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Abstract. Milan automatically generates R2RML mappings between a
source relational database and a target ontology, using novel multi-level
algorithms. It address real world inter-model semantic gap by resolving
naming conflicts, structural and semantic heterogeneity, thus enabling
high fidelity mapping generation for realistic databases. Despite the im-
portance of mappings for interoperability across relational databases and
ontologies, a labour and expertise-intensive task, the current state of the
art has achieved only limited automation. The paper describes an exper-
imental evaluation of Milan with respect to the state of the art systems
using the RODI benchmarking tool which shows that Milan outperforms
all systems in all categories.
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1 Introduction

The Semantic Web promises easy data integration but in practice, this depends
on the availability of detailed mappings, especially when converting from other
data models like the relational model to RDFs data model [13]. Schema and
ontology matching research [13] provide tools and methods to identify semantic
correspondences between models such as database schema and OWL ontologies
or Linked Data vocabularies. These correspondences are then validated, usually
by domain experts, and then formalised as mappings which can be expressed
in standard languages such as the W3C R2RML (Relational to RDF Mapping
Language) recommendation 3. However creating mappings is hard; it requires
labour, domain expertise, and knowledge modeling expertise. Hence automated
approaches are extensively studied. Relational database (RDB) to RDF map-
pings have additional complexity since the relational and RDF data models do
not exactly align, have different expressivity and each emphasizes a different
modeling repertoire [10], [12]. Hence for human validation of RDB to RDF map-
pings, additional expertise is required in both RDB and R2RML/RDF modeling.
This, in the enterprise context means the potential gains of automating relational
to RDF mapping generation are considerable.

3 www.w3.org/TR/r2rml/
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The research question studied in this paper is To what extent can an auto-
matic RDB to RDF mapping generation technique, Milan, based on semantic,
lexical and structural analysis of both a source relational database and a target
ontology create complete and accurate R2RML mappings?

Milan creates correspondences based on heuristic RDB to RDF mapping
patterns we have observed in real databases. It uses a multi-level algorithm to
detect class-table, object property-referential integrity and data property-column
correspondences for realistic, complex relational databases. In order to minimise
human intervention, these correspondences use Levenstein distance-based fuzzy
label matching and identify optimal matches using combinatorial optimization.
R2RML mappings are then generated to express these correspondences.

The contributions of this paper are as follows: (1) Milan, a novel method for
detection of correspondences between relational databases and semantic web on-
tologies or vocabularies; and (2) an evaluation of the performance Milan against
the Relational-to-Ontology Data Integration (RODI) benchmark [10] and com-
parison to state of the art mapping generation techniques.

2 Related Work

This section briefly discusses different state of the art systems. Pinkel et al [10]
have performed a detailed state of the art review of selected automated systems.
While a number of semi-automatic RDB to RDF mapping generation systems
exist, this paper focuses on fully automatic systems and so limits the scope of
this section accordingly. Automatic systems can be divided into one-stage and
two-stage systems. Two-stage systems such as BootOx[6], Automap4OBDA[14]
produce a target-agnostic ontology followed by ontology aligmnment to the tar-
get ontology. One stage systems such as IncMap[9] directly map without the
use of intermediate ontology. Other inter-model mapping tools include -ontop-
[3],MIRROR[7], D2RQ[2] and COMA++[4].

BootOx [6] applies direct mapping 4 and provides support for different OWL
profiles. It enriches the bootstrapped ontology using explicit and implicit database
constraints from the RDB that creates axioms about the classes and properties.
This is followed by ontology alignment using LogMap. BootOx is best at resolv-
ing semantic heterogeneity by using OWL features. [5].

IncMap [9] exploits mapping patterns to enrich their graph-based data struc-
ture representing RDB and RDF data model. It then uses lexical and structural
analysis to obtain correspondences between RDB and ontology. However, IncMap
addressed limited mapping patterns and doesn’t focus on semantic heterogeneity.

Automap4OBDA (A4MO) [14] is based on RDBToOnto [11].Unlike IncMap,
A4MO uses ontology learning techniques to extends correspondences between
the data and classes of target ontology. While both BootOx and A4MO enrich
their bootstrapped/putative ontology, only A4MO addresses class hierarchies.
However, A4MO is not as versatile as IncMap in inferring class hierarchies.
A4MO is better than other systems in addressing structural heterogeneity.

4 www.w3.org/TR/rdb-direct-mapping/
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The following lists the gaps in the current state of the art systems. They all
fail to detect n : m due to junction table and n : 1 class-table relationships due
to column splitting. They also miss out on many properties matching for tables
that have 1 : 1 relationship with other tables. They don’t utilize annotation
properties, resolve datatype property-column label collisions. They also under-
perform at addressing semantic heterogeneity. They don’t use the expressivity of
OWL such as InverseOf, unionOf to enrich the relational-ontology relationship.

3 Requirements

As mentioned above, most real-world relational schema and corresponding on-
tologies cannot be related using näıve direct mappings as there are vast differ-
ences in the ways which same concepts are modelled. This section references
examples of different data modelling techniques discussed in state of the art.
Based on such observations, literature also provides a comprehensive set of re-
quirements for automatic mapping systems. These are briefly discussed below.

Fig. 1. Examples demonstrating different modelling repertoire

C.Pinkel et al[10] discusses various modelling repertoire using tables such as
author and reviewer. This is shown in Figure 1 above. A popular set of classifica-
tions for mapping challenges in relational-to-ontology patterns, which was first
discussed by Batini et al [1] and subsequently discussed by Pinkel et al [10] , are
as follows: (1) naming conflicts, (2) structural heterogeneity and (3) semantic
heterogeneity. Table 1, which is adopted from [10] summarizes the requirements
of relational-to-ontology mapping approaches for automated systems. C.Pinkel
et al[10] discusses each of these requirements in detail.
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Table 1. Requirements for addressing relational-to-ontology mapping challenges

ID Challenge
Type

Relational-to-ontology systems requirement

R1 Input-Output System should accept relational database and on-
tology as inputs and return mappings/mapping,
correspondences as output

NAMING CONFLICTS

NC1 Tokenization Matching label via different tokenization conven-
tions

NC2 Datatype Disambiguation Distinguishing, datatype property column labels
based on datatypes. (e.g. xsd:date cannot,match to
a integer label)

STRUCTURAL HETEROGENITY

ST1

Normalization

Weak entity table
ST2 1:n attribute,(class:table)
ST3 1:n relation (class:table)
ST4 n:m relation (class:table)

ST5
De-normalization

Correlated entities
ST6 Multi-values

ST7
Class Hierarchies

1:n property-column match with type column
ST8 n:1class with type column
ST9 n:1 class without type column

ST10
Key Conflicts

Plain composite key
ST11 Missing keys
ST12 Missing reference

ST13
Dependency Conflicts

1:n attribute
ST14 1:n relation
ST15 n:m relation represented by junction table

SEMANTIC HETEROGENITY

SE1 Impedance
Mis-
match

OWL profile support. E.g Inverse properties

4 Automatic Mapping Generation Algorithm

Milan has been developed to fill the gaps identified by the requirements and in
the state of the art mapping generation systems. Milan comprises of three main
processes and 6 supporting processes that are invoked by the main processes as
needed (Fig. 2). The source relational database and target ontology act as inputs
to Milan and it produces a set of R2RML mappings as an output.

Label Matching : Milan uses a variant of FuzzyWuzzy5, uses Levenshtein
Distance, producing scores in the range [0, 1]. Milan modified FuzzyWuzzy to
add camelCase and special character based tokenization. Label matching ad-
dresses the naming heterogeneity patterns involving token re-ordering using
sort token ratio which reorders the tokens based on lengths. Label matching uses

5 https://github.com/seatgeek/fuzzywuzzy
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a specific variant for Column Splitting (Sec. 4.1), where it filters out the super-
class label token from its subclass or sibling label, thereby improving matching
scores. Combinatorial Optimization: Milan uses the Hungarian algorithm [8] to

Fig. 2. Architecture of Milan

solve assignment problem across class-table, data property-column and object
property-FK/PK. For two set of labels (xm, yn), it uses the label scores of x ∗ y
to obtain min(m,n) 1:1 matches such that the sum of scores is the maximum.

4.1 Class-Table Relationship

The Class-Table Relationship process detects 1 : 1, n : 1, and some 1 : n class-
table relationships using Label Matching, Column Splitting and Combinatorial
Optimization. Column Splitting detects categorical values in columns, thereby
splitting the table based on these values. These values are matched to sub-classes
and sibling classes.

The class-table matching result is input to the Object Property Foreign
Key/Primary Key process to discover links using Referential Integrity, Label
Matching, Junction Table Detection and Combinatorial Optimization. Referen-
tial Integrity discovers the keys linking two pairs of matching class-tables and the
object properties across the two classes. Junction Table Detection enriches ex-
isting relationships with the inclusion of implicit many-to-many relations across
two or more tables.

The algorithm first detects 1:1 followed n : 1 class-table relationships. Al-
gorithm 1 takes class and table rdfs:label as input. Label matching is used over
the two lists producing a three column matching table Oa∗b,3. Oa∗b,3 is then
post-processed by filtering out results with low string match scores based on a
threshold, which is determined experimentally (τ = 0.7). This is followed by fil-
tering out lower match scores due to duplicate occurrences of any class or table
label, represented as uniqueCriteria in Algorithm 1.
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The result of this is a one-one match table. Each 1:1 class-table pair is consid-
ered for column splitting by considering unique elements of all non-key columns.
This is done by gathering all non-key columns (Wm,1) along with sub-classes
and sibling classes(Vn,1) for the given table-class pair. Then, for each column,
the unique element values and their columns are stored in a two column ta-
ble (Ta,2). In order to maximize computation efficiency and matching accuracy,
columns having a very large number of unique elements are removed from con-
sideration. This is done using a threshold which is experimentally determined to
be Θ = 1.2∗n. A modified variant of Label Matching is then run over this list of
unique values with sub-classes and siblings of a target class against all labels of
unique column values, using score threshold τ . Data diversity is enhanced by the
overlooking label of target class when considering the sub/sibling class labels.

Using the Hungarian algorithm over the resultant label match table provides
1:1 column value-class matches, which are optimized by maximizing the sum of
scores.

4.2 Object Property-Referential Integrity Relationship

Algorithm 2 uses rdfs:domain, rdfs:range, owl:UnionOf and owl:inverseOf of
object property 0, Alg. 2,3 along with FK/PK relationship R using primary-
foreign key pairs represented by foreign column names R ( Alg. 2,2). Using the
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class-table pair from Sec. 4.1, it obtains the corresponding two pairs of classes
and tables. Algorithm 2 matches the obtained list of object properties with keys
of the relational database using label matching. However, a näıve approach will
miss out on detecting complex relationships 3 such as junction tables, one-to-one
table relations, and inverse relationships.

Alg.2 detects junction tables via pattern mentioned patterns 3 and infers a
many-to-many relationship across the table pair. The label used to describe this
relationship is the junction table’s name. Alg.2 also detects 1:1 table-table map-
pings and inherits all columns of parent table to the child tables. Lastly, while
relationships in relational databases have a clear sense of directionality, relation-
ship across the class may not always be uni-directional. Sometimes they also have
a pair of properties which are inverse of each other. This is represented using
rdfs:InverseOf predicate. Milan overcomes this impedance mismatch by drop-
ping directionality (Alg.2,6) and prioritizing direction (Alg.2,10) in the presence
of alternates.

Table 2. Inferring columns for object property (OP) matching to accomodate
impedance mismatch due to rdfs:InverseOf. Inferred foreign columns (Col) in bold

Table 2 lists the challenges that Alg.2 resolves by reasoning over rdfs:InverseOf.
Consider case(a) of Table 2, both object property present (OP) and FK/PK re-
lation (Col) are present for relation C1/T1 → C2/T2 (1). However in relation (2),
the rdfs:InverseOf(A), X is present, but FK/RK relation is not present. Hence
a has to be inferred, which will be matched to X. In case(b)2, single object
property and FK/PK relations are present in opposite direction. The FK/PK
relation is therefore inferred to match the object property. Case (c)2 is a spe-



8 S.N. Mathur et al

cific case of junction table relationships, where more than one relation exists
across two tables. It could occur that both the object property A & B have
inverses. And corresponding FK/PK relations are divided across different direc-
tions. Inferences are made to include missing FK/PK relations for each relation.
The final matching is performed by label matching and then performing Hun-
garian algorithm with labelMatch(Property, FK/PKa) � labelMatch(inv :
Property, FK/PKb) an additional constraint for every property and its inverse
pair. This is to prevent a property and its inverse, both to occur as a result of
the Hungarian algorithm.

4.3 Datatype Property and Column Relationship

The Datatype of data property is retrieved by querying its rdfs:label, rdfs:range
and if present its owl:UnionOf. Milan performs label matching across all data
properties and nonkey columns for each class-table pair. In addition to this, Mi-
lan addresses label collisions by segregating datatypes based on W3C datatype
mapping6. The rationale behind this segregation is likes match. i.e a column
having varchar datatype cannot possibly match to a datatype property having
xsd:date as its range. Hence offering greater accuracy in cases of string ambi-
guity. For a given pair of class-table, each segregation of a datatype group e.g
V archar− xsd : string, Milan uses Hungarian algorithm to obtain a 1:1 match
based on label matching scores. It is important to note that this algorithm is also
capable of detecting 1 : n relationship for a property-column pair.This is done in
three ways. One, when multiple properties related to each other by ow:sameAs.
Second, owl:UnionOf contains multiple classes for a given datatype property,
hence mapping the same property to multiple tables. Lastly, when detecting

1:1 table-table relationships in 4.2, child tables inherit all columns of the main
table, allowing possible matches to data property.

6 www.w3.org/TR/r2rml/
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4.4 R2RML Mapping Generation

Many papers such as [12] have discussed R2RML mapping patterns. In addition
to those, Milan has additional features to support 1:1 table inheritance and 1:n
table-class relationship based on column splitting. The SQL queries involve a
JOIN condition. These query templates are trivial hence is left to readers.

5 Evaluation

The purpose of the evaluation is to test the quality of mappings generated by
Milan in realistic deployment scenarios. Several papers such as Tarasowa et al
[15] and RODI benchmark [10] have discussed the quality evaluation aspects of
mappings. The evaluation in this paper uses the RODI benchmark and method-
ology.

The RODI suite 7 includes a wide range of relational-to-ontology scenarios,
each based on mapping challenges similar to Sec. 3. Each scenario provides an
input database and a target ontology. It requests from systems a complete set of
mappings that enable to execute queries over the target ontology (T-Box). Each
scenario contains a list of SPARQL-SQL query pairs, which are categorized under
various mapping challenges such as class-table, attributes, links. These query
pairs are executed to evaluate if the results from the SQL queries match the
SPARQL queries to the ontology constructed using the mappings provided. It
then calculates the averages of precision and recall of all queries in each scenario,
thereby calculating a fitness function for mapping quality. In addition to total
scores, RODI also provides aggregated scores for each category of the query
pairs.

This paper evaluates Milan based on 4 scenarios provided by RODI. The
RODI authors have already performed ontology alignment of output ontologies
with the target ontology for systems like MIRROR and -ontop-, which dont
produce mappings. They have also provided mapping translation for systems
like D2QRQ and COMA++, by translating system specific mapping language
to R2RML. The hypothesis is that Milan’s approach performs better than the
current state of the art in terms of the mapping quality metric used by RODI.

Benchmark Datasets This section describes the four scenarios used to eval-
uate Milan. These scenarios are based on real open data such as Conference,
Norwegian Petroleum Directorate [10].

Each scenario has varied difficulty levels. For instance, the relational schemata
of cmt renamed closely follows modeling patterns from their corresponding on-
tologies. cmt structured additionally introduces 1 : n class hierarchy mapping
challenge (R3a,4). conference nofk is void of primary key-foreign key relations
making it tough to detect object property mappings (R3b). npd atomic, which is
based on the NPD dataset is the most challenging scenario of all. 1 : n matches

7 https://github.com/chrpin/rodi

https://github.com/chrpin/rodi


10 S.N. Mathur et al

Table 3. Description of the RODI scenarios used for evaluation. Tables and FK/PK
represent number of tables and primary key-foreign key relations in the source
RDB.Classes represents the number of classes in the target ontology. Queries provides
the number of SQL-SPARQL queries executed for evaluation

Scenario Tables FK/PK Classes Queries

cmt renamed 48 69 23 30
cmt structured 64 52 23 29
conference nofk 60 0 59 39
npd atomic 70 100 300 439

(R3a,4), for both classes and properties are present. 1:n matches as a structural
feature can therefore best be tested in the npd atomic tests scenario [10].The
queries are designed to check on the existence of accurate mappings [10].

Results & Analysis Table 4 shows RODI scores for each scenario on every
tested system. Technically defined as per test F-measures, these scores indicate
the fraction of successfully passed query tests. Milan outperforms current state
of the art systems. Therefore the hypothesis is accepted. Fig. 3 below is a

Table 4. Comparison of overall scores based per test F-measure using RODI

Scenario B.OX IncM. Ontop MIRR. COMA D2RQ A4MO Milan

cmt renamed 0.76 0.66 0.28 0.28 0.48 0.31 0.56 0.86
cmt structured 0.41 0.44 0.14 0.17 0.38 0.31 0.41 0.52
conference nofk 0.33 0.41 - 0.17 0.21 0.18 0.41 0.46
npd atomic 0.14 0.16 0.10 0 0.02 0.08 0.23 0.30

breakdown of the agregated score for cmt renamed, where Milan performs better
across queries under class, data property and object property.

Milan correctly detected 75/134 class-table, 42/213 data properties-column
and 15/92 object property-FK/PK matches in the npd atomic.

The impact of Algorithm 1 is evident in the npd atomic dataset. It correctly
detects 56% of the total class-table mappings. The outcome of this algorithm
also detected 12 out of 45 of the 1 : n class-table match is present. Although
cmt structured had many patterns reflecting column splitting, Algorithm 1 was
not so successful here. Additionally, there are cases of column splits which de-
tected categorical values such ”1” and ”2”, which were either foreign or non-key
column. These were true matches to separate classes but label matching failed
to match these cases.

The relatively high scores achieved in the object property-referential integrity
relationship are credited to junction table detection, 1:1 relationship matching
followed by property inheritance and inverse property inferencing. It also de-
tected 1:1 table-table relationships, which comprises of 34% of the primary-
foreign key relations. This increased object property mappings, caused due to
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Fig. 3. Score break-down for cmt renamed on classes, data property & object property

inheritance. However Milan couldn’t capture object property mappings when
object properties don’t have explicit rdfs:range/domain or owl:unionOf.

Better results with detecting data property are credited to the use of datatype
partitioning and the Hungarian algorithm with Label Matching for the class-
table pair. In addition to this, the algorithm uses annotation properties such
as rdfs:label and rdfs:comment to match to the column. Additionally, the per-
formance is enhanced by the inheritance of properties due to 1:1 table-table
detection. However, the strategy of datatype partitioning had its compromises.
The tables of conference nofk scenario has columns which have boolean datatype
while the matching data property is a string. Milan is unable to match these
cases, thereby missing on some of the data properties.

6 Conclusion

Milan has been demonstrated to automatically generate R2RML mappings be-
tween a relational database and target ontology with an overall f-measure of
between 0.86 and 0.3 under the RODI benchmark conditions. This measure is
an indicator of the accuracy and completeness of the mappings generated. Mi-
lan has out-performed all the other automatic mapping generation systems that
have been tested to date with RODI. The relative performance of Milan im-
proves in more complex scenarios like npd atomic, where it performed 30.4%
better than the next best system,A4MO. Similarly, the performance pf Milan
was 26.8% better than the next leading system, IncMap, in the cmt structured
scenario. This demonstrates the relative effectiveness of a direct mapping genera-
tion approach, as implemented by Milan, compared to the more popular putative
ontology-based mapping generation methods.

Further work is required to broaden our confidence in this work by evaluating
Milan over additional datasets. In addition this evaluation has helped us to
identify the following potential RDB-RDF mapping patterns or improvements
to Milan: Detecting class-table mappings where multiple tables form one class
in the target ontology; extending the column-based table splitting pattern to
account account for foreign key columns ; and inferring implicit links between
tables based on undeclared foreign keys whose use is observed in the database.
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