
idrbt-team-a@IECSIL-FIRE-2018: Named Entity
Recognition of Indian languages using Bi-LSTM

S. Nagesh Bhattu1, N. Satya Krishna2,3, and D. V. L. N. Somayajulu3

1 NIT Tadepalligudem, West Godavari District, Andhra Pradesh, India
nageshbhattu@nitandhra.ac.in

2 IDRBT, Road No.1 Castle Hills, Masab Tank, Hyderabad, Telangana, India
satya.krishna.nunna@gmail.com
3 NIT Warangal, Telangana, India

{soma}@nitw.ac.in

Abstract. Named entity recognition(NER) is a key task in NLP pipeline
useful for various applications such as search engines, question answering
systems, sentiment analysis in domains ranging from travel, bio-medical
text, newswire text, financial text etc. NER is effectively solved using
sequence labeling approaches like HMM and CRF. Though, CRF (be-
ing discriminative) shows better performance compared to HMM, it uses
discrete features and do not naturally capture semantic features. LSTM
based RNNs can address this through their ability to deal with contin-
uous valued features such as Word2Vec, Glove, etc. Another advantage
of using LSTM lies in its ability to capture the long and short range
dependencies through its novel gating structure. This work presents the
deep learning based NER using special type of Recurrent Neural Net-
work(RNN) called Bi-directional Long Short-Term Memory(Bi-LSTM).
We use a two stage LSTM based network, one acting at character level
capturing the n-gram patterns related to NER. Such features are crucial
in NER for Indian languages as suffixes used in Indian languages often
carry syntactic information. The character based emebeddings, word2vec
embeddings and sequence based bi-LSTM embeddings together carry all
the requisite features necessary for the NER prediction problem. We
present the experimental results on two test datasets from each Indian
language such as hindi, kannada, malayalam, tamil and telugu. The accu-
racies on test-1 datasets of hindi, kannada, malayalam, tamil and telugu
languages are 97.82%, 97.04%, 97.46% 97.41% and 97.54% respectively.
These are highest accuracy results given by this model when compared
with all other models presented by competitors in this shared task [2].
The accuracies on test-2 datasets of hindi, kannada, malayalam, tamil
and telugu languages are 97.82%, 96.79%, 96.58% 96.18% and 97.68%
respectively. On test-2 dataset this model stood in first position for
hindi language and second position for the remaining four languages.
The shared task organizers released F-Scores for test-2 datasets of all
languages. This model got 94.0%, 84.55%, 84.78%, 89.55% and 91.44%
F-Scores on hindi, kannada, malayalam, tamil and telugu languages re-
spectively. All these F-Scores are in second position compared with other
models. In overall average accuracy and F-Score of this model on all these
five Indian languages is 97.01% and 86.99% which are in second position.

2 S. Nagesh Bhattu et al.

Keywords: Bi-LSTM· Named Entity Recognition· Word embedding·
Information Extraction· Sequence labeling.

1 Introduction

Named Entity Recognition(NER) is one of the major subtasks in the field of
Information Extraction(IE). The objective of NER is to identify and classify
the entities into pre-confined class names person, location, event, number, or-
ganization, occupation, datenum, name and other from the given unstructured
text. For example consider the sentences shown in table-1. In both sentences,
each word is annotated with a named entity tag. Identifying the entities in the

Table 1. Example of annotated sentences

Sentence-1 john working as an assistant professor in IITD
NE tags Person other other other occupation occupation other organization
Sentence-2 Columbus discovered America in 1492
NE tags Person event location other datenum

unstructured text resolve many problems in different applications. For example
news publishers can manage their large data, created and generated on a daily
basis, by classifying them based on major places, events, organizations and peo-
ple. It can be used in customer support systems for processing the customer
feedbacks and also to improve the performance of searching algorithms on text
data.

There has been a lot of work done in NER since 3 decades [7]. In early days
most of the work done for english language text using hand-crafted rule-based
techniques. Later, algorithms are developed using machine learning techniques
such as HMM, CRF. Compared to HMM, CRF uses a discriminative model and
hence it is able to perform better due to its generalizability of log-linear models
based on maximum entropy.

Initially in 1995, the system development competition for NER task was
introduced by 6th Message Understanding Conference(MUC-VI) on news article
data. Later different shared task events were conducted for NER in different
languages. The CoNLL-2002 [8] and CoNLL-2003 [9] also conducted two shared
tasks with same name Language-Independent Named Entity Recognition. They
provided the dataset with 4 different named entity annotations such as person,
location organization and name. IJCNLP-2008 conducted a shared task on five
south and south asian languages such as hindi, bengali, oriya, telugu and urdu.

CoNLL-2002 [8] shared task organizers provided the datasets in the form of
train, development and test data for two languages spanish and duch. CoNLL-
2003 [9] organized the competition task on NER for english and german lan-
guages. They provided the dataset in four different files such as training, devel-
opment, test and unlabeled corpus files for each language. The english language

Title Suppressed Due to Excessive Length 3

dataset was prepared by collecting text from the Reuters Corpus4 having news
articles presented in the period of one year from mid-1996 to mid-1997. The
german dataset was prepared by collecting text from the ECI Multilingual Text
Corpus5 containing the news articles from german news papers.

Black et al. [3] presented two different approaches. One is modified Trans-
formation based Learning(TBL) integrated with Named Entity classifier and
another is decision tree induction based approach. He presented the F1-score of
67.49 and 56.43 on spanish and duch language test datasets respectively. Mc-
Namee et al. [6] applied a one-vs-rest multiclass classifier for NER using eight
linear kernel binary SVM classifiers. Cucerzan et al. [5] proposed a statistical
based language independent named entity recognizer using word internal infor-
mation(i.e current word, prefix and suffix of the current word) and contextual
information(i.e previous and next words of the current word) extracted from the
given annotated training data.

In this task we applied a deep learning based language independent NER
system which is built by integrating the Convolutional Neural Network(CNN)
followed by Bi-directional Long short-term Memory(Bi-LSTM). This system uti-
lizes the character and word level informations which are extracted from unanno-
tated corpus. We use this information in the form of two real valued vectors(aka
word embeddings) as input features to NER to classify the entities in a given
text. We experimented our model on five datasets of different Indian languages
such as hindi, kannada, malayalam, tamil and telugu. In results section, we pre-
sented the performance results of our system on two test datasets from each
language.

2 Approach

NER is a sequence labeling task, in which we predict the label for each word
in a sequence of words. Applying traditional machine learning methods for text
classification require more feature engineering. Though, the performance of rule-
based NER is good, it requires more language dependent hand-crafted rules for
classification. To reduce the feature engineering overhead, in our approach we
applied the deep-learning based methods. As shown in the figure-1 first we build
the feature vectors from two sources of information namely word level and char-
acter level. The pre-trained word feature vectors6 are used in our approach. The
word feature vectors for new words (which are not having pre-trained vectors)
from the given dataset are built using the model. Character-to-word feature vec-
tors are built using Bi-LSTM to capture the character level information from
character sequences in each word of the dataset. We replaced each word in an
input sentence of Bi-LSTM with a word embedding created by concatenation
of the feature vectors corresponding to that word. Later, we predicted the label
sequence for each sentence using these word embeddings.

4 http://reuters.com/researchandstandards/
5 http://www.idc.upenn.edu
6 https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md

4 S. Nagesh Bhattu et al.

Fig. 1. Overview of approach

3 Experiments

In this section we described the computation of word embeddings, experimental
details using an approach described in the previous section, and results on ten
test sets(two test sets from each language dataseet).

3.1 Building word Feature Vectors

This model uses the word embedding as input feature in place of a word in
the given input sentence. These word embeddings are created by combining the
word feature vector and char to word feature vector. These word feature vectors
are built using skip-gram model as defined in [4]. In skip-gram model, the word
feature vector Vwi is learned on large training corpus by computing the statistics
of occurrence of its context words given the word wi throughout all sentences
in training data. For example a large corpus represented as a sequence of words
w0, w1, w2, w3, ...wL in the training data, then it computes the log-likelihood
using equation-1.

1

L

L∑
l=1

∑
−c≤j≤c,j 6=i

log φ(wi+j/wi) (1)

Here, c indicates the context window size. wi is the current word in the sequence
and wi+j is a context word to wi with j distance from its position in context

Title Suppressed Due to Excessive Length 5

window c. Here, φ is the probability denoting the occurrence of context word
wi+j given wi. We compute the φ value using softmax function given in equation-
2. Here, vo is output feature vector corresponding to the wo and vi is feature
vector corresponding to input word wi. V is the size of vocabulary in the given
corpus.

φ(wi+j/wi) = φ(wo/wi) =
exp(vTo vi)∑V

u=1 exp(vTu vui)
(2)

3.2 Problem statement and Bi-LSTM model

As our consideration, the NER is a sequence labeling task, we represented each
input sentence as a sequence of words w0, w1, w2, ...wn and its corresponding out-
put label sequence is represented as t0, t1, t2, ...tn. Instead of using word sequence
directly as input to the Bi-LSTM model we replaced each word with its corre-
sponding word-embedding in the input sequence and then fed it to the Bi-LSTM
model. The size of word-embedding in our experiment is 450 dimensions(i.e 300
word vector dimensions + 150 char to word vector dimensions). Here we im-
plemented the Bi-LSTM cell using two Long Short-Term Memory(LSTM) cells.
One LSTM cell scans the input vector sequence in forward direction and another
LSTM cell scans the input vector sequence in backward direction. There are dif-
ferent versions of LSTM cells are defined. Among these we applied the following
LSTM cell as shown in the following equation-3.

xt = σ(X.[ut, ht−1]⊕ bx) (3a)

yt = σ(Y.[ut, ht−1]⊕ by) (3b)

ot = σ(O.[ut, ht−1]⊕ bo) (3c)

c̃t = tanh(S.[ut, ht−1]⊕ bs) (3d)

St = xt ⊗ c̃t ⊕ St−1 ⊗ ot (3e)

ht = yt ⊗ tanh(st) (3f)

Here, ut denotes the input word embedding corresponding to the tth position
word wt in the given input sequence. yt denotes the predicted label corresponding
to the word wt. ht denotes the hidden state vector. st represents the LSTM cell
state vector. The weight matrices X and Y are used by LSTM cell in its input
and output layers. Another weight matrices O and S are used by the LSTM in
its forget layer and context layers respectively. In the above equations ⊕ denotes
the element wise vector addition and ⊗ denotes the element wise vector product
operation.

3.3 Dataset

Arnekt-IECSIL@FIRE2018 shared task[2] organizers provided five datasets[1]
for competitors on five Indian languages such as hindi, kannada, malayalam,

6 S. Nagesh Bhattu et al.

tamil and telugu. Each language dataset has three different files with text in
its corresponding language script. Among these three files, one is training file
having data in two column format with label in second column for each word
in a sentence. The sentences are separated with a new line labeled as newline.
Remaining two are test-1 and test-2 files having data same as training file with-
out labels. Each test file has 20% of data among the overall dataset. Except
kannada dataset remaining datasets are having sufficient number of sentences
and words for learning word feature vectors using deep learning methods. The
training file in each dataset has nine distinct labels such as datenum, number,
person, occupation, organization, location, name, things and other. The table-2
describes the detail description regarding the number of sentences, number of
words, number of unique words in each file of all datasets.

Table 2. Datasets description

Dataset File type File Length # Sentences # words # unique words

Hindi
Train 1548570 76537 1472033 87842
Test-1 519115 25513 493602 43797
Test-2 517876 25513 492363 44642

Kannada
Train 318356 20536 297820 73712
Test-1 107325 6846 100479 34200
Test-2 107010 6846 100164 34040

Malayalam
Train 903521 65188 838333 143990
Test-1 301860 21730 280130 67361
Test-2 302232 21730 280502 67274

Tamil
Train 1626260 134030 1492230 185926
Test-1 542225 44677 497548 89529
Test-2 544183 44677 499506 89493

Telug
Train 840904 63223 777681 108059
Test-1 280533 21075 259458 51555
Test-2 279443 21075 258368 51294

3.4 Results

As per evaluation procedure given by the Shared task organizers, our model is
evaluated using these metrics.

Accuracy =
No.Of words are assigned with the correct label

No.Of words in the dataset
(4)

Precision(Pi) =
No.Of words are correctly labeled with labeli

No.Of words are labeled with labeli
(5)

Recall(Ri) =
No.Of words are correctly labeled with labeli
Total No.Of words with labeli in test data

(6)

Title Suppressed Due to Excessive Length 7

fscore(Fi) =
2 ∗ Pi ∗Ri

Pi +Ri
(7)

Overall fscore(F) =
1

|L|
∗
∑
iinL

Fi (8)

The table-3 summarizes the accuracy on testset-1 and 2 of five Indian language
datasets. In Pre-Evaluation on all language datasets, this model shown the high
performance compared to the all other models presented in competition. In Final-
Evaluation this model got the first position in hindi language , secodn position in
malayalam, tamil and telugu languages and third position in kannada language.

Table 3. Test accuracies in 5 languages

Hindi Kannada Malayalam Tamil Telugu

Pre-Evaluation(Testset-1) 97.82 97.04 97.46 97.41 97.54

Final-Evaluation(Testset-2) 97.82 96.79 96.58 96.18 97.68

Table 4. F1-Scores in 5 languages

Hindi Kannada Malayalam Tamil Telugu

Final-Evaluation(Testset-2) 85.9 84.55 84.78 89.55 91.44

The table-4 summarizes the F1-Scores of Final-Evaluation. This model given
second highest performance in F-Score on kannada, malayalam, tamil and telugu
language datasets. The actual F-score for hindi dataset is nearly 94.00%. But
the F-score given in table-4 for hindi language is 85.9% according to the results
given by the shared task organizers. The reason for less F-Score is typographical
mistake done by us while converting the predicted label index with its corre-
sponding label name datenum in the results file. Due to the zero F-Score for
datenum label, the overall F-Score of this model is reduced to 85.9%. We figure-
out this mistake after announcement of results by the shared task organizers.

4 Conclusion

As a part of competitive participation in Arnekt-IECSIL@FIRE2018 shared task,
in this paper we have presented a NER system implemented using deep learning
methods, in which we consider the pre-trained word vectors and character-to-
word vectors as features. We have presented the experimental results on five
Indian language datasets.

8 S. Nagesh Bhattu et al.

References

1. Barathi Ganesh, H.B., Soman, K.P., Reshma, U., Mandar, K., Prachi, M., Gouri, K.,
Anitha, K., Anand Kumar, M.: Information extraction for conversational systems
in indian languages - arnekt iecsil. In: Forum for Information Retrieval Evaluation
(2018)

2. Barathi Ganesh, H.B., Soman, K.P., Reshma, U., Mandar, K., Prachi, M., Gouri,
K., Anitha, K., Anand Kumar, M.: Overview of arnekt iecsil at fire-2018 track on
information extraction for conversational systems in indian languages. In: FIRE
(Working Notes) (2018)

3. Black, W.J., Vasilakopoulos, A.: Language-independent named entity classification
by modified transformation-based learning and by decision tree induction. In: Pro-
ceedings of CoNLL-2002. pp. 159–162. Taipei, Taiwan (2002)

4. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. Transactions of the Association for Computational Linguistics
5, 135–146 (2017)

5. Cucerzan, S., Yarowsky, D.: Language independent ner using a unified model of
internal and contextual evidence. In: Proceedings of CoNLL-2002. pp. 171–174.
Taipei, Taiwan (2002)

6. McNamee, P., Mayfield, J.: Entity extraction without language-specific resources.
In: Proceedings of CoNLL-2002. pp. 183–186. Taipei, Taiwan (2002)

7. Nadeau, D., Sekine, S.: A survey of named entity recognition and classification.
Lingvisticae Investigationes 30(1), 3–26 (2007)

8. Tjong Kim Sang, E.F.: Introduction to the conll-2002 shared task: Language-
independent named entity recognition. In: Proceedings of CoNLL-2002. pp. 155–158.
Taipei, Taiwan (2002)

9. Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In: Daelemans, W., Osborne, M.
(eds.) Proceedings of CoNLL-2003. pp. 142–147. Edmonton, Canada (2003)

