CEUR-WS.org/Vol-2256/SWEPHD18_paper_08.pdf

Supporting Collaborative Decision Making in
Software Engineering

Peter Forbrig
University of Rostock
Rostock, Germany
peter.forbrig@uni-rostock.de

ABSTRACT

Smart factories or Industry 4.0 are names of domains of as-
sistive systems. Such systems become more and more impor-
tant and ask for new technologies in software engineering.
They provide support for decision making of users. Human-
centered software engineering and subject-oriented model-
ing seem to be promising approaches. However, decisions
have also to be made during software development. The
awareness of modelling and discussing alternative solutions
have to be teached and tool support has to be developed. The
paper discusses aspects of using heterogeneous modeling
for specifying applications and collaborative activities.It is
asked for education in different paradigms, Domains-specific
textual specification languages can be used for this purpose.
Additionally, work practices in collaborative design of soft-
ware are analyzed and corresponding tool support is pre-
sented. Task migratability is discussed and characterized as
success factor for assistive software systems of the future.

CCS CONCEPTS

« Software and its engineering — Software notations
and tools; » Software notations and tools — General pro-
gramming language; « General programming languages
— Context specific languages; « Context specific languages
— Domain specific languages;

KEYWORDS

Heterogeneous Models, Domain-Specific Languages, Compo-
sition of Languages, Task migratability, Industry 4.0, Business-
Process Modeling

ACM Reference Format:
Peter Forbrig and Anke Dittmar. 2018. Supporting Collaborative
Decision Making in Software Engineering. In Proceedings of The

Copyright © 2018 for the individual papers by the papers' authors. Copying
permitted for private and academic purposes. This volume is published and
copyrighted by its editors.

SWEPHDZ2018, September 17th, 2018, St. Petersburg, Russia

Anke Dittmar
University of Rostock
Rostock, Germany
anke.dittmar@uni-rostock.de

2018 Workshop on PhD Software Engineering Education: Challenges,
Trends, and Programs (SWEPHD2018). ACM, New York, NY, USA,
6 pages.

1 INTRODUCTION

The goal of software applications is supporting users in per-
forming their tasks. New technologies allow interactive sys-
tems automatically to adapt to a changing environment. Of-
ten such changes are based on conclusions from rules that
are triggered by sensed data. The rules specify the solution
space of the corresponding applications. These technolo-
gies are characterized as smart. Smart meeting rooms, smart
houses, smart factories, and even smart cities have been de-
veloped. Automatic decision support is provided or users
get support for their decisions. We will call this run-time
decision support. This is in contrast to design-time support
that assists software developers in their work. Supportive
applications for this domain range from programming tools,
programming environments, computer-aided software engi-
neering tools to integrated environments. However, those
tools rarely support adaptation and they often do not al-
low the elaboration and discussion of alternative solutions.
Nevertheless,a lot of decisions have to be made by software
developers. This starts with the decision about the impor-
tance of requirements, is followed by the decision about the
applied software architecture, the decisions during design,
the decisions during implementation, etc. The challenge of
software engineering and software engineering education
lies in strengthening the support of methods for support-
ing the discussion of alternative solutions and providing
computer-supported assistance for that. In this paper, the
problem space of decision making is used to discuss different
specification methods. Domain-specific textual languages
are used to show the application of heterogeneous modeling.
This is reached by a Meta mode unifying the concepts of
different languages. In this way different paradigms can be
used together in one specification and can have references
to each other. Additionally, based on task migratabilty the
role decision migratability is discussed.

SWEPHD2018, September 17th, 2018, St. Petersburg, Russia

2 CHALLENGES IN DECISION MAKING

Recently, there are a lot of discussions about Ambient As-
sisted Living (AAL). Related systems are designed to help
people (e.g., elderly, children, handicapped, etc.) in having
an independent and monitored life with the use and assis-
tance of technology. Additionally, concepts of smart meeting
rooms, smart homes, smart factories, and even smart cities
exist. Like most software systems, such systems are designed
to support users in performing their tasks and their decision
making (e.g. what to do next). Assistive software focuses
on support for end users in different domains. This can be
called decision support during run-time and will be discussed
within the next section of the paper. However, software de-
velopment should be supported by software tools as well.
Computer-aided software engineering (CASE) tools have
been used for several decades already. Support is provided
during design of software. Therefore, after focusing on deci-
sion support during runtime decision support for software
developers during design time will be discussed.

Decision Making At Runtime

The problem of decision making during runtime will be dis-
cussed from three different perpectives. The problem can
be tackled in a data-centric or human-centered way. Ad-
ditionally, it can be specified with one framework or with
heterogeneous model. The paper will focus on the second
aspect.

Data-Centric Software Engineering. Data are an important re-
source of the digital world. Data come from different sources,
have to be computed as Big Data and change the behav-
ior in large extend software applications. The management
of smart applications is a success factor of industry and
the whole society. Software Engineering provides processes,
models, tools, and principles for constructing and manag-
ing high quality software with limited costs. Additionally,
software engineering methods should provide explanations
to users about the results of deep learning algorithms and
big data analysis. This is especially important for complex
applications in context of autonomous driving, adaptive sys-
tems, and applications for industry 4.0 [18]. Industry 4.0
refers to a current trend of automation and data exchange
in manufacturing technologies. The number stands for the
fourth industrial revolution and includes applications for
cyber-physical systems. (The third revolution characterized
by computers and automation, the second by mass produc-
tion, assembling lines and electricity, and the first one by
mechanization, water power and steam power.)

Decisions are supported by algorithms. However, a user
should be able to understand the application of rules the
decisions are based on. It should also be possible to influence
the results of decisions by users.

Forbrig et al.

Frequency
of use

1 Recoverability 96
2 Familarity 57
3 Consistency 57
4 Substitutivity 54
5 Task Migrateability 40
6 Synthesisability 34
7 Predictability 32
8 Perceptual 31

Ergonomics

Figure 1: Weighted HCI rules according to frequency of use
(taken from [11]).

The usability criteria of task migratability becomes more
important. It is a usability design principle that describes
how control for task execution is transferred between system
and user. It describes the ability of an interactive application
to pass control for the execution of a task so that it becomes
either internalized by the user or the application or shared
between them [6]. Hinze-Hoare [11] analyzed the literature
according to what she called HCI principles. She looked at
the most important authors and provided a ranking of the
HCI principles that we would like to call usability criteria.
The analysis procedure is described as follows: “The num-
ber of times that a particular HCI principle was proposed
by a significant author multiplied by a weighting factor de-
rived from the author citation frequency allowed a ranking
of HCI principles to be determined.” Figure 5 provides the
corresponding result.

Task migratability got rank five. However, most applica-
tions for assistive systems do still not support task migrata-
bility to a large extend. Decision making in software systems
is a specific task. It has to be migratable as well. Additionally,
decisions of the systems should be supported by explana-
tions on demand that can be understood by users. The data
science technologies play also the most important role in
technologies for smart cities, which is motivated by sustain-
able development requirements of global environment and
modern cities [17].

Human-Centered Software Engineering. The idea of human-
centered software engineering was presented the first time
in a large extend in the year 2005 [16]. Some related ideas
were already discussed during an INTERACT workshop in
Tokyo in 2001 [15] . The title of the workshop was “Software
Engineering and Usability Engineering Cross-Pollination”. It
was analyzed that classical software engineering did not look
at Ul design, task-base design, and usability evaluation as-
pects. In other words, software engineering did not consider
human-computer interaction aspects for software develop-
ment. First papers discussed the integration of development
life cycle activities of software and usability engineering.
The goal was a common development-process model. This

Supporting Collaborative Decision Making in
Software Engineering

aspect is still discussed for agile development methods [1].
Nowadays, tasks are not performed by a single users but in
teams in a collaborative way. The same is true for decision
processes. Therefore, it is very important to understand the
collaborative processes and to model them. This aspect is
discussed in more detail in the following paragraph.

Modelling Collaboration with Heterogeneous Models. It was
already mentioned that collaboration has to be supported
by assistive software systems. Before the cooperative aspect
will be demonstrated by an example, we will focus on the
specification of activities of two roles that we call customer
and salesman. The approach can be characterized as subject-
oriented [8] and human-centered [16].

A customer asks in our simplified example for informa-
tion about possible products that can be delivered. From the
provided list, a product is selected and the delivery of the
correspond-ing price is expected. The procedure of this two
tasks can iteratively repeated. A salesman provides a list of
products that are available. For a specific product, a price can
be delivered. Both tasks can also be repeated several times
successively. Specification 1 provides the corresponding task
models in the notation of the language DSL CoTaL [2]. It is
a domain-specific textual language and allows the specifica-
tion of task trees in a rule-based way. Each refinement in the
task tree is represented by one rule. The tasks of a customer
and a salesman are both specified as trees with three levels.
The first level starts with the root followed by an iteration
on the next level. The iterative task is split into two subtasks.
The end of the first task enables the start of the second task.

SPECIFICATION 1: Behavioral models for customer and sales-
man
role Customer {
root buy = negotiate{*};
task negotiate =
ask_for_information »»
select_product

role Salesman {
root sell = provide_information{*};
task provide_information =
provide_list_of products »
provide_price;

A customer first asks for information and later (temporal
operator enabling - ») selects a product. This can be done iter-
atively (temporal operator iteration - *). A salesman provides
a list of products and later a price for a specific product. The
cooperation of both roles is specified by a different model. It
is called team model in the context of CoTaL [2]. The nota-
tion looks very similar to the role models. However, other
language constructs are available.Specification 2 provides a
corresponding example.

Several communications can be performed (* after com-
municate). A communication is started by a customer asking
for information. A salesman will afterwards provide a list of

SWEPHD2018, September 17th, 2018, St. Petersburg, Russia

SPECIFICATION 2: Cooperation model for Customer and
Salesman example.

team coop {
root trade = communicate{*};
task communicate =

Customer.ask_for_information >>

Salesman.provide_list_of_products >>

exchange_info_about_product;

task exchange_info_about_product =

Customer.select_product >>
Salesman.provide_price;

@ The ConcurTaskTree Environment 2.6.20 (HIIS lab ISTI) C:\Users\Forbrig\Docu... (/== Gl é

Eile Edit View Info Insert Tools Help

D8 d 2@ F s s @Y ADDAEL —m—m=L_=
10% 100
1
Category: |cooperation §8 |~ Type: Frequency: |
Platform: [| Pda [] Desktop [] Mobile [] Vocal |
Cooperative | Salesman | Customer

L2

¥

= e O Customer

'y

L}

Comman: ds:

New Role

Set Connection

~ Show Connection

Figure 2: Cooperation model for Customer and Salesman ex-
ample.

products. The task for exchanging information is followed. It
has two sub-tasks. The first one is performed by a customer.
A product is selected. Afterwards, a salesman will provide af-
terwards a price for this product. Temporal relations between
tasks of different role models can be provided in this way in
a team model. It allows the separation of concerns. Role mod-
els describe all related tasks while the team model specifies
the collaboration aspect. The editor for CoTaL [2] was imple-
mented with the tool Xtext [20]. It is intended for language
engineering and provides the basis for code generation to
other tools. For DSL-CoTaL code generation to CoTaSE [3],
HAMSTERS [10] and CTTE [4] were implemented. The vi-
sualization of the team model in the tool CTTE is presented
in Fig. 2.

The hierarchy of the task models is visualized as a tree in
CTTE. Each model can be viewed via the corresponding tab
and simulation is provided for evaluation. It might be the
case that some developers are more familiar with statecharts
than with task models. Therefore, it can be useful to pro-
vide both views or allow the developer to specify the view
he/she is most familiar with. Specification 3 demonstrates
the specification of the behavior of a salesman in a DSL for
task models and a DSL for statecharts.

Previous examples focused on the task flow only. However,
in business processes there are also objects involved. They

SWEPHD2018, September 17th, 2018, St. Petersburg, Russia

SPECIFICATION 3: Task model and statechart model as al-
ternative behavior specifications of a salesman.

role Salesman { activity state request_information
root sell = provide_information{*}; provide_list_of products => request_price
task provide_infornation = end
provide_list of products »» activity_state request_price
provide_price; provide_price =» request_information
} end

can be specified in conjunctions with the tasks and used in
preconditions or in object flows. Two different languages (ob-
ject specification and task specification) were embedded in
one general language. Relations between objects are omitted
because of simplicity in example of specification 4.

SPECIFICATION 4: Cross reference from a task model to an
object model

object product {
attribute: String name, String price

role Salesman {
root sell = provide_information{*};
task provide_information =
provide_list_of_products >>
provide_price;
pre provide_price -> product.price !=

Heterogeneous modeling has been used in software devel-
opment for several decades. However, it seems to become
more attractive with the new tools for language engineering.
The workshop at EICS 2018 with the title “Workshop on Het-
erogeneous Models and Modeling Approaches for Engineer-
ing of Interactive Systems” supports this impression. Hetero-
geneous modeling allows the separation of concerns and in
this way the management of complexity. Domain-specific
languages allow the embedding of different languages by
combining their grammars. This was possible to demonstrate
with the small provided examples. Different modeling lan-
guages were used for specifying:

e Tasks of certain roles (role model)

e Communication between different models (team model)

e Alternative specifications for the same purpose (task
model versus state model)

e Combining different views (task model and object
model)

Kramer et al. [13] and Lee [14] support the idea of het-
erogeneous models. It seems to be appropriate to support
the specification of different aspects of a system by differ-
ent views. Domain-specific textual languages seem to be a
perfect support for combining different kinds of models.

Forbrig et al.

Figure 3: Cooperation model for Customer and Salesman ex-
ample.

Decision Making At Design Zime

Unfortunately, the decision process during design and im-
plementation of software is not supported very well by case
tools yet.

UML Class Diagrams. UML class diagrams are one of the
most used kind of specifications for designing software ar-
chitectures. This section describes studies [5] that were con-
ducted in supporting collaborative software design sessions.
Several groups of software designers were observed while
performing certain design tasks. The studies included an
initial manual collaborative modeling sessions each with 3
participants (Fig. 3). Tangible material like paper was used to
represent classes and associations. Based on this analysis, a
software prototype for interactive table tops was developed
that supports teams up to 3 designers in modeling class dia-
grams (Fig. 4). The software considers different spaces on its
graphical interface. Based on the analysis, these spaces can
be grouped into personal spaces for each designer and one
group space for all designers. Different class diagram designs
can be reflected to compare alternatives for certain design
solutions. Ongoing investigation is made on improving de-
sign processes by supporting teams with different strategies.
One strategy can be to guide sessions for structuring pro-
cesses at all. However, tool support for multiple designers
of collaborative teams differs from tool support for single
designers.

Software intended for support of collaborative design ses-
sions must satisfy needs of single persons and groups as
well. Individual designers need their own personal spaces for
editing classes, relations, and notes of models. All personal
spaces are equipped with toolbars and software keyboards
that sup-port making edits. The group space shows designed
class diagrams and allows designers to adapt layouts. Classes,
relations, and notes of diagrams can be blocked by designers
that select them in the group space. This strategy helps to
avoid conflicts when editing elements. However, the problem
of merging models that come from more than one participat-
ing designer arises when targeting the functionality of how
to deal with conflicting model elements. The same problem

Supporting Collaborative Decision Making in
Software Engineering

Figure 4: Cooperation model for Customer and Salesman ex-
ample.

Argument
Argument Argument
Option =::- == Criterion
Question o
Option Criterion
Option =~ Criterion
\ supports
“._ consequent)
) = objectsto

Question

Figure 5: Cooperation model for Customer and Salesman ex-
ample.

arises when designers try to merge different forks of alter-
native models designs. Solutions for this problem are parts
of ongoing studies.

Business Processes in Context of Industry 4.0. Industry 4.0 is
characterized by Wortmann et al [19] as: “ the current trend
of integrating automation systems with processes and stake-
holders of the complete value-added chain as well as part of
the high-tech strategy of the German Federal Ministry for
Education and Research” Sometimes it is also characterized
as smart factory that needs new forms of human-computer
interaction, improvements of transferring digital instruc-
tions to the physical world, emergence of analytics and busi-
ness intelligence capabilities, and computational complexity.
Industry 4.0 is well characterized in [18]. There exist four
design principles. They are called interoperability, informa-
tion transparency, technical assistance, and decentralized
decisions. Interoperability means the ability of machines, de-
vices, sensors, and people to connect and communicate with
each other via the Internet of Things (IoT) or the Internet
of People (IoP). The ability of information systems to cre-
ate a virtual copy of the physical world by enriching digital
plant models with sensor data is called information trans-
parency. This requires the aggregation of raw sensor data
to higher-value context information. Technical assistance

SWEPHD2018, September 17th, 2018, St. Petersburg, Russia

is divided into two aspects. First, the ability of assistance
systems to support humans by aggregating and visualizing
information comprehensively for making informed decisions
and solving urgent problems on short notice. Second, the
ability of cyber physical systems to physically support hu-
mans by conducting a range of tasks that are unpleasant,
too exhausting, or unsafe for their human co-workers. The
ability of cyber physical systems to make decisions on their
own and to perform their tasks as autonomously as possible.
Only in the case of exceptions, interferences, or conflicting
goals, tasks are delegated to a higher level.

The idea of task migratability is not mentioned in this
context. However, it would fit very well. There are also mod-
eling approaches like Kannengiesser and Miller [12] that fit
very well to our DSL CoTaL. They present an agent-based
approach for smart factories that is subject-oriented. Our
presented approach is subject-oriented as well. It has been
already applied to smart environment applications [9].

Additionally, supportive systems for designing business
processes like that provided by Fellman et al. [7] will be
needed in the future. The idea of private modeling spaces
and collaboration support can be applied to such systems as
well.

3 DISCUSSION

Software engineering is currently very much related to deci-
sion support. It is intended to develop software that provides
appropriate support for users while making their decisions.
Therefore, PhD students have to be able to analyze appli-
cation domains and to model cooperation activities and de-
cision making. They have to know a portfolio of modeling
techniques. They have e.g. to know class diagrams, state-
based specifications, process specifications, task models and
grammars. It would also be good if they knew the basic prin-
ciples of logical programming, functional programmings and
aspect-oriented programming. Disciplined heterogeneous
modeling [14] has to be taught. This kind of modeling was
discussed by using textual domain-specific language exam-
ples. Combining grammars of different languages provides
the opportunity to specify heterogeneous models in one
specification with references to each other. A Meta model is
generated from the grammar specification that is the basis
for the generated editor. PhD students should be able to se-
lect the appropriate specification techniques for a specific
domain. Designing a domain-specific language is a perfect
training for that. It ia not only good for educational purposes
but can be applied to real life projects as well. The Xtext
framework [20] facilitates the design and the generation of
the corresponding editor very well. Relatively few effort is
necessary for providing results. Changing keywords in the
language (e.g. object to class) can be performed in a minute.

SWEPHD2018, September 17th, 2018, St. Petersburg, Russia

The specification of the code generation to different tools
is more complicated. It needs knowledge of the external
specification of the models of the tools and some ideas for
the correct transformation of the instances of the domain-
specific language to the models of the tools.

The unification of the concept of team model in CoTaL
and the cooperation model in CTT in the domains-specific
language DSL-CoTaL resulted in a quite readable specifica-
tion. It restricts the expressiveness of the specifications but
simplifies them. The discussed approach might be an inspir-
ing example for further abstractions. Students appreciated
simple modification options in the textual specification. It
was much easier for them to move a sub-tree to another po-
sition than in the graphical editors that they did not know so
well. Nevertheless, students used the visualization of the task
hierarchy in the graphical editors to check their ideas. The
textual representation opens a new perspective. Graphical
and textual specifications should be used together to inspire
each other. Additionally, students mentioned that they liked
the rule-based structure of the language. Therefore, they
did not have to specify identical sub-trees twice. Generic
components were characterized as supportive as well.

It might be worth to look for further abstractions of lan-
guages for task models and business processes.

4 SUMMARY

Appropriate support for decision making is currently one of
the biggest challenges of software engineering. This has to
be reflected in education as well. Students have to be aware
of the decsion processes during software development and
the need of explaining decisions for end users.

Decision migratability was considered as important aspect
and future challenge of smart systems. It was suggested to
use the notation of QOC to represent the decision space and
the argumentation for a decision.

The process of collaborative decision making has to be
further analyzed. There are challenges in group composition
because personal profiles might be in conflict to each other.
Providing hints by tools in this sense seem to be useful as well.
Making software developers sensible for decision making
process during development and the fact that most of the
time no best solution exists is also a challenge for the future.

REFERENCES

[1] Carmelo Ardito, Maria Teresa Baldassarre, Danilo Caivano, and Rosa
Lanzilotti. 2017. Integrating a SCRUM-Based Process with Human
Centred Design: An Experience from an Action Research Study. 2017
IEEE/ACM 5th International Workshop on Conducting Empirical Studies
in Industry (CESI) (2017), 2-8.

[2] Gregor Buchholz and Peter Forbrig. 2017. Extended Features of Task
Models for Specifying Cooperative Activities. PACMHCI 1, EICS (2017),
7:1-7:21. https://doi.org/10.1145/3095809

[3] CoTaSE 2018. SE Group. (2018). https://www.cotase.de/

(4]

[5

—

G

—

7

—

[8

[}

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]
[19]

[20]

Forbrig et al.

CTTE [n. d]. HIIS Laboratory. ([n. d.]).
http://hiis.isti.cnr.it:4500/research/CTTE/home.

A. Dittmar, G. Buchholz, and M. Kuhn. 2017. Effects of Facilitation on
Collaborative Modeling Sessions with a Multi-Touch UML Editor. In
2017 IEEE/ACM 39th International Conference on Software Engineering:
Software Engineering Education and Training Track (ICSE-SEET), Vol. 00.
97-106. https://doi.org/10.1109/ICSE-SEET.2017.14

Alan Dix, Janet Finlay, Gregory Abowd, and Russell Beale. 2003.
Human-Computer Interaction. Prentice-Hall.

Michael Fellmann, Novica Zarvi¢, and Oliver Thomas. 2018. Business
Processes Modeling Recommender Systems: User Expectations and
Empirical Evidence. (04 2018), 64-79.

Albert Fleischmann, Werner Schmidt, and Christian Stary. 2015.
Subject-Oriented Business Process Management. In Handbook on
Business Process Management 2, Strategic Alignment, Governance, Peo-
ple and Culture, 2nd Ed., Jan vom Brocke and Michael Rosemann (Eds.).
Springer, 601-621. https://doi.org/10.1007/978-3-642-45103-4_25
Peter Forbrig, Anke Dittmar, and Mathias Kithn. 2018. A Textual
Domain Specific Language for Task Models: Generating Code for
CoTaL, CTTE, and HAMSTERS. In Proceedings of the ACM SIGCHI
Symposium on Engineering Interactive Computing Systems, EICS 2018,
Paris, France, June 19-22, 2018. ACM, 5:1-5:6. https://doi.org/10.1145/
3220134.3225217

HAMSTERS 2018. ICS Group.
https://www.irit.fr/recherches/ICS/softwares/hamsters.
Vita Hinze-Hoare. 2007. The Review and Analysis of Human
Computer Interaction (HCI) Principles. CoRR abs/0707.3638 (2007).
arXiv:0707.3638 http://arxiv.org/abs/0707.3638

Udo Kannengiesser and Harald Miiller. 2013. Towards Agent-Based
Smart Factories: A Subject-Oriented Modeling Approach. In Proceed-
ings of the 2013 IEEE/WIC/ACM International Joint Conferences on Web
Intelligence (WI) and Intelligent Agent Technologies (IAT) - Volume 03
(WI-IAT ’13). IEEE Computer Society, Washington, DC, USA, 83-86.
https://doi.org/10.1109/WI-IAT.2013.155

Max E. Kramer, Erik Burger, and Michael Langhammer. 2013. View-
centric Engineering with Synchronized Heterogeneous Models. In
Proceedings of the 1st Workshop on View-Based, Aspect-Oriented and
Orthographic Software Modelling (VAO ’13). ACM, New York, NY, USA,
Article 5, 6 pages. https://doi.org/10.1145/2489861.2489864

Edward A. Lee. 2010. Disciplined Heterogeneous Modeling. In Model
Driven Engineering Languages and Systems, Dorina C. Petriu, Nicolas
Rouquette, and Qystein Haugen (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 273-287.

Ahmed Seffah and Peter Forbrig. 2001. Software and Usability Engi-
neering Cross-Pollination. In Proc. INTERACT. IOS Press, 839.
Ahmed Seffah, Jan Gulliksen, and Michel C. Desmarais. 2005. An In-
troduction to Human-Centered Software Engineering. Springer Nether-
lands, Dordrecht, 3-14. https://doi.org/10.1007/1-4020-4113-6_1
Xiong Zhang Wang Jingyuan, Li Chao and Shan Zhiguang. 2014. Sur-
vey of Data-Centric Smart City. Journal of Computer Research and
Development 51, 2, Article 239 (2014), 20 pages. http://crad.ict.ac.cn/
EN/abstract/article_2077.shtml

Wikipedia. 2018. Industry 4.0. (2018). https://en.wikipedia.org/wiki/
Industry_4.0

A. Wortmann, B. Combemale, and O. Barais. 2017. A Systematic
Mapping Study on Modeling for Industry 4.0. In 2017 ACM/IEEE 20th
International Conference on Model Driven Engineering Languages and
Systems (MODELS), Vol. 00. 281-291. https://doi.org/10.1109/MODELS.
2017.14

Xtext 2018. Language Engineering For Everyone!
https://www.eclipse.org/Xtext/.

(2018).

(2018).

https://doi.org/10.1145/3095809
https://www.cotase.de/
https://doi.org/10.1109/ICSE-SEET.2017.14
https://doi.org/10.1007/978-3-642-45103-4_25
https://doi.org/10.1145/3220134.3225217
https://doi.org/10.1145/3220134.3225217
http://arxiv.org/abs/0707.3638
http://arxiv.org/abs/0707.3638
https://doi.org/10.1109/WI-IAT.2013.155
https://doi.org/10.1145/2489861.2489864
https://doi.org/10.1007/1-4020-4113-6_1
http://crad.ict.ac.cn/EN/abstract/article_2077.shtml
http://crad.ict.ac.cn/EN/abstract/article_2077.shtml
https://en.wikipedia.org/wiki/Industry_4.0
https://en.wikipedia.org/wiki/Industry_4.0
https://doi.org/10.1109/MODELS.2017.14
https://doi.org/10.1109/MODELS.2017.14

	Abstract
	1 Introduction
	2 Challenges in Decision Making
	Decision Making At Runtime
	Decision Making At Design Zime

	3 Discussion
	4 Summary
	References

