
Detecting Hate Speech for Italian Language in Social Media
Valentino Santucci, Stefania Spina
University for Foreigners of Perugia

{valentino.santucci, stefania.spina}@unistrapg.it

Alfredo Milani
University of Perugia

alfredo.milani@unipg.it

Giulio Biondi, Gabriele Di Bari
University of Florence

{giulio.biondi, gabriele.dibari}@unifi.it

Abstract

English. In this report we describe the
hate speech detection system for the Ital-
ian language developed by a joint team
of researchers from the two universi-
ties of Perugia (University for Foreign-
ers of Perugia and University of Perugia).
The experimental results obtained in the
HaSpeeDe task of the Evalita 2018 eval-
uation campaign are analyzed. Finally, a
suggestion for future research directions is
provided in the conclusion.

Italiano. In questo documento descri-
viamo il sistema di hate speech detection
per la lingua Italiana sviluppato da una
squadra di ricercatori dell’Università per
Stranieri di Perugia e dell’Università degli
Studi di Perugia. I risultati sperimentali
ottenuti nel task HaSpeeDe, organizzato
nell’ambito di Evalita 2018, sono ripor-
tati e analizzati. Infine, una possibile di-
rezione di ricerca è fornita nelle conclu-
sioni.

1 Introduction

In the recent years there was an exponential
growth of social media that has revolutionized
communication and content publishing. However,
social media are also increasingly exploited for the
propagation of hate speech. This issue motivates
the recent research on hate speech detection sys-
tems (Zhang and Luo, 2018; Waseem and Hovy,

2016; Del Vigna et al., 2017; Davidson et al.,
2017; Badjatiya et al., 2017; Gitari et al., 2015).

In this paper, we provide the description of
our hate speech detection system for the Ital-
ian language. The system, namely HSD4I PG,
has been developed by a joint team of re-
searchers from the University for Foreigners of
Perugia and the University of Perugia. The
code of HSD4I PG is provided online at the url
https://github.com/Gabriele91/HSD4I PG.

The rest of the paper is organized as follows.
The main system architecture is provided in Sec-
tion 2, while the single software components are
described in Sections 3-6. Experimental results
are provided in Section 7, while conclusion and
future lines of research are depicted in Section 8.

2 Architecture of the Hate Speech
Detector

The hate speech detector we have developed,
namely HSD4I PG, is composed by several soft-
ware components:

• a tokenizer for Italian posts from social me-
dia,

• the popular FastText tool (Bojanowski et al.,
2016) used to generate a word embedding
model,

• a features generator that generates a vector
of numeric features for each post to be clas-
sified,

1



• a (trainable) classifier that, for each post, pre-
dicts its class label.

Moreover, the following resources have been
adopted:

• the Ita Twitter corpus (Spina, 2016)
that includes 1,234,865 tweets extracted
from the Italian timeline in a time
span of seven months (November 2012
- May 2013). The tweets were ex-
tracted randomly, 2,000 per day, using
the R package TwitteR (https://cran.r-
project.org/web/packages/twitteR/);

• the Italian Lexicon of Hate Speech
that was collected based on an Italian
monolingual dictionary, Il Nuovo De
Mauro, which is also available online
(https://dizionario.internazionale.it);

• the Sentix italian lexicon for sentiment analy-
sis (Basile and Nissim, 2013);

• the training sets of 3,000 Facebook posts and
3,000 tweets available for the ”Haspeede”
task of Evalita 2018.

As any other supervised classifier system,
HSD4I PG requires a training stage, that is de-
picted in Figure 1. The word embedding model
is trained by FastText using the Ita twitter corpus.
Numeric features are obtained by aggregating the
FastText features and by generating some ad-hoc
extra-features. These numeric features are finally
fed to a Support Vector Machine (SVM) (Cortes
and Vapnik, 1995) in order to generate a classifier
model.

After the SVM classifier has been trained, the
prediction of (unlabeled) posts is performed fol-
lowing the scheme depicted in Figure 2.

3 The Tokenizer

A tokenizer for the Italian language adopted in so-
cial media has been designed by modifying the
output produced by the ”TweetTokenizer” class
of the popular Python library NLTK (Bird et al.,
2009).

A variety of corrections have been introduced.
The most important ones are:

1. two or more consecutive occurrences of the
same vowel have been replaced by a single
occurrence (e.g., ”ciaooo” is replaced with
”ciao”),

2. alternative spellings of some bad words have
been normalized (e.g., ”vaffa” is replaced
with its most popular form),

3. some common mispellings and abbreviations
have been corrected (e.g., ”cmq” is replaced
with ”comunque”),

4. hashtags have been split into multiple tokens
using the Python library ”compound-word-
splitter”,

5. apostrophes have been considered as token
separators,

6. tokens composed by digits characters have
been replaced with the token NUM,

7. tokens corresponding to Twitter mentions
have been replaced with the token MEN,

8. tokens corresponding to web links have been
replaced with the token URL,

9. emojis have been kept as tokens on their own,
while other punctuation characters have been
removed,

10. all the textual tokens have been replaced with
their stemmed form by using the NLTK im-
plementation of the Snowball stemming algo-
rithm for the Italian language (Porter, 1980).

Moreover, in order to provide additional exper-
imental results, we have also tried a lighter variant
of the tokenizer that only perform the tasks num-
bered from 5 to 10.

4 The Word Embedding Model

A word embedding model is generated by Fast-
Text (Bojanowski et al., 2016) using the skipgram
technique.

Fed with the Ita Twitter corpus, FastText pro-
duces a numeric vector representation for every n-
gram contained in the corpus’ posts in such a way
that the n-grams belonging to tokens appearing in
similar contexts are close to each other in the con-
tinuous numerical space.

After the model has been generated, a numeric
representation for a given token w can be simply
computed by summing up the numeric representa-
tions of the n-grams that compose w.

Since out-of-vocabulary words are quite com-
mon in social media texts, we think that the sub-
words information contained in the n-grams is
particularly useful in our scenario.



5 The Features Generator

The word embedding model allows to generate a
numeric representation for every token. Therefore,
in order to produce a (constant length) numeric
representation of the whole post, we need to ag-
gregate the vectors corresponding to the tokens of
the post. Six different aggregation functions have
been considered: average (avg), standard devi-
ation (std), minimum (min), maximum (max),
median (med), and sum (sum). Any combina-
tion of these aggregators can be adopted, thus the
features generator requires an experimental tuning
(see Section 7).

Moreover, 20 additional extra-features have
been introduced:

• number of hateful tokens, computed using
the Italian Lexicon of Hate Speech (Spina,
2016),

• average sentiment polarity and intensity,
computed using the Sentix lexicon (Basile
and Nissim, 2013),

• number of web links,

• number of mentions,

• a boolean flag to indicate if it is a reply tweet
or not,

• number of hashtags,

• maximum length of an hashtag (in charac-
ters),

• a boolean flag to indicate if it is a retweet or
not,

• the percentage of capital letters,

• the percentage of tokens whose letters are all
in capital case,

• number of exclamation marks,

• number of tokens composed by three or more
dots,

• number of punctutation characters,

• number of emojis,

• number of repeated consecutive vowels,

• percentage of tokens representing a correct
Italian word,

• post length in number of characters,

• post length in number of tokens.

As an illustrative example, let consider that:
FastText has generated numeric vectors of size 300
for every single token w of a post p, and that
the combination of the three aggregators sum,
min, max has been chosen. Then, the numeric
vector representing p has 300 × 3 + 20 = 920
dimensions and it is formed by concatenating the
three vectors, each one of size 300, given by ev-
ery chosen aggregator together with the 20 extra-
features.

Finally, in the case the number of features is too
large for the classifier, during the training phase
we are able to reduce the dimensionality to a
given number k by selecting the features having
the largest mutual information with respect to the
class labels.

6 The Classifier

After some preliminary experiments, we have de-
cided to adopt a Support Vector Machine (SVM)
classifier (Cortes and Vapnik, 1995). SVM is a su-
pervised technique for training a classifier model
by efficiently computing a separation hyperplane
(between the two classes to be predicted) in a (im-
plicitly) higher dimensional space (with respect
to the features dimensionality). The SVM im-
plementation of the Python’s library Scikit-Learn
(Pedregosa et al, 2011) has been used.

Compared to the popular neural network model,
the SVM technique has less parameters to be
tuned, it is computationally more efficient, and it
generally obtains comparable performances.

Finally, it is important to note that, before the
training phase, all the training features have been
standardized in such a way that their means and
variances, across all the training instance, are, re-
spectively, 0 and 1.

7 Experiments

7.1 Experimental Setting

The parameters of the different software compo-
nents of HSD4I PG have been tuned using a grid
search approach and a 10-folds cross-validation
scheme.

FastText parameters have been chosen in the
following ranges: number of epochs epoch ∈
{5, 20, 50, 100}, the initial learning rate lr ∈



{0.05, 0.1}, the negative sampling neg ∈
{5, 20, 50}, the window size ws ∈ {5, 10}.
Moreover, the skipgram model has been consid-
ered, while other FastText parameters that have
been set to constant values are: dim = 300,
minCount = 1, minn = 3, and maxn = 6.

Regarding the features generator (see Section
5), a combination of the six aggregators has to be
chosen. Importantly, for combinations resulting in
more than 1,000 features, the filtering procedure
described at the end of Section 5 is performed.

After some preliminary experiments, we have
decided to use the following ranges in order
to tune the SVM parameters: kernel ∈
{rbf,linear}, C ∈ {1.8, 2, 2.2, 2.4}. More-
over, the gamma and class weight param-
eters have been set to, respectively, auto and
balanced.

The best parameter setting resulting from the
experimental tuning is provided in Table 1.

Parameter Value

FastText

epoch 50
lr 0.05
ns 50
ws 5

Features Generator aggregators
sum
min
max

SVM kernel rbf
C 2.2

Table 1: Tuned parameter setting

This setting has been used to generate the re-
sults submitted as ”run 2” at the Haspeede task
of Evalita 2018 by the team ”Perugia1”. For a
mistake, we have submitted a wrong file as ”run
1”. Anyway, in the following section we also pro-
vide the results of three additional executions of
HSD4I PG:

Execution A) It uses the same setting of Table
1 except that C = 2,

Execution B) It uses the same setting of Table
1 except that the lighter variant of the tok-
enizer (see Section 3) has been adopted,

Execution C) It uses the same setting of Ta-
ble 1 except that C = 2 and the lighter vari-
ant of the tokenizer (see Section 3) has been
adopted.

7.2 Experimental Results

Table 2 provides the results obtained by
HSD4I PG in the four proposed tasks. In
particular, the Macro-Average F1 score for each
subtask is shown, along with the difference from
the best competitor in the subtask.

SubTask HSD4I PG Distance
from best

HaSpeeDe-FB 0.7841 0.0447
HaSpeeDe-TW 0.7744 0.0249

Cross-HaSpeeDe-FB 0.6279 0.0262
Cross-HaSpeeDe-TW 0.5545 0.1440

Table 2: Subtask results of HSD4I PG

Table 2 shows that HSD4I PG achieved results
comparable to the best competitors, except in the
task Cross-HaSpeeDe-TW. The complete results
for all the tasks are available in (Bosco et al.,
2018). Besides, in Tables 3 and 4, three additional
rows corresponding to the new executions A,B,C
previously discussed (and performed after the of-
ficial HaSpeeDe evaluation) are provided.

Interestingly, the results in Table 4 show that
HSD4I PG, tuned with different parameter set-
tings, would have ranked 3rd in the HaSpeeDe-
TW subtask (see (Bosco et al., 2018)).

8 Conclusion and Future Work

In this paper we have introduced a system for the
hate speech detection of social media texts in Ital-
ian language. The results we have obtained for the
HaSpeeDe task of the Evalita 2018 campaign are
provided.

It is worth to point out that the results of most
participants are very similar and quite far from be-
ing fully accurate. The question is whether hate
annotation is objective or subjective. Few of the
posts in the datasets looks to be difficult to anno-
tate even for a human being. Indeed, we think that
different people can produce different annotations.
Therefore, it can be interesting to model the sub-
jective perception of hatefulness and exploit such
information in the detection task, perhaps, taking
inspiration by recommender system techniques.

References
Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,

and Vasudeva Varma. 2017. Deep Learning for Hate
Speech Detection in Tweets. In Proceedings of the
26th International Conference on World Wide Web



Figure 1: Training in HSD4I PG

Figure 2: Classification in HSD4I PG

Not HS HS Macro-Avg F-score
Precision Recall F-score Precision Recall F-score

A 0.7261 0.6811 0.7029 0.8522 0.8774 0.8646 0.7838
B 0.7219 0.6749 0.6976 0.8496 0.8759 0.8625 0.7801
C 0.7166 0.6811 0.6984 0.8514 0.8715 0.8715 0.7799

Table 3: Additional results in the subtask HaSpeeDe-FB

Not HS HS Macro-Avg F-score
Precision Recall F-score Precision Recall F-score

A 0.8489 0.8728 0.8607 0.7180 0.6759 0.6963 0.7785
B 0.8545 0.8950 0.8743 0.7568 0.6821 0.7175 0.7959
C 0.8575 0.8905 0.8737 0.7517 0.6914 0.7203 0.7970

Table 4: Additional results in the subtask HaSpeeDe-TW



Companion - WWW ’17 Companion, pages 759–
760, New York, New York, USA. ACM Press.

Valerio Basile and Malvina Nissim. 2013. Sentiment
Analysis on Italian Tweets. In In Proceedings of the
4th Workshop on Computational Approaches to Sub-
jectivity, Sentiment and Social Media Analysis, At-
lanta, Georgia, 14 June 2013.

Steven Bird, Ewan Klein, and Edward Loper.
2009. Natural Language Processing with Python.
O’Reilly Media, Inc., 1st edition.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching Word Vectors
with Subword Information. 7.

Cristina Bosco, Felice Dell’Orletta, Fabio Poletto,
Manuela Sanguinetti, and Maurizio Tesconi. 2018.
Overview of the Evalita 2018 Hate Speech Detection
Task. In Tommaso Caselli, Nicole Novielli, Viviana
Patti, and Paolo Rosso, editors, Proceedings of the
6th evaluation campaign of Natural Language Pro-
cessing and Speech tools for Italian (EVALITA’18),
Turin, Italy. CEUR.org.

Corinna Cortes and Vladimir Vapnik. 1995. Support-
vector networks. Machine Learning, 20(3):273–
297.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.
3.

Fabio Del Vigna, Andrea Cimino, Felice Dell’Orletta,
Marinella Petrocchi, and Maurizio Tesconi. 2017.
Hate me, hate me not: Hate speech detection on
Facebook. In CEUR Workshop Proceedings.

Njagi Dennis Gitari, Zhang Zuping, Hanyurwimfura
Damien, and Jun Long. 2015. A lexicon-based
approach for hate speech detection. International
Journal of Multimedia and Ubiquitous Engineering.

Fabian Pedregosa et al. 2011. Scikit-learn: Machine
Learning in Python. J. Mach. Learn. Res., 12:2825–
2830.

M.F. Porter. 1980. An algorithm for suffix stripping.
Program, 14(3):130–137, 3.

Stefania Spina. 2016. Fiumi di parole. Discorso e
grammatica delle conversazioni scritte in Twitter.
StreetLib, Loreto, Italy.

Zeerak Waseem and Dirk Hovy. 2016. Hateful Sym-
bols or Hateful People? Predictive Features for Hate
Speech Detection on Twitter. In Proceedings of the
NAACL Student Research Workshop.

Ziqi Zhang and Lei Luo. 2018. Hate Speech Detec-
tion: A Solved Problem? The Challenging Case of
Long Tail on Twitter. 2.


