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Abstract. Deep Neural Network (DNN)-based fusion approaches for
single-channel speech separation have recently been introduced but the
non uniform perceptual weighting of the human auditory system has not
been exploited during the DNN training phase. In addition, the perceived
quality of the speech signal has not been assessed using a DNN-based fu-
sion model. We propose a new perceptually-weighted DNN-based fusion
model which employs a perceptual cost function and assess the perceived
quality of several DNN-based fusion models. Objective and subjective
evaluations for speech quality are compared. The results show that the
perceptually-weighted DNN-based fusion model displays a significant im-
provement in terms of Source To Interferences Ratio (SIR) compared to
a combined mask. However subjective quality assessment listening tests
suggests that the proposed DNN-based fusion model does not result in
improved perceived speech quality.

Keywords: Deep Neural Networks, Perceptual Audio Quality, Speech
Separation, Fusion.

1 Introduction

Speech separation consists of extracting the speech signal from a mixture signal
that contains one or more audio sources. Ideally, the estimated speech signal
should be unaffected as much as possible, i.e., without the presence of other
sources and without any distortion. The speech separation problem is more com-
plicated when only one channel is provided, i.e., the single-channel scenario. In
this paper we propose a Deep Neural Network (DNN)-based fusion method which
considers the perceptual importance of each frequency band of the speech signal
during the training.

Within the research community, several models have been proposed in or-
der to solve the single-channel speech separation problem. Independent Com-
ponent Analysis (ICA) has been proposed in [12, 10], where the inherent time
structure of audio sources is encoded in the ICA basis functions. Other ap-
proaches usually work in the time/frequency domain, where scaling matrices
called time/frequency masks are estimated and applied to the mixture in order
to extract sources. Rowes proposed the factorial Hidden Markov Models (HMM)
in [20], while approaches based on the Non-Negative Matrix Factorization (NMF)
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are described in [23, 19, 21, 20] where the mixture magnitude spectrogram is
factorized in two matrices. Recently, approaches based on Deep Learning [7,
9] have been shown to exhibit better performances than the previous methods
establishing the current state-of-the-art performance in single-channel speech
enhancement. Even though the existing approaches achieve good performances,
the speech separation problem remains far from being solved as the estimated
speech signal is usually affected by distortions and background interference. One
typical limitation that occurs in speech separation methods concerns robustness,
i.e., the achievement of high performance under limited and specific conditions
of the mixture. When conditions deviate, separation performance decreases. For
example, some time/frequency masks have been shown to be successful for stereo-
phonic scenarios [1, 19, 3] by exploiting some characteristics of the mix (e.g., the
speech signal is typically located in the center channel) but they could fail in
the mono channel scenario. In order to overcome this limitations, fusion meth-
ods have been recently introduced. They involve combining various estimated
time/frequency masks for covering several signal aspects that typically occur
in real applications. They have been shown to be successful in classification
tasks [16] and have been applied to audio source separation problems. A fusion
framework for underdetermined audio source separation that employs fusion
rules inspired by classification is described in [13]. Compared to [13], significant
improvements have been found in [14] where the authors proposed three alterna-
tive fusion methods based on standard nonlinear optimization, Bayesian model
averaging and DNN. The DNN approach was favoured and has been widely ex-
plored in [6, 4, 5]. Although fusion methods have been shown to be successful,
they did not account for the perceived quality of the extracted sources. Exist-
ing fusion methods assessed the amount of distortion and interference using the
Blind Audio Source Separation (BASS) performance measurements [22] that al-
though they perform well, they do not account for perceptual aspects [15, 2].
Regarding the perceived quality of the speech signals, perceptually weighted
DNN have recently gained interest [18, 25]. As yet, to the authors’ knowledge,
no perception-based cost function has been explored with a DNN-based fusion
model. In this paper we propose a new DNN-based fusion model that employs
a perceptually-weighted cost function which is partly derived from [15] and we
also explore how fusion of speech separation time/frequency masks using a DNN
affects the perceived quality.

The paper is structured as follows: Section 2 gives a formulation of the BASS
problem in the time/frequency domain. Section 3 presents the proposed DNN-
based fusion architecture and Section 4 describes the DNN training and the
perceptually-weighted cost function. Section 5 shows the experimental results:
how the speech signal is subjectively perceived, and the results obtained from
the BASS performance measurements. Conclusions are offered in Section 6.
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2 Formulation of the Audio Source Separation Problem
in the Time/Frequency Domain

In this paper we limit our scope to BASS problems as we only make use of the
mixture signal and some a priori statistics of the source signals. In addition,
instead of using a convolutive system, we model the channel signal as a linear
combination of the source signals as we neglect the presence of environment re-
verberation. Let us consider X(k, f), S1(k, f) and S2(k, f) as the Short Time
Fourier Transform (STFT) of the mixture x(n) = s1(n) + s2(n), the speech
signal s1(n) and the background signal s2(n) respectively. Due to the sparsity
characteristics of the sources in the time/frequency domain, the mixture mag-
nitude spectrogram |X(k, f)| almost preserves the linear mixing conditions and
we can approximate the single channel as follows:

|X(k, f)| ≈ |S1(k, f)|+ |S2(k, f)|. (1)

Methods that work in the STFT domain usually estimate a spectral weighting
matrix M that assigns a value for each time/frequency element of the mixture
spectrogram. More specifically we want to produce 2 masks that applied on the
mixture spectrogram gives us the estimation of the magnitude source spectro-
grams Z1(k, f) and Z2(k, f):

Z1(k, f) = M(k, f)� |X(k, f)| (2)

Z2(k, f) = (1−M(k, f))� |X(k, f)|. (3)

This operation, called time/frequency weighting, discriminates the frequency
bins between the sources. In the next section we see how to combine four
time/frequency masks to overcome the limitations of using a mask individually.

3 DNN Fusion Architecture

The proposed method is based on using a Feedforward Neural Network (FNN)
in order to achieve the combination of time/frequency masks that are charac-
terised by different properties. More specifically, we analyse two DNNs trained
with different features and the same cost function, i.e., the Mean Squared Error
(MSE) and we propose one DNN which employs a new perceptually-weighted
cost function.

The block diagram fusion model architecture is shown in Figure 1 where four
time/frequency masks are combined and the single channel scenario was studied.
The architecture is partially inspired from [6].

Every speech separation algorithm produces two masks, one for the speech
signal and one for the background signal. Since we combine two algorithms, we
deal with the fusion of four masks. From the mixture signal an STFT with Hann
window and 2048 points is computed. It has been shown that source separa-
tion in the time/frequency domain can be estimated only with the magnitude



4 A. Ragano and A. Hines.

Fig. 1: Block Diagram Fusion Model Architecture: Fusion of four different
mask outputs: two speech signal and two background signal are fused using
a perceptually-weighted DNN to produce a single ratio mask. Notice that we
reconstruct a mask as we chose to apply a mask post-processing musical-noise
suppression.

spectrogram by discarding the phase which is useful for the time-domain re-
construction. Next, the Hadamard product between the STFT of the mixture
and each mask is used to compute two time/frequency representations for each
source. The FNN input is the concatenation of four estimated magnitude spec-
trograms, where two of them account for the speech signal while the others
represent the background signal. Generally, fusion of source separation methods
can be conducted by combining different kinds of information such as masks or
separate magnitude spectrograms produced by masks themselves. However, in
this scenario, we combined the separated magnitude spectrograms as in early ex-
periments we observed better results combining magnitude spectrograms when
compared to masks combinations.

The DNN takes the combined magnitude spectrograms as input features and
produces new estimated magnitude spectrograms of both speech and background
signal. The sources are then combined in order to reconstruct a mask as follows:

Mdnn
1 (k, f) =

Z1(k, f)2

Z1(k, f)2 + Z2(k, f)2
(4)

Mdnn
2 (k, f) = 1−Mdnn

1 (k, f). (5)

We reconstruct a mask instead of using the output of the FNN as we chose
to apply a musical-noise suppression filter which has been developed for masks
and not for magnitude spectrograms. Each mask is used to scale the mixture
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input X(k, f) in order to estimate the STFT of the two sources:

Z1(k, f) = Mdnn
1 (k, f)�X(k, f) (6)

Z2(k, f) = Mdnn
2 (k, f)�X(k, f). (7)

Finally the two sources are reconstructed in the time domain using an Inverse
Short Time Fourier Transform (ISTFT) and reapplying the phase of the origi-
nal mixture. The described architecture can be imagined with more separation
algorithms and it is easily extendable for a generic number of speech separators.
However extending the architecture necessitates a network modification in terms
of number of nodes and network hyperparameters. A key issue of the proposed
model concerns the FNN outputs. The FNN can be trained in order to learn how
to predict masks or magnitude spectrograms. Predicting masks facilitates easier
training as the FNN learns values in a bounded range [0,1], while the prediction
of magnitude spectrograms requires unlimited non negative range. Nevertheless
we chose to predict magnitude spectrograms as they are less sensitive to the SNR
variations of training data with respect to mask prediction. Thus, as shown in
[24] we can employ a training dataset with significant SNR variations in the
mixtures.

4 DNN training

The employed training dataset contains 250 audio mixes of speech and back-
ground signal which repeat themselves with different combinations. We split the
dataset in two parts: 80% of time frames were assigned to the training data and
the remaining 20% was used for validation. All the time frames have been shuf-
fled using a fixed random seed in order to compare all the models. The mixtures
are constructed with different SNR in order to have high variability and accurate
reproducibility of real mix scenarios. The SNRs chosen are: 3 dB, 6 dB, 9 dB, 12
dB, 15 dB, 18 dB. The speech signals have been recorded in different languages.

In all the models we perform a z-score standardization such that the magni-
tudes of the frequency bins have the properties of a standard normal distribution
with zero mean and unit variance. This pre-processing guarantees that the up-
date of the weights is not biased by particular directions [17]. The DNN has
4100 node for each hidden layer with 2 hidden layers and 2050 nodes in the
output layer. This is due to the fact that we compute a 2048 point STFT and
each estimated magnitude spectrogram has 1025 frequency bins. The activation
function in the hidden layer is the hyperbolic tangent. The output layer contains
the concatenation of the estimated speech and the estimated background and
has Rectified Linear Unit (ReLU) as activation function since we want to predict
magnitude spectrograms. The choice of the parameters and the network archi-
tecture were partly taken from [6]. In order to prevent overfitting we used the
early stopping technique which suggests that no overfitting occurred during the
training. The early stopping has been preferred to the cross-validation because
of the computational cost of the latter method [8].
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4.1 Reduced Resolution Magnitude Spectrograms

In order to deal with a manageable feature set, we propose to use a reduced res-
olution of the magnitude spectrograms which exploits the perceptual mel scale.
The mel scale sets the relationship between the perceived frequency of a pure
tone respect to its actual measured frequency. Humans discern frequencies dif-
ferently depending on the frequency range: small changes in the low frequency
range are discerned better than the high frequency range. In order to compute
the mel spectrogram we applied mel-spaced rectangular filter banks to each time
frame obtaining a reduced resolution of each frame. The reduced resolution al-
lows the combination of a greater number of speech separation algorithms and
reduces the training time. However, doing this operation with linearly spaced
filter banks would have not been beneficial since it does not reflect the human
hearing resolution. On the other hand, mel-spaced filter banks reduce the num-
ber of frequency bins while maintaining the speech quality. Unlike a typical
conversion with 40 filters we used 192 filters keeping the signal quality while
maintaining sufficient frequency information to train the network. Both MSE
models have been trained with batch size of 256 and learning rate equal to 0.01.

4.2 Modified Distortion To Signal Ratio

We propose a fusion model which employs a Modified Distortion To Signal Ra-
tio (MDSR) as a cost function. The MSE gives the same importance to each
frequency bin that is involved in the error. It computes the energy of the error
without taking into account that some frequency bands are perceptually more
important than others. The MDSR instead, takes into account the perceived
audio quality of blindly separated audio signals and it is mainly derived from
the Distortion To Signal Ratio (DSR) called DSX in [15].

Given a time frame, the DSX is formulated as:

DSX(k)seg,sj =

I∑
i=1

L∑
l=1

(
Eerror,j(k,l,i)
Etarget,j(k,l,i)

w(k, l, i)
)

I∑
i=1

L∑
l=1

w(k, l, i)

. (8)

The ratio between the energy error and the energy target can be seen as a
classic DSR except that it is computed in the Bark bands. The Bark scale is a
frequency scale on which equal distances correspond with perceptually equal dis-
tances, more details regarding the Bark scale are showed in [26]. This is weighted
by the perceived loudness w(k, l, i) which boosts up the DSR in the perceptually
important bands.

The estimation of the perceived loudness is given by:

w(k, l, i) = Etarget,s1,s2(k, l, i)0.25. (9)

Unlike the BASS measurements, that exhibit poor correlation with subjective
perception, the DSX has been shown to be linked with the perceived quality
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[15]. This is why we identified it as a potential fitness function for improving the
DNN-based fusion model performances.

In order to adapt the DSX for network training, a number of modifications
were required. In [15] the author used orthogonal projections in order to compute
the error and the target energy, while we will consider the energy of the squared
difference between the target signal and the estimated signal in the Bark scale
and the square of the target signal. This approximation simplifies the differen-
tiability requirements of the cost function in the training phase. The number
of channels was also adapted. The DSX formulation is composed by summation
over Bark band and over channels while we only consider the single channel as we
are in the single channel scenario. Another difference concerns the concatenation
of speech and background while the original DSX formulation is unique for each
source. Therefore in our model the Etarget(k,l) contains 48 Bark bands where
the first 24 address the energy of the target speech signal, while the remaining
24 represent the energy of the target background signal. The other measures
such as loudness and energy error are modified at the same way. Therefore, the
adapted version of the DSX is:

MDSR(k) =

2L∑
l=1

(
Eerror,s1s2 (k,l)

Etarget,s1s2
(k,l)w(k, l)

)
2L∑
l=1

w(k, l)

(10)

where L = 24 is the number of Bark bands. This model has been trained with
learning rate equal to 1e-5.

Even though the results in [15] suggested positive expectations we will show
in the next section that this function does not produce anticipated improvements
in terms of the perceived quality.

5 Experimental Results and Discussions

Model Name Model Meaning SOA/Contribution

Alg1 The first algorithm used in the fusion State of the Art

Alg2 The second algorithm used in the fusion State of the Art

MSE FNN fusion with MSE Contribution

Mel Inputs FNN fusion with mel magnitude spectrograms Contribution

MDSR FNN fusion with MDSR Contribution

Table 1: Algorithms used for the performance evaluations.

This section provides an evaluation of the experimental results. Both ob-
jective and subjective measurements are analysed, in order to see how they
correlate.
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(a) Source To Distortion Ratio. (b) Source To Interferences Ratio.

(c) Source To Artifacts Ratio.

Fig. 2: Comparison of performances computed on the estimated speech signal.
The graph shows the average values over the whole test dataset.

5.1 Evaluation of the Blind Audio Source Separation Performance
Measurements

The objective measurements have been computed with the BASS performance
measurements, described in [22]. The BASS performance measurements take into
account some aspects like distortion, interference and artifacts. We computed 3
measurements, Source To Distortion Ratio (SDR), Source To Interferences Ra-
tio (SIR) and Source to Artifacts Ratio (SAR), for all the models. The results
have been computed with a test dataset composed by 65 audio mixtures whose
Signal To Noise Ratio (SNR) range goes from 3 dB to 18 dB. Our model predicts
both the speech signal and background signal, but since we are more interested
in the speech signal we decided to do not consider performances regarding the
background signal. We use graph that show performances in dB and we evaluate
them on all the models, which are listed in Table 1. Each value in dB repre-
sents the average over the all test dataset of the measurement computed on the
extracted speech signal.

Source To Distortion Ratio Each combination displayed similar performance to
each individual algorithm meaning that there is no significant improvement in
terms of SDR. The MDSR shows 5 dB of SDR which is not considered to be a
promising result.

Source To Interferences Ratio The SIR measurement has been computed for
assessing the amount of interference of the background signal that occurs in the
estimated speech signal. Each DNN-based combiner achieves an improvement
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of roughly 4 dB with respect to each mask individually. In addition, all of the
DNN-based combiner achieve an improvement of 10 dB with respect to the test
mixtures which have an average SIR of 11.52 dB.

Source To Artifacts Ratio The last BASS performance measurement represents
how much of artifacts is present with respect to the target signal. We observed
that every combiner introduces more artifacts than each algorithm individually.

5.2 Evaluation of the perceived quality

The subjective performance measurements have been assessed with a listen-
ing test based on the MUltiple Stimuli with Hidden Reference and Anchor
(MUSHRA) test [11]. We asked to 6 expert listeners to evaluate the overall
sound quality of the speech signal. As indicated in the ITU BS.1534-1 recom-
mendations, the listeners had to assign a score from 0 (bad) to 100 (excellent)
for different versions of the speech signal produced by the following models:

– Algorithm 1
– Algorithm 2
– Fusion with FNN - MSE
– Fusion with FNN - mel spectrograms
– Fusion with FNN - MDSR
– The target speech signal (Hidden Reference)
– A highly distorted version of the speech signal (Anchor).

In order to have accurate audio fidelity we used the professional STAX head-
phones. Unlike the original MUSHRA, where the anchor is a low-pass filtered
version of the reference, we employed a strongly degraded version of the speech
signal as we are not assessing a lossy audio compression algorithm. We asked lis-
teners to evaluate how the overall sound quality was different with respect to the
target speech signal. This means that they had to assign low score when the es-
timated speech signal showed artifacts and also when the background signal was
considered relevantly present. We chose 5 audio mixtures taken from a different
dataset with varied language and speaker gender. Each audio mixture has been
taken as 6 dB of input SNR since it reflects more real scenarios and our training
dataset range goes from 3 dB to 18 dB. All the signals have been normalized to
have the same integrated loudness. In order to evaluate how the DNN was going
to act in presence of varied background signals we decided to include background
that were different from the ones used in the training dataset, i.e., drum tracks,
guitar tracks and impulsive noise. The results, showed in Figure 3, represent the
mean and the 95% confidence intervals computed using Student’s t-distribution
for each test item and algorithm, and the mean over all items. The approxima-
tion by looking the mean of the models suggests that on average, fusion models
have been rated worse than one of the combined time/frequency mask. The ob-
served result is not line with the objective BASS performance measurements
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Fig. 3: Listening test based on MUSHRA. For each model it shows the average
and 95% confidence intervals of the scores related to each audio item and the
mean over all items.

where the DNN-based fusion models outperform each mask individually. MDSR
did not perform as anticipated with feedback and comments of the listeners con-
firming a presence of the noise gate effect in various signals, which is considered
annoying since it is usually preferred an higher constant noise to a lower but
variable noise. After informal listening we believe that those signals are the ones
produced by the perceptually-weighted DNN. Therefore we conclude that the
MDSR does not show promising results in terms of the perceived quality and
more work is still required. It should be noted that MDSR was shown to correlate
source separation with perceived quality in [15]. This work has shown that this
correlation does not translates into improved quality when MDSR is applied in
a cost function. In addition, it can be observed that using the reduced resolution
is convenient as it reduces the training time and it did not significantly impact
performance quality.

6 Conclusions

We have proposed a new perceptually-weighted DNN-based fusion model that
takes into account the perceived quality of blindly separated audio signals. We
assessed both objective and subjective measurements in order to see if the per-
ceptual model outperforms each mask individually and others DNN-based fusion
models.
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The experimental results from the BASS performance measurements show
that the perceptually-weighted DNN-based fusion model outperforms only one
of the two algorithms in terms of SIR. The DNN-based fusion model with MSE
outperforms each mask individually in terms of SIR and presents similar per-
formances in terms of SDR. We also conducted a listening test for assessing the
perceived speech quality. Our experimental results show that using any DNN-
based fusion models does not improve the perceived quality of the speech signals
compared to each mask individually.
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