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The ATLAS experiment produced hundreds of petabytes of data and expects to have one order of 

magnitude more in the future. This data are spread among hundreds of computing Grid sites around 
the world. The EventIndex catalogues the basic elements of these data: real and simulated events. 
It provides the means to select and access event data in the ATLAS distributed storage system, and 
provides support for completeness and consistency checks and data overlap studies. The EventIndex 
employs various data handling technologies like Hadoop and Oracle databases, and is integrated with 
other elements of the ATLAS distributed computing infrastructure, including systems for data, 
metadata, and production management (AMI, Rucio and PanDA). The project is in operation since the 

start of LHC Run 2 in 2015, and is in permanent development in order to fit the analysis and 
production demands and follow technology evolutions. The main data store in Hadoop, based on 
MapFiles and HBase, can work for the rest of Run 2 but new solutions are explored for the future. 
Kudu offers an interesting environment, with a mixture of BigData and relational database features, 
which looked promising at the design level and is now used to build a prototype to measure the scaling 
capabilities as a function of data input rates, total data volumes and data query and retrieval rates. 
An extension of the EventIndex functionalities to support the concept of Virtual Datasets produced 

additional requirements that are tested on the same Kudu prototype, in order to estimate the system 
performance and response times for different internal data organisations. This paper reports on the 
current system performance and on the first measurements of the new prototype based on Kudu.  
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1. Introduction 

When software developments started for the ATLAS experiment [1] at the Large Hadron 
Collider (LHC) and all other similar experiments about 20 years ago, the generic word “database” 
practically referred only to relational databases, with very few exceptions. The ATLAS EventIndex [2] 
is the first application that was entirely developed having in mind the usage of modern structured 

storage systems as back-end instead of a traditional relational database. The design started in late 2012 
and the system was in production at the start of LHC Run 2 in Spring 2015.  

The EventIndex is a system designed to be a complete catalogue of ATLAS events, including 
all real and simulated data. Its main use cases are event picking (find and give me “this” event in 
“that” format and processing version), counting and selecting events based on trigger decisions, 
production completeness and consistency checks (data corruption, missing and/or duplicated events) 
and trigger chain and derivation overlap counting. It contains for each event record the event 
identifiers (run and event numbers, trigger stream, luminosity block, bunch crossing number), trigger 

decisions and references (GUID [3] of the file with this event plus the internal pointer) to the events at 
each processing stage in all permanent files generated by central productions. 

 

Figure 1. EventIndex architecture and data flow 

2. EventIndex architecture and operations during LHC Run 2 

The EventIndex has a partitioned architecture following the data flow, sketched in Figure 1. 
The Data Production component extracts event metadata from files produced on ATLAS resources at 
CERN or world-wide on the LHC Computing Grid (WLCG [4]). For real data, all datasets containing 
events in AOD format (Analysis Object Data, i.e. the reconstruction outputs) and some of the datasets 
in DAOD format (Derived AODs, i.e. selected events with reduced information for specific analyses) 
are indexed; as there are many DAOD formats, they are indexed only on demand of the production 

managers involved. Indexing information extracted from AOD datasets contains also the references to 
the corresponding raw data, so it is subsequently possible to extract events in RAW data format too. 
For simulated data, all event generator outputs are indexed, as well as all datasets in AOD and some of 
those in DAOD formats, similarly to real data. 

As soon as a production task is completed and its output dataset is registered in the ATLAS 
Metadata Interface database (AMI, [5]), the corresponding indexing task is launched automatically, on 
CERN Tier-0 resources for the data produced there, and on the WLCG for datasets produced on the 
Grid. Each job runs on one or more input files and extracts the EventIndex information for all events, 

which is packed into small files that are transferred to the CERN Object Store [6]. Over 7.4 million 
indexing jobs were run since 2015, 1.9 million of which only during the last year, with a very low 
number of failures. As indexing jobs are the first jobs run on data files just after they are produced, 
they check data integrity immediately. Occasionally jobs fail for transient site problems, usually fixed 
by retries at the same or another site, or for corrupted data files, which are then discarded and 
reproduced. 
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The Data Collection system [7] transfers EventIndex information from the production sites to 
the central servers at CERN; the bulk of the information is sent to the Object Store, and the ActiveMQ 
messaging system is used to inform the Data Collection Supervisor, a process that oversees all 
EventIndex data transfer operations, of the data location in the Object Store. When all files of a given 
dataset have been indexed and the corresponding information is available in the Object Store, the 

Supervisor informs the Consumer processes, which also run in servers at CERN, to fetch the 
EventIndex data for that dataset from the Object Store, check them for integrity, completeness (all 
events are there) and duplicates (each event is there only once), format them into a single file and store 
the file in the Hadoop [8] cluster at CERN. Figure 2 shows the data flow and messaging system usage 
between the Producer processes extracting indexing information from event data files, the Supervisor 
process and the Consumer processes packing the information for the Hadoop store. 

 

Figure 2. EventIndex Data Collection flow from distributed jobs to the central Hadoop store 

The Data Storage units provide permanent storage for EventIndex data and fast access for the 
most common queries, plus finite-time response for complex queries. The full information is stored in 
Hadoop in compressed MapFile format [9], one file per dataset; an internal catalogue in HBase [10] 
(the relational database of the Hadoop system) keeps track of the status of each dataset and holds 
dataset metadata, such as the number of events, the data format and other global information. The 
trigger decision record, a bit mask for each event, is also stored in Hadoop but in decoded format, in 

order to speed up searches and other trigger-related operations [11]. All event records are also inserted 
into an HBase table, used for fast event lookup for the event picking use case. Lookup in HBase is 
faster than in Hadoop MapFiles as it consists in a direct access to the HBase relational table instead of 
firing up a MapReduce job. Figure 3 shows schematically the data import flow within the Hadoop 
system. At the time of writing the Hadoop system stores almost 200 billion event records, using 21 TB 
for real data and 5 TB for simulated data, plus the auxiliary data (input and transient data and archive). 

Client code provides access to the Hadoop store. A command-line interface (CLI) provides 
access to all information in Hadoop. One can search events filtering on any of the event properties 

with the generic “ei” command and retrieve the full records or parts of them, or just count the events 
that satisfy the query; the results will come back in real time for quick queries or will be stored and a 
link will be sent by email for more complex queries. The “el” command queries the HBase tables to 
return the event location (GUID of the file and internal pointer) of all events satisfying the search 
criteria. With the “ti” command users can access the trigger tables, count events by trigger for a giver 
run and create and visualise the tables of trigger overlaps for all active triggers or for subsets of them 
(for example, all high-level triggers involving muons). A graphical interface (GUI) is also available to 

help users to formulate correct and coherent queries and display relations and correlations between 
selected datasets.  
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Figure 3. Data import flow within the central Hadoop store 

Real data records, without the trigger information that constitutes most of the data volume, are 

also copied to an Oracle database. The relational features of Oracle allow connecting the dataset 
metadata derived from the EventIndex with other metadata derived from the Run and Conditions 
databases, which are also stored in the same Oracle cluster, providing added value to this information. 
Oracle is also much faster in event lookup operations, once the data schema has been 
well designed [12].  

The main data tables storing EventIndex 
information in Oracle are depicted in Figure 4. In Oracle 
we currently have over 150 billion event records, stored 

in a table of 2.7 TB with 2.4 TB of index space. 
A powerful GUI provides access to the 

EventIndex information in Oracle. Users can provide 
search filters, connect to other Oracle information, 
check for duplicate events and also display the overlaps 
between derived datasets. The derivation overlap counts 
are executed a few times per year to  

Functional tests of the event picking 
functionality, the primary use case, are executed 
automatically twice per week. A random set of events 
is selected out of those that were recently imported, plus 
a random set of older events; event lookup and picking 
jobs are then launched to make sure that all components 
keep working properly. 

A monitoring system keeps track of the health 
of the servers and the data flow, providing a 

visualisation of the system status and of the amount of stored data, as well as displaying the status of 
the functional tests. Its first implementation using ElasticSearch [13] and Kibana [14] has been 
replaced recently by a much better version using InfluxDB [15] to store the data and Grafana [16] 
to display them [17]. 

3. EventIndex evolution towards LHC Run 3 

 The current EventIndex was designed in 2012-2013 selecting the best BigData technology 

available at that time (Hadoop), then implemented in 2014 using MapFiles and HBase, and is in 
operation since 2015 with satisfactory results. The use cases extended in the meantime from event 
picking and production completeness checks to trigger overlap studies, duplicate event detection and 
derivation streams (offline triggers) overlaps. The fast data querying based on a traditional relational 

 

Figure 4. EventIndex data tables in the 

Oracle store 
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database technology (Oracle) involving only a subset of information for real events is no longer 
sufficient to cover all requests, and in addition the event rate increased steadily throughout Run 2 
beyond the initial expectation. The BigData technologies advanced in the meantime and now we have 
many different products and options to choose from.  

An active R&D programme to explore different, and possibly better performing, data store 
formats in Hadoop was started in 2016. The “pure HBase” approach (database organized in columns 
of key-value pairs) was one of the original options on the table in 2013, but was not selected because 

of its poor parallelism that made the performance degrade when data volumes increase; it is more 
promising now as it shows good performance for event picking but not for all other use cases. The 
Avro [18] and Parquet [19] data formats have been explored, with tests on full 2015 real data, and also 
look promising [20]. Kudu [21] is a new technology in the Hadoop ecosystem, implementing a new 
column-oriented storage layer that complements HDFS and HBase. Data ingestion and query scanning 
are distributed among the servers holding the data partitions, thereby decreasing substantially the time 
taken by each operation. Kudu appears to be more flexible to address a wider variety of use cases, in 

particular as it is addressable also through SQL queries, placing it midway between Oracle and the 
NoSQL world; tests continued since then and show promising results [20]. 

Possible benefits of using Kudu for the EventIndex are the unification of storage for all use 

cases (random access and large-scale analytics) and the fact that related data (through reprocessings) 
will sit close to each other on disk, reducing redundancies and improving navigation. With Kudu we 
can also reduce the ingestion latency by the removal of multi-staged data loading into HDFS, enable 
in-place data mutation, enable common analytic interfaces like Spark and Impala, and finally improve 
the random lookup and analytics performance. 

Figures 5 to 7 show the performance measurements of the current Kudu prototype [22]. The 
Kudu cluster used for these tests at CERN consisted of 12 machines with 2x8 cores, 2.60 GHz clock, 
64 GB of RAM and 48 SAS drives; data were imported from the current EventIndex implementation 
in Hadoop. Figure 5 shows the time taken to import a typically large dataset, consisting of 100 million 
event records (over one day of continuous data taking), as function of the number of parallel threads 

used. The average writing speed was 5 kHz per thread, with a maximum overall writing speed into the 
Kudu cluster of 120 kHz, which is over 10 times the current need and promises well for the future 
when data-taking, processing and simulation production rates will increase. 

Searching and retrieving information for a few thousand event records from the several tens of 
billions in storage is a relevant use case that stretched the current EventIndex implementation in 
Hadoop when it was first proposed in 2015. Figure 6 shows the time needed to retrieve just the event 
location information (GUID) or the full record, the first time and when the result is already in the 
Kudu cache, as function of the number of parallel threads used. As expected the execution time is 
higher when the results are not in the cache, but retrieval rates of over 400 records per second have 
been achieved for the worst-case test and 64 active threads. 

Studying the overlaps and correlations between related triggers within a run is important to 
optimise the trigger menus and make sure that all interesting events are collected, as well as 

minimising the backgrounds. The same run with 100 million event records was used to test this use 
case in Kudu; the results in Figure 7 show that it is now possible to run this tool routinely as it takes 
only 20 minutes to compute all this information from the thousands of possible trigger chains (millions 
of correlations) active for each event. Most of the time is spent in the computation and not in data 
access, which is very good as it shows that the storage technology is not a bottleneck for this 
application. 
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Figure 7. Kudu tests: time to compute trigger correlations within a dataset with 100M event records  

as function of the number of parallel threads [22] 

Figure 5. Kudu tests: time to import a dataset of 100M event records  
as function of the number of parallel threads [22] 

Figure 6. Kudu tests: time to find and retrieve 8000 event records  

as function of the number of parallel threads [22] 
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Complementary tests were run at IFIC in Valencia (Spain) [7]. That cluster is composed of 5 
machines with 2 x Xeon E5-2690 CPU, and 256 GB of memory each. There are 8 x 6 TB data hard 
disk per machine configured as one big Raid10 disk to store tablets, summing up 22 TB per machine 
to a total of 88 TB of storage. The write ahead log is located in the extra NVMe SSD of 1.5 TB per 
machine to improve the performance of the write operations. The current Kudu configuration uses one 

of these machines as master, and the other four as tablet servers. Two types of tests were run: on 
trigger record compression formats and on the ingestion rates for different internal data organization 
schemas. 

Compressing the trigger records is important for the data sizes but the compression must be 
transparent for the tools reading this information efficiently. It was found that the best ratio of bytes 
per event is obtained with the “bitshuffle” encoding [23], which rearranges the bits for achieving better 
compression ratios relying on neighbouring elements. In addition, for our trigger use case there are 

usually many bits that are 0, i.e. not signal. In this case we do not explicitly set them to 0, but leave the 
field as null as much as possible. Then we apply a compression algorithm, with LZ4 [24] being the 
best option for this kind of bit shuffle encoding. In the end all trigger information occupies only 60 
and 15 bytes/event for Level-1 and High-Level Triggers respectively. 

The data ingestion tests run in Valencia measured the write performance for different data 
schemas. Schemas with partitions based on quantities that distribute the incoming events evenly across 
partitions provide the best performance, with ingestion rates between 5 and 6 kHz, in the same range 

as for the CERN tests. The Consumer spends 1% of the time waiting for data from the Object Store, 
then 4% of the time parsing and converting the input data; the insertion phase into Kudu client buffers 
is roughly 23% of the time, with the last flush phase taking the bulk of the time (72%). 

4. Conclusions 

The EventIndex project started in 2012 at the end of LHC Run 1, driven by the need of having 
a functional event picking system for ATLAS data. The data storage and search technology selected in 
the first phase of the project (Hadoop MapFiles and HBase, in 2013-2014) was the most advanced 
available at that time in the fast-growing field of BigData; indeed after a couple of initial hiccups it 

proved reliable and performed satisfactorily. Part of the data are replicated also to Oracle for faster 
access but mainly to have a uniform environment between event and dataset metadata. Nevertheless 
the current implementation of the EventIndex started showing scalability issues as the amount of 
stored data increased in the last couple of years: slower queries, lots of storage (compression helped of 
course).  

Kudu looks like a very promising solution that can carry the EventIndex through Run 3 (2021-
2024), with faster data injection and queries, the possibility of using analytics tools, and the 
compatibility with SQL queries for the connections to other information in relational databases. The 

ATLAS plan is to finalise the schemas by the end of 2018 and then upload all Run 1 and Run 2 data 
from the Hadoop EventIndex and run Hadoop and Kudu in parallel until we are satisfied with the 
performance in terms of speed, ease of use and system stability. If all goes well, by the end of 2019 we 
will be able to run only Kudu and decommission the Hadoop infrastructure for the EventIndex. 
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