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Abstract. Interpretability is as important in data analytics on time se-
ries data as in other areas of analytics. For this reason, k-Nearest Neigh-
bour methods have an important part to play; however coming up with
effective similarity/distance measures is not straightforward given the
nature of time series data. In this paper we survey the state-of-the-art
distance measures used for time series analysis and evaluate their effec-
tiveness on sample regression and classification tasks. In some circum-
stances, a ‘global’ method such as Dynamic Time Warping is effective,
whereas for other datasets ‘feature-based” methods work better.
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1 Introduction

k-Nearest Neighbour (k-NN) methods have a special status in data analytics
because of the importance of explanation and insight. Because k-NN methods
are transparent they produce models that are interpretable. This is also true in
time series analysis [9] where side-by-side comparisons of time series can reveal
similarities and differences between process. However, when using k-NN methods
for time series analysis there is the added challenge of coming up with measures
that truly capturing the similarity between time series. Two time series might
still be similar if one is stretched or displaced in time with respect to the other.
It may also be the case that similarity depends on short or even tiny signatures
in the time series.

In this paper we provide a short survey of recent methods that address these
challenges. The methods we consider are:

— Dynamic Time Warping (DTW): Because two time series may be fun-
damentally similar but offset or slightly distorted, DTW allows the time axis
to be warped to identify underlying similarities [8].

— Symbolic Aggregate Approximation (SAX): The idea with SAX is
to discretize the time series so that it can be represented as a sequence of
symbols [10]. This allows the panoply of data mining methods for sequences
to be applied on the sequence representation of the time series.
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— Symbolic Fourier Approximation (SFA): SFA is like SAX except the
sequence representation is produced from a discrete Fourier transform rep-
resentation of the signal rather than a discretization of the signal itself. So
SFA is a frequency domain rather than a time domain representation of the
signal [12].

These three methods are described in detail in the next section. Then an
evaluation of the performance of these methods on time series classification and
regression tasks is presented in section 3. The evaluation also covers the thorny
issue of parameter selection associated with these methods.

2 State-of-the-art Methods

In this section, we discuss the three methods (DTW, SAX, and SFA) covered
in our analysis. The three methods we consider, all require parameter tuning. A
hold-out test strategy is emplyed, where all parameter tuning is done through
cross-validation on the training set before testing on the hold-out set. The pa-
rameters chosen are also presented in this section.

2.1 Dynamic Time Warping

To find the distance between two data series, the Euclidean distance formula
is an obvious choice. But when dealing with time series data where the series
may be displaced in time, the Euclidean distance may be large when the two
series are similar, just off slightly on the time line (see Figure 1(a)). To tackle
this situation Dynamic Time Warping offers us the flexibility of mapping the
two data series in a non-linear fashion by warping the time axis [8]. It creates
a cost matrix where the cells contain the distance value of the corresponding
data-points and then finds the shortest path through the grid, which minimizes
the total distance between them.

(a) Two time series displaced(b) Mapping of data-points(c) Mapping of data-points
in time. without warping. with warping.

Fig. 1: Dynamic Time Warping.

Initially, when we restrict our algorithm with no warping allowed, the data
points are linearly mapped between the two data series based on the common
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time axis value. As seen in Figure 1(b), the algorithm does a poor job of match-
ing the time series. But when we grant the DTW algorithm the flexibility of
considering a warping window, the algorithm performs remarkably when map-
ping the data-points following the trend of the time series data, which can be
visualized in Figure 1(c).

2.2 Symbolic Aggregate Approximation

Several symbolic representations of a time series data have been developed in
recent decades with the objective of bringing the power of text processing al-
gorithms to bear on time series problems. Keogh et al. provide an overview of
these methods in their 2003 paper [10].

Symbolic Aggregate Approximation (SAX) is one such algorithm that achieves
dimensionality and numerosity reduction and provides a distance measure that
is a lower bound on corresponding distance measures on the orignal series [10].
In this case numerosity reduction refers to a more compact representation of the
original data.

Piecewise Aggregate Approximation SAX uses Piecewise Aggregate Ap-
proximation (PAA) in its algorithm for dimensionality reduction. The funda-
mental idea behind the algorithm is to reduce the dimensionality of a time series
by slicing it into equal-sized fragments which are then represented by the average
of the values in the fragment.

PAA approximates a time series X of length n into vector X = (Z1, T, ..., Tpn)
of any arbitrary length m < n, where each of z; is computed as follows:

n -
-1
m

j= 2 (i-1)+1

This simply means that in order to reduce the size from n to m, the original time
series is first divided into m fragments of equal size and then the mean values for
each of these fragments are computed. The series constructed from these mean
values is the PAA approximation of the original time series. There are two cases
worth noting when using PAA. When m = n the transformed representation
is alike to the original input, and when m = 1 the transformed representation
is just the mean of the original series [7]. Before the transformation of original
data into the PAA representation, SAX also normalizes each of the time series
to have a mean of zero and a standard deviation of one, given the difficulty of
comparing time series of different scales [10, 6].

After the PAA transformation of the time series data, the output goes through
another discretization procedure to obtain a discrete representation of the series.
The objective is to discretize these levels into a bins of roughly equal size. These
levels will typically follow a Gaussian distribution so these bins will get larger
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Raw time series PAA SAX, 6 symbols
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(a) Raw time series data. (b) Time series after PAA di-(¢) Mapping of discretized
mensionality reduction. bins to symbols in SAX.

Fig.2: Symbolic Aggregate Approximation.

away from the mean. The breakpoints separating these discretized bins form a
sorted list B = S, ..., Ba—1, such that the area under a N(0,1) Gaussian curve
from B; to Biy1 = % Bo and f, are defined as —oo and oo respectively [10].

When all the breakpoints are computed, the original time series is discretized
as follows. First, the PAA transformation of the time series is performed. Then
each of the PAA coefficients less than the smallest breakpoint (7 is mapped
to the symbol sq, and all coefficients between breakpoints 8; and Sz (second
smallest breakpoint) are mapped to the symbol sy, and so on, until the last
PAA coefficient gets mapped. Here, s; and so belongs to a set of symbols S =
(81,82, ...y Sm) to which the time series is mapped by SAX, where m is the size
of symbol pool.

SAX also has a sliding window implemented in its algorithm, the size of
which can be adjusted. It extracts the symbols present in that window frame
and creates a word, which is just the concatenated sequence of symbols in that
frame. This sliding window is then shifted to the right and another word is
extracted corresponding to the new frame. This goes on until the window hits
the end of the time series, and we get a “bag-of-words” representing that time
series.

Once the data is converted to this symbolic representation, one can use this
bag-of-words representation for calculating the distance between two time series
using a string distance metric such as Levenshtein distance [15].

2.3 Symbolic Fourier Approximation

SFA was introduced by Schéfer et al. in 2012 as an alternative method to SAX
built upon the idea of dimensionality reduction by symbolic representation. Un-
like SAX which works on the time domain, SFA works on the frequency do-
main. In the frequency domain, each dimension contains approximate informa-
tion about the whole time series. By increasing the dimensionality one can add
detail, thus improving the overall quality of the approximation. In the time do-
main, we have to decide on a length of the approximation in advance and a prefix
of this length only represents a subset of the time series [12].
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Discrete Fourier Transform In contrast to SAX which uses PAA as its di-
mensionality reduction technique SFA, focusing on the frequency domain, uses
the Discrete Fourier Transform (DFT). DFT is the equivalent of the continu-
ous Fourier Transform for signals known only at /N instants by sample times T,
which is a finite series of data.

Let X (t) be the continuous signal which is the source of the data. Let N
samples be denoted z[0], z[1], ..., [N — 1]. The Fourier Transform of the original
signal, X (t), would be:

=

—1
Flwp) 2 Y a(ty)e ¥ k=0,1,2,...N — 1 2)

n=0

Simply stated, DFT analyzes a time domain signal z(n) to determine the
signal’s frequency content X [k]. This is achieved by comparing x[n] against sig-
nals known as sinusoidal basis functions, using correlation. The first few basis
functions correspond to gradually changing regions and describe the coarse dis-
tribution, while later basis functions describe rapid changes like gaps or noise.
Thus employing only the first few basis functions yields a good approximation
of the time series[12].

The DFT Approximation is a part of the preprocessing step of SFA algo-
rithm, where all time series data are approximated by computing DFT coeffi-
cients. When all these DFT coefficients are calculated, multiple discretisations
are determined from all these DFT approximations using Multiple Coefficient
Binning (MCB) as shown in Figure 3. MCB helps in mapping the coefficients
to their symbols, and concatenates it to form an SFA word. Thus, this converts
the time series into its symbolic representation.

Raw time series

Basis functions
VRV
W\M \
DFT Coefficients
-2.83 3.14 045 -1.78

3 f f

SFA word 2 e e e e

't L9 d[a]d

afdb <«— f|]:
! b 5[, [P

3 a a a a

Fig. 3: Symbolic Fourier Approximation
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As in SAX, there is a sliding window present here which serves the same
purpose of extracting a word representing the data in that frame. Thus, the
output of SFA for a given source time series is a bag-of-words symbolically
representing the entire series in lower dimension.

3 Evaluation

When it comes to distance measures, Euclidean distance is a popular choice. It
is easily implemented and has linear time complexity. Moreover, it is parameter-
free, and is competitive against more complex approaches, notably when working
on a large dataset. Nevertheless, Fuclidean distance is very sensitive to noise and
data being out of phase or warped in time, because of fixed mapping of the points
of two time series|[3].

Another distance measure worth considering is the Levenshtein distance, also
popularly known as Edit distance, when working on the string or symbolic rep-
resentation of the time series. Edit distance measures the distance between two
strings, by computing the number of edits (insertion, deletion or substitution)
required to match the strings. The Edit Distance on Real sequences (EDR)[1]
and/or with real penalties has been shown to be very effective in time series
classification and regression[3].

The Wagner-Fischer algorithm [14] has been shown to be an effective method
for modelling penalties. It allows for different penalties for insertion, deletion
and substitution and for distances within the alphabet to be included in the
penalty score. For example, the basic implementation of Edit distance measures
the distance between “boat” and “coat” as 1, and the distance between “coat”
and “goat” is also computed as 1, because these strings are only 1 edit away.
Whereas, the Wagner-Fischer algorithm with our assigned penalties, measures
the distance between “coat” and “goat” as 4 because ‘g’ is 4 step away from ‘¢’
in the alphabet.

We compare the three methods (DTW, SAX and SFA) used in time series
classification or regression in a k-Nearest Neighbour model against the baselines
of k-NN with Euclidean distance, and random 5-NN. Note that, SAX and SFA
produces a symbolic representation of the time series, so we use EDR and WF
as the underlying distance metric.

The evaluation of these methods was conducted on three separate datasets
(details below). One of the datasets contains ordered classes so it is included in
both the regression and classification evaluations.

3.1 The Data

In the evaluation we consider one classification and two regression problems.

— Proximal Phalanx T'W This is one of the standard datasets from the UCR,
collection [2]. Tt is normally considered a classification task where the classes
are ordered age categories but it is also treated as a regression problem here.
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— Jump Height It is a jump exercise dataset where the time series was cap-
tured using a Shimmer sensor and the target variable is jump height.

— Jump Class This is a classification problem that is a superset of the Jump
Height dataset. It contains three classes, one “correct” class (the Jump
Height samples) and two incorrect classes.

Jumping Data The Jump Height and Jump Class datasets come from the same
study. Ten participants (3 females, 7 males, age: 26.6 +2.2, weight: 80.1+7.4 kg
, height: 1.840.1 m) were recruited for this case-study. The Human Research
Ethics Committee at University College Dublin approved the study protocol
and written informed consent was obtained from all participants before testing.
Participants did not have a current or recent musculoskeletal injury that would
impair performance of Countermovement Jumps (CMJs) . Participants were
equipped with a Shimmer 3 inertial measurement unit (IMU) ! on their dominant
foot. The IMU was configured to stream wide-range, tri-axial accelerometer data
(£16 g) at 1024 Hz. AMTI Force-plate data 2 was also collected concurrently
at 1000 Hz. This was used as a gold-standard tool to derive time in the air for
each jump [4]. Each participant completed 20 CMJs with acceptable form and
40 with incorrect form (2 categories). The resulting data set consisted of 600 files
of IMU data, 200 with acceptable form. This gives us a three class classification
problem (600 samples) and a regression problem (200 samples).

The length of the IMU signals in each file ranged from 1231 to 6710 sam-
ples. The time-series used was the acceleration magnitude, derived from the
accelerometer x, y and z signals whereby:

The target variable for the regression problem was time in the air in seconds,
derived from the gold-standard force-plate data.

Note: Each sample in the datasets mentioned above consists of a single uni-
variate time-series on which the models are trained to predict its target label.
The unequal length of time-series was tackled by padding with 0’s at the end
of the shorter time-series when a pairwise distance was computed, between two
time-series.

3.2 Parameter Selection

Parameter selection can have a significant impact on performance in Machine
Learning and this is particularly true for the algorithms considered here. Here
is a brief account of the parameter selection required for each of the methods.

! http://www.shimmersensing.com/products/shimmer3-imu-sensor
2 https://www.amti.biz
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DTW As mentioned, DTW gives the flexibility of mapping two time-series
data warped in time in a non-linear fashion, with the help of a warping window.
Thus, finding an optimal warping window is crucial for the algorithm. After
cross-validation on the training data, we set the warping window for Proximal-
PhalanxTW, JumpingHeight and Jumping datasets to be 2, 26 and 26 respec-
tively.

SAX The implementation of SAX [13] employed in this study has a large pa-
rameter space, consisting of five different parameters in total. The following are
the parameters available:

1. Window size: The window size refers to the sliding window size w, which
is the length of the frame on the z-axis. As SAX only considers the PAA
coefficients present in the frame to map to symbols and create a SAX word,
the window size plays a crucial role. The window size also affects the length
of the words in the bag. It was set to 15, 40, and 30 for ProximalPhalanx,
JumpHeight, and Jumping respectively.

2. PAA size: This parameter adjusts the number of discretized bins of equal-
width on the z-axis. The mean of the data-points in each bin is calculated
to compute the PAA coefficient. As PAA is the underlying dimensionality
reduction method used in SAX, this parameter also requires a precise ad-
justment to describe the time-series well, with minimal loss of information.
The PAA size was also set to be 15, 40 and 30 respectively for the three
datasets.

3. Alphabet size: The discretization performed on the y-axis is governed by this
parameter. Therefore, it is the number of bins of equal-probability denoted
by a symbol from the Symbolic pool. For example, an alphabet size of 3
creates three levels or bins on the y-axis, and each of those bins can be
represented by symbols, ‘a’,‘b’ and ‘c’ respectively. It was set to of 5, 20 and
20 respectively.

4. NR Strategy: This parameter determines the numerosity reduction strategy
applied to the converted SAX words to eliminate duplicate data. The three
strategies which can be selected are “none”, “exact” and “mindist”. In all
cases “none” was used.

5. Z-threshold: The time-series passed to PAA is normalised using z-normal-
isation. This parameter helps to adjust the threshold value of z-normalisation
step in the algorithm. On preliminary inspection which resulted in 0.1 to be
an optimum value for this parameter over the datasets, we set it to 0.1 for
all SAX models in our experiments.

Note that as the parameter search space is high, we opted on setting the NR-
strategy and z-threshold to be static on an optimum value following our pre-
liminary experiments. The most influential parameters to this model are sliding
window size, PAA size and alphabet size.
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SFA The implementation of SFA [5] employed is a Python port of the original
project[11]. There are five parameters to estimate which like in SAX, results in
a large parameter space.

1. Window-size: As in SAX, the window size here also refers to the sliding
window size w. The DFT coefficients present are mapped to symbols to create
an SFA word. It was set to 5, 45, and 45 for ProximalPhalanx, JumpHeight,
and Jumping datasets respectively.

2. Word-length: This parameter controls the length of the words in the bag-of-
words. This parameter was set to be the same as the sliding-window size,
i.e. 5, 45, and 45.

3. Alphabet-size: This serves the same purpose as in SAX. It is the quantization
over the y-axis. This parameter was set to be 5, 20, and 20 for the three
datasets.

4. Norm-mean: The data can be normalised to the signal mean or left unnor-
malised.

5. Lower-bounding: SFA uses lower-bounding distance measure during discretiza-
tion with MCB [12] to have a reduced but still effective search space. It can
be set to True or False, depending on the application if this feature is wanted.

The parameter search space is high as in SAX, we opted on setting the Norm-
mean and Lower-bounding parameters to be True following our preliminary ex-
periments. The most influential parameters to this model are sliding window
size, word length and alphabet size.

Note k-NN has only one parameter, the neighbourhood size (k). We chose to
go with the best k value for each model by measuring its performance by 10-fold
cross-validation on the train set.

3.3 Model Performance

This section deals with the performance of the three methods, DTW, SAX, and
SFA against two baseline models, Euclidean distance (ED) and Random 5-NN.
For SAX and SFA we consider both EDR and WF string distance measures so
we evaluate five candidates against two baselines.

Figure 4 illustrates the performance of the models on time-series regression
task over two datasets. Mean Absolute Percentage Error (MAPE) metric was
employed to evaluate the performance, where a lower MAPE score signifies better
performance. While DTW does not perform well on the Jump Height task it is
the best model on the Proximal Phalanx task. Here, we can see that SFA with
WEF is consistent than the other models, showing robustness.

Figure 5 shows the performance on the classification tasks. Here the measure
is classification accuracy so higher is better. When it comes to time-series clas-
sification we can see DTW performed best, and SFA-WF comes a close second.
The WF string distance measure shows a significant impact when working on
the Jumping dataset.
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Model Performance on Time Series Regression

40 ED

Random 5-NN
DTW
SAX-EDR
SAX-WF
SFA-EDR
SFA-WF

EOEOOEO

MAPE Score

ProximalPhalanxTW[2] JumpHeight

Methods

Fig. 4: Performance of various k-NN methods over two datasets on time series
regression task. The evaluation measure is Mean Absolute Percentage Error
(MAPE), where lower is better.

Model Performance on Time Series Classification
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SAX-WF
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SFA-WF

S0'8L
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EOECOEO

Accuracy

40
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ProximalPhalanxTW([2] Jumping

Methods

Fig.5: Performance of various k-NN methods on the classification task. The
evaluation measure is Accuracy, where higher is better.

One overall conclusion we can draw is that SFA-WF always performs well.
DTW does well except in the Jump Height regression task. We propose that this
is due to the global nature of DTW which seeks a mapping across the whole
time series. This is less appropriate in the Jump Height task where sub-regions
of the time series are particularly important in predicting the outcome.

4 Conclusions & Future Work

When it comes to time-series regression and classification, k-NN-DTW is one of
the most robust and well-performing methods on a wide array of datasets. SFA
performs significantly better than SAX due to the fact, that SFA builds upon
DFT, which is significantly more accurate than the PAA dimensionality reduc-
tion technique SAX employs[12]. The characteristic of the time series present
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in the datasets has a direct impact on the variations of the results obtained. In
the regression tasks, if all of the time series is important (as in the Proximal-
PhalanxTW|2] dataset) DTW performs better than the other methods. Whereas,
when considering datasets (e.g. JumpHeight) having time-series with importance
at its feature or sub-sequence level, ‘feature-based’ methods like SAX and SFA
performs significantly better. It is worth noting that various other text-mining
algorithms can be incorporated over the ‘bag-of-words’ representation of a time-
series data as a feature selection process. Having such a process could potentially
improve the performance of SAX and SFA, in removing less informative features.
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