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Abstract. Changes in cell nuclear architecture are regulated by complex
biological mechanisms that associated with the altered functional proper-
ties of a cell. Quantitative analyses of structural alterations of nuclei and
their compartments are important for understanding such mechanisms.
In this work we present a comparison of approaches for nuclear structure
classification, evaluated on 2D per-channel representations from a 3D mi-
croscopy imaging dataset by maximum intensity projection. Specifically,
we compare direct classification of pixel data from either raw intensity
images or binary masks that contain only information about morphol-
ogy of the object, but not intensity. We evaluate a number of widely
used classification algorithms using 2 different cross-validation schemes
to assess batch effects. We compare obtained results with the previously
reported baselines and discuss novel findings.
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1 Introduction

Cell nuclear structure is regulated by underlying biological mechanisms related
to cell differentiation, development, and disease [3, 11, 12]. Changes in nuclear
architecture are related to altered functional properties such as gene regula-
tion and expression. Moreover, studies in mechanobiology show that external
geometric constraints and mechanical forces that deform the cell nucleus affect
chromatin dynamics and gene and pathway activation [10]. Quantitative analyses
of structural alterations of nuclear structures also have medical implications, for
example, in detection of pathological conditions, such as cancer [12, 8]. Although
a few algorithms have been proposed to analyze cell and nuclear phenotypes in
3D [2], the dimensionality of data, various image acquisition conditions, and
great variability of cells in a population present numerous challenges for 3D im-
age analysis. 2D image representations are computationally cheaper to operate
on and often contain enough information to achieve a desired performance.



In this work we present a comparison of approaches for nuclear structure
classification, evaluated on 2D per-channel maximum intensity projections from
a large 3D microscopy imaging dataset. Specifically, we compare direct classifica-
tion of pixel data from either raw intensity images or binary masks, which contain
only object morphology information, but not texture. We evaluate a number of
widely used classification algorithms using 2 different cross-validation schemes
to assess batch effects. We demonstrate near-perfect classification performance
using 2D data and compare our results with originally reported baselines [5].

2 Methods

2.1 Dataset description

In this study we use 3D Cell Nuclear Morphology Microscopy Imaging Dataset
[5], the biggest public dataset for nuclear structure classification. This dataset
contains 3D volumetric microscopic cell images with corresponding nuclear and
nucleolar binary masks. It includes images of cells in two phenotypic states that
have been shown to exhibit different nuclear structure. Thus, it poses a binary
classification problem that can be used for the assessment of cell nuclear and
nucleolar phenotype analysis methods. Cells are labeled with 3 different fluo-
rophores: DAPI (4’,6-diamidino-2-phenylindole), a common stain for the nuclei,
fibrillarin antibody (anti-fibrillarin) and ethidium bromide (EtBr), both used
for nucleoli staining. In the dataset original images are in 1, 024 × 1, 024 × Z
lattice (Z = {30, 50}). Every sub-volume is labeled as c0, c1, c2, representing
the DAPI, anti-fibrillarin, and EtBr channels, respectively, Fig. 1. Binary masks
are obtained by segmentation of the original data in c0 and c2 channels [5].

In this work we focus on images of primary human fibroblast cells. A part of
this collection was subjected to a G0/G1 Serum Starvation Protocol used for cell
cycle synchronization, has previously been shown to alter nuclear organization
and to be reflected in changes in nuclear size and shape [9]. As a result, it contains
178 3D volumetric images of cells in the following phenotypic classes: (1) 64 sub-
volumes of proliferating fibroblasts (PROLIF), and (2) 112 sub-volumes of the
cell cycle synchronized by the serum-starvation protocol cells (SS). These classes
serve as two categories in a binary morphology classification setting.

2.2 Data preprocessing

Fluorescent labels are not always specific to the object of interest and often
produce noisy background (Fig. 1). In order to assess changes in the nuclear
architecture, we first apply nuclear masks provided with the dataset to all 3
channels of original microscopy data. Due to the anisotropy in original data, we
then re-scale volumes in Z dimension by a factor extracted from the correspond-
ing meta-data. Since each of 1, 024 × 1, 024 × Z sub-volumes typically contains
between 1 and 5 nuclei, we crop re-scaled volumes into smaller 256 × 256 × 57
sub-volumes, centered at the centroid of the corresponding nuclear mask and



Fig. 1. An exemplar 3D visualization of a data sub-volume from the fibroblast cell
collection: (A) DAPI channel; (B) EtBr channel; (C) anti-fibrillarin channel; (D) a
composite image. Adapted from [5] under CC-BY 4.0 International license.

zero-pad them, when necessary. Finally, we produce 2D representation of sub-
volumes by a maximum intensity projection along the Z dimension (Fig. 2). As
a result, we create a set of 999 256× 256 images per channel.

Fig. 2. An exemplar visualization of 256× 256 2D maximum intensity projections of a
masked, re-scaled, and cropped fibroblast sub-volumes in: (A) DAPI channel, c0; (B)
anti-fibrillarin channel, c1; (C) EtBr channel, c2.

2.3 Classification

We compare classification algorithms from scikit-learn, a popular Python ma-
chine learning toolkit [7], including Gaussian Naive Bayes (NB), Linear Dis-
criminant Analysis (LDA), k nearest neighbors classifier (kNN), support vector
machines with linear (SVM) and Gaussian kernels (RBF), Random Forest (RF),



Extremely Randomized Trees (ET), and Gradient Boosting (GBM). All classi-
fiers use default hyper-parameters. Every image is flattened into a 1D feature
vector. Feature preprocessing includes subtracting the mean and scaling to unit
variance of the training set. We assign the label of the whole image to every cell
extracted from it. In order to assess batch effects in the intensity images and
binary masks, we compare k-fold cross-validation (CV) scheme with the Leave-2-
Opposite-Groups-Out (L2OGO) scheme, suggested in [5]. L2OGO ensures that:
(1) all masks derived from one image fall either in the training or testing set,
and (2) testing set always contains masks from 2 images of different classes.

3 Results

First, we evaluate the performance of algorithms for fibroblast nuclear classifi-
cation using only 2D morphological information, i.e. binary masks. We compute
AUROC per chennel using 2 different CV schemes: 20 splits in L2OGO and a 10
times repeated 4-fold CV. Results in Table 1 do not show any apparent batch ef-
fects in the 2D classification setting in any of the channels, as performance levels
L2OGO are only slightly lower compared to 4-fold CV. As expected, classifiers
are not able to pick up complex morphological relationships from flattened bi-
nary vectors, even when 3 channels are combined. Results are dominated by the
morphometry features extracted from binary masks, as described in [5]. The best
overall result with L2OGO is achieved by the Gaussian SVM (RBF) classifier in
with AUROC = 0.772±0.041, AUPR = 0.731±0.063, and F1 = 0.682±0.060.

Next, we evaluate the performance using only 2D pixel intensity informa-
tion. Results in Table 2 indicate possible batch effects. The performance on
the nuclear c0 channel does not benefit from the presence of additional infor-
mation compared to only 2D masks. But nucleolar-stained channels c1 and c2
demonstrate 20% gain in performance even using more conservative L2OGO CV.
However, L2OGO here leads to a large variance of the performance metric. On
average, the EtBr channel (c2) seems to provide a sightly better representation
of nucleolar structure comared to the anti-fibrillarin (c1). Almost all classifiers
in both channels show results superior of those obtained with morphometric
features, see Table 1. Combining all 3 channels gives the best result, demon-
strating the complement nature of stains. The best overall result is achieved
by the the Gaussian SVM (RBF) classifier with AUROC = 0.990 ± 0.029,
AUPR = 0.980± 0.040, and F1 = 0.877± 0.177).

4 Discussion

In order to establish baseline evaluation of simple pixel-based nuclear structure
classification methods, we provide a comparison of a number of widely used ma-
chine learning algorithms on both binary and intensity 2D projections of 3D
microscopic images. Although DAPI structure classification did not benefit from
using the intensity information, our results indicate usefulness of intensities of
nucleolar labels: anti-fibrillarin and EtBr. Nuclear morphometry extracted from



Table 1. Classification AUROC (mean ± std) on binary masks for 2 cross-validation
schemes (CV: 4-fold and L2OGO) and a number of algorithms (Clf: NB, LDA, kNN,
SVM, RBF, RF, ET, GBM) per image channel (c0, c1, c2, and all 3 channels combined).
For the reference, the last column contains performance measures obtained using voxel-
based morphometry features extracted from binary masks [5].

Binary images Morphology [5]

CV Clf c0 c1 c2 c0c1c2 c0c2

4-fold

kNN 0.604 ± 0.056 0.615 ± 0.059 0.610 ± 0.059 0.620 ± 0.062 0.706 ± 0.030
SVM 0.597 ± 0.067 0.583 ± 0.075 0.582 ± 0.054 0.650 ± 0.071 0.646 ± 0.090
RBF 0.647 ± 0.053 0.648 ± 0.078 0.644 ± 0.0560.644 ± 0.0560.644 ± 0.056 0.678 ± 0.062 0.785 ± 0.0270.785 ± 0.0270.785 ± 0.027
RF 0.635 ± 0.061 0.642 ± 0.061 0.635 ± 0.054 0.661 ± 0.064 0.735 ± 0.029
ET 0.581 ± 0.059 0.577 ± 0.077 0.573 ± 0.058 0.651 ± 0.054 0.732 ± 0.034

GBM 0.659 ± 0.0490.659 ± 0.0490.659 ± 0.049 0.658 ± 0.0620.658 ± 0.0620.658 ± 0.062 0.641 ± 0.061 0.721 ± 0.0540.721 ± 0.0540.721 ± 0.054 0.783 ± 0.032

L2OGO

kNN 0.582 ± 0.047 0.582 ± 0.047 0.582 ± 0.047 0.582 ± 0.047 0.695 ± 0.030
SVM 0.557 ± 0.057 0.568 ± 0.050 0.555 ± 0.046 0.564 ± 0.053 0.650 ± 0.077
RBF 0.616 ± 0.060 0.616 ± 0.060 0.616 ± 0.060 0.616 ± 0.060 0.772 ± 0.0410.772 ± 0.0410.772 ± 0.041
RF 0.635 ± 0.038 0.636 ± 0.037 0.626 ± 0.050 0.627 ± 0.041 0.719 ± 0.039
ET 0.637 ± 0.039 0.637 ± 0.039 0.641 ± 0.0440.641 ± 0.0440.641 ± 0.044 0.636 ± 0.042 0.717 ± 0.034

GBM 0.642 ± 0.0370.642 ± 0.0370.642 ± 0.037 0.644 ± 0.0380.644 ± 0.0380.644 ± 0.038 0.639 ± 0.037 0.643 ± 0.0410.643 ± 0.0410.643 ± 0.041 0.758 ± 0.041

Table 2. Classification AUROC (mean ± std) on raw intensity images for 2 cross-
validation schemes (CV: 4-fold and L2OGO) and a number of algorithms (Clf: NB,
LDA, kNN, SVM, RBF, RF, ET, GBM) per image channel (c0, c1, c2, and all 3
channels combined).

Raw intensity images

CV Clf c0 c1 c2 c0c1c2

4-fold

kNN 0.581 ± 0.059 0.771 ± 0.048 0.862 ± 0.041 0.865 ± 0.039
SVM 0.610 ± 0.077 0.726 ± 0.080 0.829 ± 0.059 0.896 ± 0.043
RBF 0.647 ± 0.058 0.814 ± 0.052 0.892 ± 0.0326 0.938 ± 0.026
RF 0.630 ± 0.040 0.868 ± 0.039 0.890 ± 0.035 0.948 ± 0.022
ET 0.606 ± 0.054 0.864 ± 0.045 0.875 ± 0.035 0.961 ± 0.021

GBM 0.673 ± 0.0460.673 ± 0.0460.673 ± 0.046 0.919 ± 0.0310.919 ± 0.0310.919 ± 0.031 0.912 ± 0.0260.912 ± 0.0260.912 ± 0.026 0.974 ± 0.0110.974 ± 0.0110.974 ± 0.011

L2OGO

kNN 0.552 ± 0.030 0.755 ± 0.207 0.826 ± 0.170 0.933 ± 0.044
SVM 0.579 ± 0.053 0.671 ± 0.166 0.794 ± 0.183 0.964 ± 0.068
RBF 0.579 ± 0.053 0.766 ± 0.261 0.844 ± 0.204 0.990 ± 0.0210.990 ± 0.0210.990 ± 0.021
RF 0.579 ± 0.053 0.823 ± 0.202 0.841 ± 0.188 0.966 ± 0.057
ET 0.613 ± 0.047 0.816 ± 0.209 0.839 ± 0.181 0.975 ± 0.034

GBM 0.637 ± 0.0450.637 ± 0.0450.637 ± 0.045 0.844 ± 0.2350.844 ± 0.2350.844 ± 0.235 0.857 ± 0.2040.857 ± 0.2040.857 ± 0.204 0.990 ± 0.029

binary masks seems to reflect most of the relevant changes. Increased potential
for batch effects is only observed in classification of nucleolar structures in chan-
nels c1 and c2. Interestingly, combining 3 channels together seems to alleviate
this issue and lead to near-perfect performance in L2OGO scheme.

Presented evaluation has a number of drawbacks and requires further inves-
tigation. First, we only use flattened vectors of pixels, while there exist multiple



methods for texture feature extraction, which may speed up the calculation.
Alternatively, deep learning-based methods can be used for automatic feature
learning [1, 6]. Second, we only evaluate performance on 2D maximum intensity
projections of 3D images. Bigger study could further address similar issues in
the original 3D space. Finally, we assume each nucleus in the same image to be
representative of the phenotypic label that is provided for the whole image. This
can be addressed by using methods that are robust to label noise [4].
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