
IIITV@INLI-2018 : Hyperdimensional
Computing for Indian Native Language

Identification?

Ashish Patel[0000−0002−0409−736X] and Pratik Shah[0000−0002−4558−6071]

1 Indian Institute of Information Technology, Vadodara
2 Gujarat, India

{201771002,pratik}@iiitvadodara.ac.in

Abstract. Native Language Identification (NLI) is the task of deter-
mining user’s native language based on their second language. NLI is an
important task that has applications in different areas such as social me-
dia analysis, authorship identification, second language acquisition, and
forensic investigation. In this paper, we propose to use Hyperdimensional
Computing (HDC) as supervised learning for identifying Indian Native
Languages from the user’s social media comments written in English.
HDC represents language features as high dimensional vectors called
hypervectors. Initially, comments are broken in character bi-grams and
tri-grams which are used for generating comment hypervectors. These
hypervectors are further combined to create different language profile
vectors. Profile hypervectors are then used for classification of test com-
ments. The proposed approach was validated on 70% of training instances
with 65.13% of accuracy. The accuracy of classification on the test set
for bi-gram and tri-gram based feature encoding is 29.2% and 31.5%
respectively.

Keywords: Native Language Identification · Hyperdimensional Com-
puting · n-gram · Indian Languages

1 Introduction

The diversity of languages used in India has given rise to a large number of
challenging problems, both for the linguist and for the computer scientist. The
2001 Indian census recorded 30 languages which were spoken by more than a
million native speakers in India. English plays prominent role in every sector
especially in higher education in India. It is certainly the most preferred lan-
guage for reading and in official communication. The number of second or third
language speakers of English is increasing day by day. Influence of their regional
and native languages is observed in their usage of English. It is possible to iden-
tify the native speaker based on their English pronunciation and accent. But,

? Indian Native Language Identification (INLI) is a shared task held in conjunction
with FIRE 2018. Aim of the task is to identify Indian language from user’s social
media comments written in English.



2 Ashish Patel and Pratik Shah

it is challenging to identify the native users based on their written comments
in their non-native language. Native Language Identification (NLI) is important
for a number of applications, such as authorship identification, forensic anal-
ysis, tracing linguistic influence in multi-author texts, and to support Second
Language Acquisition research. It can also be used in educational applications
such as developing grammatical error correction systems. The extensive use of
social media and online interactions can be a reason of violent threat, which is
a common issue faced by commenters. If a comment or a post poses any type
of threat, then identifying the native language of the person will be one of the
significant feature in finding the source.

In the INLI track [1], the task is to identify the native language of the user,
based on their social media comments in the English language. Six Indian lan-
guages namely Tamil (TA), Hindi (HI), Kannada (KA), Malayalam (MA), Ben-
gali (BE) and Telugu (TE) are considered for this shared task.

2 Related Work

NLI challenge has gained a lot of attention and has been part of shared tasks
in various events [2, 3, 4] worldwide. This challenge can be broken into two sub-
tasks: feature selection and classification. Different techniques are used to extract
features from non-native language in terms of topic biases, spelling usage, and
frequency of word usage, etc. Most of the researcher have considered unigrams,
bigrams, and character n-grams [5], POS-tagged n-grams [6] as features. Cur-
rent state-of-the-art uses Support Vector Machine (SVM) [6, 7], Multinomial
Bayes [5], Random Forest [7], Logistic Regression [5] and feed-forward neural
network [8] for classification. Authors in [9] have discussed a possible use of
HDC for language identification.

2.1 Hyperdimensional Computing

The architecture of a computer that is in use since last 70 years, has been a
milestone in mechanizing arithmetic of symbols. Efforts are reported in the form
of architectural proposals starting from the representation of entities, memory,
and processing units for computing [10]. Convenience and robustness of two value
(binary) systems, in terms of realization, has been instrumental in its widespread
use. It has been agreed upon that in the current state of evolution of the human
brain, adding or multiplying large numbers is a difficult task, barring a few ex-
ceptions. At the same time, recognizing objects, using language to communicate
and being able to reason are some tasks in which humans are efficient at [11]. In
contrast, the computer is good at the former task whereas it needs considerable
efforts and hand-holding to perform the later ones. The human brain contains
large circuits having billions of neurons and synapses. It is believed that the con-
cepts and entities are being stored distributively in such circuits [10]. Inspired
by the architecture of the brain, artificial neural networks have been designed
and have gained considerable recognition in the field of machine learning [12].



Hyperdimensional Computing for INLI 3

Properties of High dimensional spaces such as holistic representation, one-
shot learning, and robustness against noise show similarity with the brain be-
havior. Instead of computing with numbers, brain-inspired hyperdimensional
computing (HDC) emulates computing with hypervectors. In HDC the entities
are represented using high dimensional vectors called hypervectors. In litera-
ture, there are different representation schemes proposed for HDC, for example
HRR [13], BSC [14], Bipolar Spatter Code [15], MBAT [16] etc. In this paper, we
have used Bipolar spatter code hypervectors typically comprises of randomly dis-
tributed +1’s and -1’s. Basic algebraic operations on hyperdimensional vectors
are binding (multiplication), superposition (addition) and rotation (ρ). Binding
of two hypervectors is an element-wise multiplication where as superposition is
an element-wise addition. The addition preserves the similarity between added
hypervectors and resultant hypervector. Multiplication binds two hypervectors
in one and maps it to a hypervector in hyperspace which is nearly orthogonal
to multiplied hypervectors. Rotation also generates a nearly orthogonal vector.
Usually the similarity between two hypervectors is calculated by using cosine
distance.

3 Task Description

Language Training Instances

Bengali (BE) 202
Hindi (HI) 211

Kannada (KA) 203
Malayalam (MA) 200

Tamil (TA) 207
Telugu (TE) 210

Table 1. Languages and Training Instances

INLI is a multiclass classification task. INLI@FIRE2018 shared task focuses
on identifying native languages namely Bengali, Hindi, Kannada, Malayalam,
Tamil, and Telugu, from XML files. Table 1 describes the training data that is
used for the task. Training XML files are annotated as per their native language.
These XML files contain extracted social media comments in English.

4 Proposed Approach

For Indian native language identification task, training instances of six languages
are available. For each language, the number of training instances (user com-
ments) are mentioned in Table 1. It is assumed that the comments are from
non-native English users. Since the comments are scribed in English (Latin)
alphabets, a preprocessing step sets rid of special characters. Preprocessing
involves removal of non-English characters, special characters and converting



4 Ashish Patel and Pratik Shah

the text in lowercase (alphabets). This ensures that the resulting string will
contain twenty-seven different symbols in total, i.e. ‘a,...,z’ and a ‘ ’ - blank
space. Each of these 27 symbols is assigned a hypervector, i.e. a bipolar spat-
ter code. Each hypervector is a random string of +1’s and -1’s of length 10000.
It is easy to show that with very high probability the generated 10k dimen-
sional hypervector will have equal number of +1’s and -1’s. Moreover the mean
of bitwise distance between any two randomly generated hypervectors will be
5000 bits. So the generated 27 hypervectors are all almost equidistant from
each other with almost same number of 1’s and -1’s For more on bipolar spat-
ter codes, refer to [15]. In the training phase, we scan through comments se-
quentially and create a profile hypervector for a given language class. For a
given comment, we find out overlapping character tri-grams (or bi-grams) and
for each of the tri-gram, we generate a hypervector from the character hyper-
vectors as shown in the Fig. 1. Let H : {a, b, . . . , z, } → {−1, 1}10000, be a
function that maps a symbol to the hyperdimensional space and, the rotation
ρ : {−1, 1}10000 → {−1, 1}10000 be defined as a function corresponding to a left
circular shift operation on strings. Given a trigram “xyz”, the corresponding tri-
gram hypervector is ρρH(x) ∗ ρH(y) ∗ z, where ∗ is called the binding operation
which in case of bipolar spatter code is element-wise multiplication. Finally, all
the tri-gram hypervectors of a given class are superimposed to generate a class
profile vector (language hypervector). Superposition of hypervectors is defined
as the element-wise addition operation. For more details on the bipolar spatter
codes and related algebra, refer to [15,17]. In this proposed approach HDC works
as supervised learning algorithm and considers bi-grams/tri-grams as features.
The occurrence of bi-grams/tri-grams in a language is a reasonable feature of
that language. The language hypervector is a superposition (addition) of all bi-
gram/tri-gram hypervectors occurring in the language and it is similar to all
hypervectors added together.

Fig. 1. Tri-gram hypervector generation

Algorithm 1 shows the training procedure, which takes comments (training
set) as input, computes hypervectors for tri-grams and generates a class hy-
pervector for each language. Tri-gram hypervector is generated by adding twice
rotated hypervector of first character, once rotated hypervector of second charac-
ter and third character’s hypervectors. Similarly we can create class hypervector
using bi-gram.

Algorithm 2 is used for predicting the class of test instances. The query hy-
pervector (Q) is generated by similar process as the language hypervector is gen-
erated, i.e. superposition of tri-gram hypervectors corresponding to test/query



Hyperdimensional Computing for INLI 5

instance. This query hypervector is compared with all the language hypervec-
tors. The similarity between bipolar hypervectors is calculated using the cosine
of the angle between them. The language which has the highest similarity (lowest
angle) with query hypervector is written in the output file with the test dataset
name.

Algorithm 1: Training Algorithm

Input : Training Dataset
Output: Language profile Hypervectors
#N : Number of Languages;

#Mn : Number of training instances of nth language;
#H: {a,...,z, } → {1,−1}10000;
#Ln: Profile hypervector of language n;

#tnj (k) : kth symbol of jth training instance of nth language;
#tnj (k)∈ {a, ..., z, };
for n← 1 to N do

for j ← 1 to Mn do
for k ← 1 to Length(tnj )-2 do
Ln = Ln + (ρρH(tnj (k)) ∗ ρH(tnj (k + 1)) ∗H(tnj (k + 2)));
// * binding, + superposition

end

end

end

Algorithm 2: Testing Algorithm

Input : Test Dataset, Language profile hypervectors
Output: Native Language Identification of Test Dataset
#R: Number of Test Records;
#Q: Query hypervector;

#M
′
: Predicted Language;

#N : Number of Languages;
#H : {a, ..., z, } → {1,−1}10000;
#Ln: Profile hypervector of language n;

#tj(k) : kth symbol of jth test record;
#tj(k)∈ {a, ..., z, };
for j ← 1 to R do

for k ← 1 to Length(tj)− 2 do
Q = Q+ (ρρH(tj(k)) ∗ ρH(tj(k + 1)) ∗H(tj(k + 2))) ;

end
for i← 1 to N do

Angle[i]=Cosine(Li, Q) ; // Angle[] stores angle between Li and Q

end

M
′

= Language(Min(Angle)) ; // Language() returns predicted

language

Write predicted language M
′

in file;

end



6 Ashish Patel and Pratik Shah

5 Results and Discussion

For validation of classification algorithm, we have considered 70% as training
and 30% as validation instances for given training dataset. Fig. 2. shows the
normalized confusion matrix corresponding validation dataset. Data is cross-
validated 10 times and average accuracy reported is 65.13%.

BE HI KA M
A TA TE

Predicted label

BE

HI

KA

MA

TA

TE

T
ru
e
 l
a
b
e
l

0.48 0.25 0.00 0.16 0.07 0.05

0.11 0.73 0.03 0.08 0.05 0.00

0.08 0.08 0.52 0.16 0.08 0.07

0.05 0.05 0.05 0.75 0.07 0.03

0.03 0.05 0.03 0.10 0.69 0.10

0.00 0.03 0.08 0.05 0.11 0.73

Normalized confusion matrix

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

Fig. 2. Normalized confusion matrix of validation dataset

Run1 and Run2 results are corresponding to the bi-gram and the tri-gram
language profile vectors respectively. The results are presented in Table 2 and
Table 3 in which Table 2 and 3 represent result of TestSet-1 and TestSet-2.
TestSet-1 is used for comparing results with previous year’s shared task. In
Run1 (bi-gram) 32.4% and Run2 (tri-gram) 32.1% accuracy is reported. For
Run1 and Run2 for Testset-2 accuracy is 29.2% and 31.5% respectively. These
experiments are conducted on 3.6 GHz Intel Core i7 PC with 4 GB of RAM. The
python implementation of 3-gram training algorithm recorded 2.81667 minutes.
The validation results differ from test results primarily due to the presence of
unseen tri-gram (bi-gram) in the test data while training phase.

6 Conclusions

In this paper, we have proposed HDC approach for Indian Native Language
Identification. The results are encouraging and can be enhanced further. Features
selected for classification are tri (bi)-grams which are easy to aggregate. Since
the efforts were put on proof of concept of HDC based classification, the other
aspects of feature selection and efficient implementations were not addressed in
this work. We believe that by deleting or rewriting lexical terms such as pls



Hyperdimensional Computing for INLI 7

Runs Language Precision Recall F1-score Accuracy

Run1

BE 47.7% 55.7% 51.4%

32.4%

HI 50.0% 7.6% 13.1%
KA 20.4% 40.5% 27.1%
MA 25.2% 58.7% 35.3%
TA 31.9% 29.0% 30.4%
TE 24.7% 23.5% 24.1%

Run2

BE 45.1% 55.1% 49.6%

32.1%

HI 52.0% 5.2% 9.4%
KA 22.4% 44.6% 29.9%
MA 24.7% 60.9% 35.1%
TA 31.0% 26.0% 28.3%
TE 28.4% 25.9% 27.1%

Table 2. Results of Testset-1

Runs Language Precision Recall F1-score Accuracy

Run1

BE 39.0% 27.5% 32.3%

29.2%

HI 7.6% 3.6% 4.9%
KA 41.5% 38.0% 39.7%
MA 22.8% 51.5% 31.6%
TA 24.7% 30.0% 27.1%
TE 35.8% 17.6% 23.6%

Run2

BE 45.2% 33.8% 38.7%

31.5%

HI 8.8% 3.6% 5.1%
KA 43.5% 43.2% 43.4%
MA 23.9% 53.5% 33.0%
TA 28.1% 29.3% 28.7%
TE 32.1% 16.8% 22.0%

Table 3. Results of Testset-2

(please), u (you), y (why), r (are), sry (sorry), fyi (for your information), etc.
will improve the accuracy of the system. We also believe that punctuation marks
may have a role to play in natural language identification. In future, we would
like to include such features in HDC framework. We also would like to compare
the proposed approach with state of the art methods in term of training effort,
precision, recall and accuracy.

References

1. Anand Kumar, M., Barathi Ganesh, B., Soman K, P.: Overview of the INLI@FIRE-
2018 Track on Indian Native Language Identification. In: In workshop proceedings
of FIRE 2018, FIRE-2018, Gandhinagar, India, December 6-9,CEUR Workshop
Proceedings.

2. Joel, T., Daniel, B., Aoife, C.: A report on the first native language identification
shared task. In: In Proceedings of the Eighth Workshop on Innovative Use of NLP
for Building Educational Applications. (2013)

3. Malmasi, S., Evanini, K., Aoife, C., Tetreault, J., Pugh, R., Hamill, C., Napolitano,
D., Qian, Y.: A Report on the 2017 Native Language Identification Shared Task.
In: Proceedings of the 12th Workshop on Building Educational Applications Using
NLP, Copenhagen, Denmark, Association for Computational Linguistics (Septem-
ber 2017)

4. Anand Kumar, M., Barathi Ganesh, H., Singh, S., Soman, K., Rosso, P.: Overview
of the INLI PAN at FIRE-2017 track on indian native language identification.
CEUR Workshop Proceedings,2036,pp. 99-105 (2017)

5. Mathur, P., Misra, A., Budur, E.: LIDE: language identification from text docu-
ments. CoRR abs/1701.03682 (2017)

6. Nicolai, G., Islam, M.A., Greiner, R.: Native language identification using proba-
bilistic graphical models. In: 2013 International Conference on Electrical Informa-
tion and Communication Technology (EICT). (2014) 1–6

7. Ulmer, B., Zhao, A., Walsh, N.: Native language identification from i-vectors and
speech transcriptions

8. Sari, Y., Fatchurrahman, M.R., Dwiastuti, M.: A shallow neural network for na-
tive language identification with character n-grams. In: Proceedings of the 12th
Workshop on Innovative Use of NLP for Building Educational Applications. (2017)
249–254



8 Ashish Patel and Pratik Shah

9. Joshi, A., Halseth, J.T., Kanerva, P.: Language geometry using random indexing.
In de Barros, J.A., Coecke, B., Pothos, E., eds.: Quantum Interaction, Cham,
Springer International Publishing (2017) 265–274

10. Castro, L.N.D.: Fundamentals of Natural Computing: Basic Concepts, Algorithms,
and Applications. Chapman and Hall/CRC (2006)

11. Kahneman, D.: Thinking, Fast and Slow. FARRAR STRAUS & GIROUX (2012)
12. Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience (1998)
13. Plate, T.A.: Holographic reduced representations. IEEE Transactions on Neural

Networks 6(3) (May 1995) 623–641
14. Kanerva, P.: Binary spatter-coding of ordered k-tuples. In: Artificial Neural Net-

works — ICANN 96. Springer Berlin Heidelberg (1996) 869–873
15. Gayler, R.W.: Multiplicative binding, representation operators & analogy (work-

shop poster) (1998)
16. Gallant Stephen I., O.T.W.: Representing objects, relations, and sequences. Neural

Comput. 25(8) (August 2013) 2038–2078
17. Kanerva, P.: Hyperdimensional computing: An introduction to computing in dis-

tributed representation with high-dimensional random vectors. Cognitive Compu-
tation 1(2) (2009) 139–159


