): As LTWR but normalized by
total job length.

8. relative most total work remaining (RMTWR): As MTWR but normalized
by total job length.

9. shortest waiting time (SWT): Prefer the operation that was enqueued as the
last.

10. longest waiting time (LWT): Prefer the operation that was enqueued as the
first.

11. urgency next (UN): Prefer the operation of which the successor operation’s
machine becomes idle as the first (based on the current queues).

12. urgency any (UA): Prefer the operation of which one of the successor oper-
ation’s machine becomes idle as the first (based on the current queues).

SPT, LPT, SJF, LJF, LTWR, MTWR, SWT and LWT are well known (see,
e.g. [16]). RLTWR and RMTWR are variants of LTWR and MTWR respec-
tively. In RLTWR and RMTWR the total work remaining (TWR) is divided by
the total job length. Hence, TWR is interpreted as the share of the remaining
processing time of the operation’s job relative to the total processing time of the
job.

Also UN and UA are rule variants based on the well known WINQ rule [6, 7].
WINQ selects the operation of which the next successor operation will go on to
the machine that has currently the least workload in the queue. The idea is to
prevent idle times because of empty queues. UN follows the same idea but also
takes into account the currently running operation of the successor’s machine.
Thus, with respect to some operation, UN calculates the nearest time point when
the successor operation’s machine can become idle.

UA is a generalization of UN calculating the earliest time point when one
of the successor machines can become idle. I.e. whereas UN only considers the
machine of the direct successor operation, UA takes all machines of the direct
and indirect successor operations into account.



Automatic Generation of Dispatching Rules for Large Job Shops 7

In order to purposefully combine the basic dispatching rules, every dispatch-
ing rule is implemented by a function that returns normalized priority values
between 0 and 1. The semantic is: the higher the priority value the earlier an
operation is processed by a machine.

2.3 Genetic Algorithm

For producing the different weight combinations the composite dispatching rules
are based on, our system uses a genetic algorithm implemented with the Java
Jenetics2 library. The algorithm operates on genomes consisting of only a sin-
gle chromosome that is composed of 12 integer genes. Each gene represents the
weight for a basic dispatching rule and, thus, each genome represents the set of
weights for a composite dispatching rule. The fitness value for a genome is deter-
mined by testing the resulting composite dispatching rule within the simulation
engine with respect to some input problem instance. Hence, the simulation engine
produces a schedule on the basis of the dispatching rule and the corresponding
makespan represents the fitness value.

3 Experimental Setup

The goal of the experiment is to show the effectiveness of genetic algorithms in
finding good composite dispatching rules for very large job shops. Hereby, we
compare the composite dispatching rules generated by our system to each basic
dispatching rule run on its own.

3.1 Algorithmic Configuration

The used genetic algorithm for producing the weights for the composite rules
can be considered more or less standard. We use a 6-point crossover operator
and a mutation rate of 10%. Genes (i.e. the weights) are restricted to integers
between 0 and 10 (inclusive). The population size is set to 100 and the offspring
fraction is 60%. For selecting genomes for recombination a tournament selector
(tournament size = 10) is used. In the experiment we allowed a maximum of 100
generations.

3.2 Problem Instances

The problem instances used for the experiments described herein are on the one
hand patterned on real world production scheduling problems, in particular in
terms of size. On the other hand, the instances have known optimal makespans.

The creation process is as follows: First produce an optimal solution without
(idle) holes for (1) a given number of job operations to be scheduled, (2) the

2 jenetics.io



8 Erich C. Teppan and Giacomo Da Col

number of machines and (3) the desired optimal makespan. This is done by ran-
domly partitioning the machines’ time continuum into the predefined number of
partitions. Each partition corresponds to the processing period of one operation.
Consequently, the optimal makespan, average operation length (avg(length)),
number of operations (#ops) and number of machines (#machines) relate con-

forming to makespan = #ops×avg(opLength)
#machines . Based on such a partitioning, suc-

cessor relations are randomly generated. Each partition has maximally one suc-
cessor and/or predecessor such that the successor’s starting time is greater than
the predecessors finishing time. Figure 3 shows the principle.

Fig. 3. Principle of instance generation

We applied two different procedures for generating random successor rela-
tions based on a pre-calculated solution:

1. For each operation op (in random order) define as successor suc a random
operation such that

– suc is not on the same machine as op.
– suc starts later than op ends.
– suc is not yet a successor of another operation.
– If no such suc exists op has no successor.

2. For each operation op (in random order) define as successor suc an operation
such that

– suc is not on the same machine as op.
– suc starts later than op ends.
– suc is not yet a successor of another operation and
– the time between op ends and suc starts is minimal.
– In case that there are multiple possible successors, a random one is cho-

sen.
– If no such suc exists op has no successor.



Automatic Generation of Dispatching Rules for Large Job Shops 9

The two different generating approaches result in benchmark instances that
are different in nature: (1) produces many jobs consisting of a small number of op-
erations. We refer to this set of instances as the ’short-jobs’ benchmark instances.
In contrary, (2) produces fewer jobs but with a larger number of operations per
job. We refer to this set of instances as the ’long-jobs’ benchmark instances. Ta-
ble 1 and 2 show the statistics for the long-jobs benchmark instances. Table 3 and
4 show the statistics for the short-jobs benchmark instances. All instances have
a minimal makespan of 600000. This roughly constitutes one week in seconds,
which is a common planning horizon in semiconductor manufacturing.

#ma-#ops-file #jobs min #ops max #ops avg #ops

100-10000-1 103 37 134 97,1
100-10000-2 103 54 125 97,1
100-10000-3 103 28 128 97,1

1000-10000-1 1002 1 22 10,0
1000-10000-2 1002 2 22 10,0
1000-10000-3 1002 2 24 10,0

100-100000-1 109 1 1021 917,4
100-100000-2 114 1 1019 877,2
100-100000-3 109 185 1011 917,4

1000-100000-1 1002 74 133 99,8
1000-100000-2 1002 69 131 99,8
1000-100000-3 1003 68 129 99,7

Table 1. Long-jobs benchmark: operations and job counts

#ma-#ops-file min opLen max opLen avg opLen

100-10000-1 2 72196 6000
100-10000-2 1 49264 6000
100-10000-3 1 53090 6000

1000-10000-1 6 600000 60000
1000-10000-2 2 547505 60000
1000-10000-3 1 567640 60000

100-100000-1 1 6549 600
100-100000-2 1 7777 600
100-100000-3 1 6982 600

1000-100000-1 1 70829 6000
1000-100000-2 1 63685 6000
1000-100000-3 1 70263 6000
Table 2. Long-jobs benchmark: operation lengths



10 Erich C. Teppan and Giacomo Da Col

#ma-#ops-file #jobs min #ops max #ops avg #ops

100-10000-1 2162 2 12 4,6
100-10000-2 2192 1 13 4,6
100-10000-3 2169 1 13 4,6

1000-10000-1 2882 1 9 3,5
1000-10000-2 2863 1 10 3,5
1000-10000-3 2897 1 9 3,5

100-100000-1 20685 2 16 4,8
100-100000-2 20870 2 19 4,8
100-100000-3 20767 2 16 4,8

1000-100000-1 21280 2 16 4,7
1000-100000-2 21349 2 15 4,7
1000-100000-3 21338 2 16 4,7

Table 3. Short-jobs benchmark: operations and job counts

#ma-#ops-file min opLen max opLen avg opLen

100-10000-1 1 69723 6000
100-10000-2 1 53463 6000
100-10000-3 1 68936 6000

1000-10000-1 2 503525 60000
1000-10000-2 3 471671 60000
1000-10000-3 2 600000 60000

100-100000-1 1 9158 600
100-100000-2 1 8373 600
100-100000-3 1 6505 600

1000-100000-1 1 86811 6000
1000-100000-2 1 68044 6000
1000-100000-3 1 65721 6000
Table 4. Short-jobs benchmark: operation lengths



Automatic Generation of Dispatching Rules for Large Job Shops 11

4 RESULTS AND DISCUSSION

Tables 5 and 6 summarize the the experimental results for the long-jobs and
short-jobs benchmark respectively. The result tables list for each problem in-
stance the best makespan achieved by one of the basic dispatching rules on its
own, the makespan produced by the composite dispatching rules generated by
our system and how much the generated rule worked better than the best basic
rule.

Generally, it can be stated that the ’short-jobs’ benchmark is easier, at least
for dispatching rule based approaches. There is one exception: For job shops
comprising 1000 machines and 10000 operations the best achieved makespans
are better in the long-job benchmark. Concerning the basic dispatching rules
tested in standalone manner, it can be stated that best performers are RMTWR
and UA.

The composite dispatching rules generated by the approach presented in this
paper outperform any tested basic dispatching rule on its own. With respect
to the best basic dispatching rules, schedules produced with the automatically
generated dispatching rules have up to 38% smaller makespans. Even more im-
pressive is the fact that in many cases near optimal or even optimal schedules
could be produced. For such cases, clearly the proposed approach can be perfectly
used as a standalone system. In the worst case, that is for long-jobs instances
comprising 100000 operations on only 100 machines, the makespans are less than
70% above the minimal makespans, which still is a very good starting value that
can be further optimized by some local search method.

In order to get a more intuitive impression on what it means to be 70% above
optimum, Figure 4 shows a visual representation of the schedule produced for the
’100-10000-3’ case (see Table 5) with the generated dispatching rule. Obviously,
also such a schedule seems quite good. Though, the schedule for ’100-10000-2’
(see Figure 5), being roughly 25% above the optimum, is much denser.

5 CONCLUSIONS

In this paper we present an approach based on event-based simulation and ge-
netic algorithms for automatically generating composite dispatching rules for job
shop scheduling problems. Hereby, we focus on very large job shops like found in
semiconductor industry where exact methods are totally out of reach. We fur-
thermmore report on an experiment investigating the efficacy of the proposed
approach for makespan optimization of very large job shop problem instances.
To this end, we describe a new benchmark incorporating problem instances with
proven optima that comprise up to 100000 operations to be scheduled on up to
1000 machines. To the best of our knowledge, these instances are bigger than any
benchmark instances found in literature so far. Summarizing, we can state that
for many problem instances we could find highly effective composite dispatching
rules resulting in near optimum schedules.



12 Erich C. Teppan and Giacomo Da Col

#ma-#ops-file best basic generated reduction

100-10000-1 1040217 (MTWR) 853879 18%
100-10000-2 1033087 (MTWR) 754355 27%
100-10000-3 1073028 (RMTWR) 1000130 7%

avg 1048777 869455 17%

1000-10000-1 600000 (LJF) 600000 0%
1000-10000-2 600000 (LJF) 600000 0%
1000-10000-3 893222 (UA) 600000 33%

avg 697741 600000 11%

100-100000-1 1077736 (RMTWR) 1013399 6%
100-100000-2 1040606 (UA) 1006303 3%
100-100000-3 1072846 (RMTWR) 1013414 6%

avg 1063729 1011039 5%

1000-100000-1 967557 (UN) 600000 38%
1000-100000-2 1046191 (MTWR) 679312 35%
1000-100000-3 1079303 (RMTWR) 823301 24%

avg 1031017 700871 32%
Table 5. Results for ’long-jobs’ (optimal makespans = 600000)

#ma-#ops-file best basic generated reduction

100-10000-1 639392 (RMTWR) 600610 6%
100-10000-2 634527 (UA) 602231 5%
100-10000-3 623094 (RMTWR) 600327 4%

avg 632338 601056 5%

1000-10000-1 814514 (UA) 687569 16%
1000-10000-2 808937 (UA) 754101 7%
1000-10000-3 843376 (UA) 726314 14%

avg 822276 722661 12%

100-100000-1 600893 (RMTWR) 600034 0.1%
100-100000-2 601111 (RMTWR) 600045 0.2%
100-100000-3 600671 (RMTWR) 600005 0.1%

avg 600892 600028 0.1%

1000-100000-1 655741 (RMTWR) 603058 8%
1000-100000-2 651725 (UA) 600383 8%
1000-100000-3 652523 (RMTWR) 601065 8%

avg 653330 601502 8%
Table 6. Results for ’short-jobs’ (optimal makespans = 600000)



Automatic Generation of Dispatching Rules for Large Job Shops 13

Fig. 4. Schedule for long-jobs: 100-10000-3 (generated dispatching rule)

Fig. 5. Schedule for long-jobs: 100-10000-2 (generated dispatching rule)



14 Erich C. Teppan and Giacomo Da Col

References

1. Bartk, R., Salido, M., Rossi, F.: New trends in constraint satisfaction, planning, and
scheduling: a survey. The Knowledge Engineering Review 25(3), 249–279 (2010).
https://doi.org/10.1017/S0269888910000202

2. Blazewicz, J., Ecker, K., Pesch, E., Schmidt, G., Weglarz, J.: Handbook on Schedul-
ing: Models and Methods for Advanced Planning (International Handbooks on
Information Systems). Springer-Verlag New York, Inc., Secaucus, NJ, USA (2007)

3. Boejko, W., Gnatowski, A., Pempera, J., Wodecki, M.: Parallel tabu search for the
cyclic job shop scheduling problem. Computers and Industrial Engineering 113,
512 – 524 (2017)

4. Brucker, P., Jurisch, B., Sievers, B.: A branch and bound algorithm for the job-shop
scheduling problem. Discrete Applied Mathematics 49(1), 107 – 127 (1994)

5. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.:
Hyper-heuristics: a survey of the state of the art. J. of the Operational Research
Society 64(12), 1695–1724 (2013)

6. Conway, R.W.: An experimental investigation of priority assignment in a job shop.
RM-3789-PR (1964)

7. Conway, R.W.: Priority dispatching and work-in-process inventory in a job shop.
Journal of Industrial Engineering 16, 228–237 (1965)

8. Da Col, G., Teppan, E.C.: Declarative decomposition and dispatching for large-
scale job-shop scheduling. In: Joint German/Austrian Conference on Artificial In-
telligence (Künstliche Intelligenz). pp. 134–140. Springer, Cham (2016)

9. Da Col, G., Teppan, E.C.: Learning constraint satisfaction heuristics for configu-
ration problems. In: 19th International Configuration Workshop. pp. 8–11 (2017)

10. Danna, E., Perron, L.: Structured vs. unstructured large neighborhood search: A
case study on job-shop scheduling problems with earliness and tardiness costs. In:
Rossi, F. (ed.) Principles and Practice of Constraint Programming – CP 2003. pp.
817–821. Springer Berlin Heidelberg (2003)

11. Demirkol, E., Mehta, S., Uzsoy, R.: Benchmarks for shop scheduling problems.
European Journal of Operational Research 109(1), 137 – 141 (1998)

12. Falkner, A., Friedrich, G., Schekotihin, K., Taupe, R., Teppan, E.C.: Industrial
applications of answer set programming. KI-Künstliche Intelligenz pp. 1–12 (2018)

13. Friedrich, G., Frühstück, M., Mersheeva, V., Ryabokon, A., Sander, M., Starzacher,
A., Teppan, E.: Representing production scheduling with constraint answer set
programming. In: Operations Research Proceedings 2014, pp. 159–165. Springer,
Cham (2016)

14. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA (1990)

15. Hildebrandt, T., Goswami, D., Freitag, M.: Large-scale simulation-based optimiza-
tion of semiconductor dispatching rules. In: Proceedings of the 2014 Winter Sim-
ulation Conference. pp. 2580–2590. WSC ’14, IEEE Press, Piscataway, NJ, USA
(2014)

16. K. Kaban, A., Othman, Z., Rohmah, D.: Comparison of dispatching rules in job-
shop scheduling problems using simulation: A case study. Int. J. of Simulation
Modelling 11, 129–140 (09 2012)

17. Kaban, A.K., Othman, Z., Rohmah, D.S.: Comparison of dispatching rules in job-
shop scheduling problem using simulation: a case study. Int. Journal of Simulation
Modelling 11(3), 129–140 (2012)



Automatic Generation of Dispatching Rules for Large Job Shops 15

18. Ku, W.Y., Beck, J.C.: Mixed integer programming models for job shop scheduling:
A computational analysis. Computers and Operations Research 73, 165 – 173
(2016)

19. Panwalkar, S.S., Iskander, W.: A survey of scheduling rules. Oper. Res. 25(1),
45–61 (Feb 1977)

20. Pezzella, F., Morganti, G., Ciaschetti, G.: A genetic algorithm for the flexible job-
shop scheduling problem. Computers and Operations Research 35(10), 3202–3212
(2008)

21. Sadegheih, A.: Scheduling problem using genetic algorithm, simulated annealing
and the effects of parameter values on ga performance. Applied Mathematical
Modelling 30(2), 147 – 154 (2006)

22. Sadeh, N.M., Fox, M.S.: Variable and value ordering heuristics for the job shop
scheduling constraint satisfaction problem. Artificial Intelligence 86, 1–41 (1996)

23. Stecco, G., Cordeau, J.F., Moretti, E.: A branch-and-cut algorithm for a produc-
tion scheduling problem with sequence-dependent and time-dependent setup times.
Comput. Oper. Res. 35(8), 2635–2655 (2008)

24. Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Op-
erational Research 64(2), 278 – 285 (1993), project Management anf Scheduling

25. Teppan, E.C.: Solving the partner units configuration problem with heuristic con-
straint answer set programming. In: Configuration Workshop. pp. 61–68 (2016)

26. Teppan, E.C., Friedrich, G.: Heuristic constraint answer set programming for man-
ufacturing problems. In: Advances in Hybridization of Intelligent Methods, pp.
119–147. Springer (2018)

27. Teppan, E.C., Friedrich, G.: Heuristic constraint answer set programming. In:
ECAI. pp. 1692–1693 (2016)

28. Watson, J.P., Beck, J.C., Howe, A.E., Whitley, L.D.: Problem difficulty for tabu
search in job-shop scheduling. Artif. Intell. 143(2), 189–217 (Feb 2003)

29. Zhang, R., Wu, C.: A hybrid approach to large-scale job shop scheduling. Applied
Intelligence 32(1), 47–59 (Feb 2010)


