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Abstract—Combinatorial testing is a well-known black-box
testing approach. Empirical studies suggest the effectiveness of
combinatorial coverage criteria. So far, the research focuses
on positive test scenarios. But, robustness is an important
characteristic of software systems and testing negative scenarios
is crucial. Combinatorial strategies are extended to generate
invalid test inputs but the effectiveness of negative test scenarios
is yet unclear. Therefore, we conduct a case study and analyze 434
failures reported as bugs of an financial enterprise application.
As a result, 51 robustness failures are identified including failures
triggered by invalid value combinations and failures triggered by
interactions of valid and invalid values. Based on the findings,
four challenges for combinatorial robustness testing are derived.

Keywords-Software Testing, Combinatorial Testing, Robustness
Testing, Test Design

I. INTRODUCTION

Combinatorial testing (CT) is a black-box approach to reveal
conformance faults between the system under test (SUT) and
its specification. An input parameter model (IPM) with input
parameters and interesting values is derived from the specifi-
cation. Test inputs are generated where each input parameter
has a value assigned. The generation is usually automated and
a combination strategy defines how values are selected [1].

CT can help detecting interaction failures, e.g. failures
triggered by the interaction of two or more specific values.
For instance, a bug report analyzed by Wallace and Kuhn [2]
describes that ”the ventilator could fail when the altitude ad-
justment feature was set on 0 meters and the total flow volume
was set at a delivery rate of less than 2.2 liter per minute“.
The failure is triggered by the interaction of altitude=0 and
delivery-rate<2.2. This is called a failure-triggering fault
interaction (FTFI) and its dimension is d = 2 because the
interaction of two input parameter values is required.

Testing each value only once is not sufficient to detect
interaction faults and exhaustively testing all interactions
among all input parameters is almost never feasible in practice.
Therefore, other combinatorial coverage criteria like t-wise
where 1 ≤ t < n denotes the testing strength are proposed [1].

The effectiveness of combinatorial coverage criteria is also
researched in empirical studies [2]–[7]. Collected bug reports
are analyzed and FTFI dimensions are determined for different
types of software [4]. If all failures of a SUT are triggered by

an interaction of d or fewer parameter values, then testing all
d-wise parameter value combinations should be as effective
as exhaustive testing [4]. No analyzed failure required an
interaction of more than six parameter values to be triggered
[7], [8]. The results indicate that 2-wise (pairwise) testing
should trigger most failures and 4 to 6-wise testing should
trigger all failures of a SUT.

However, so far research focuses on positive test scenarios,
i.e. test inputs with valid values to test the implemented
operations based on their specification. Since robustness is
an important characteristic of software systems [9], testing of
negative test scenarios is crucial. Invalid test inputs contain
invalid values, e.g. a string value when a numerical value is
expected, or invalid combinations of otherwise valid values,
e.g. a begin date which is after the end date.

They are used to check proper error-handling to avoid ab-
normal behavior and system crashes. Error-handling is usually
separated from normal program execution. It is triggered by
an invalid value or an invalid value combination and all other
values of the test input remain untested. Therefore, a strict
separation of valid and invalid test inputs is suggested and
combination strategies are extended to support generation of
invalid test inputs [1], [10]–[13].

But, the effectiveness of negative test scenarios is unclear
as this is not yet empirically researched. To the best of our
knowledge, it is only Pan et al. [14], [15] who characterize
data of faults from robustness testing. Their results obtained
from testing robustness of operating system APIs indicate that
most robustness failures are caused by single invalid values.
Though, there is no more information on failures caused by
invalid value combinations. Because only one type of software
is analyzed, more empirical studies are required to confirm
(or reject) the distribution and upper limit of FTFIs for other
software types (Kuhn and Wallace [4]).

To gather more information on failures triggered by invalid
value combinations, we conducted a case study to analyze bug
reports of a newly developed distributed enterprise application
for financial services. In total, 683 bug reports are examined
and 434 of them describe failures which are further analyzed.

The paper is structured as follows. Section II and III
summarize foundations and related work. In Section IV, the
design of the case study is explained. The results are discussed
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p1 : PaymentType V1 = {CreditCard,Bill}
p2 : DeliveryType V2 = {Standard,Express}
p3 : TotalAmount V3 = {1, 500}

Listing 1: Exemplary IPM for a Checkout Service

in Section V and challenges for combinatorial testing are
discussed in Section VII. Afterwards, potential threads to
validity are discussed and we conclude with a summary of
our work.

II. BACKGROUND

A. Robustness Testing

Testing is the activity of stimulating a system under test
(SUT) and observing its response [16]. System testing (also
called functional testing) is concerned with the behavior of the
entire system and usually corresponds to business processes,
use cases or user stories [17]. Both, the stimulus and response
consist of values. They are called test input and test output, re-
spectively. In this context, input comprises anything explicable
that is used to change the observable behaviour of the SUT.
Output comprises anything explicable that can be observed
after test execution.

A test case covers a certain scenario to check whether the
SUT satisfies a particular requirement [18]. It consists of a
test input and a test oracle [19]. The test input is necessary
to induce the desired behavior. The test oracle provides the
expected results which can be observed after test execution if
and only if the SUT behaves as intended by its specification.
Finally, the expected result to the actual result are compared
to determine whether the test passes or fails.

Since robustness is an important software quality [9], testing
should not only cover positive but also negative scenarios to
evaluate a SUT. Robustness is defined as “the degree to which
a system or component can function correctly in the presence
of invalid inputs or stressful environmental conditions” [18].
Positive scenarios focus on valid intended operations of the
SUT using valid test inputs that are within the specified
boundaries. Negative scenarios focus on the error-handling
using invalid test inputs that are outside of the specified
boundaries. For instance, input that is malformed, e.g. a string
input when numerical input is expected, or input that violates
business rules, e.g. a begin date which is after the end date.

B. Combinatorial Testing

Combinatorial testing (CT) is a black-box approach to reveal
interaction failures, i.e. failures triggered by the interaction of
two or more specific values, because the SUT is tested with
varying test inputs. A generic test script describes a sequence
of steps to exercise the SUT with placeholders (variables)
that represent variation points [17]. The variation points can
be used to vary different inputs to the system, configuration
variables or internal system states [8]. With CT, varying test
inputs are created to instantiate the generic test script.

An input parameter model (IPM) is created for which
input parameters and interesting values are derived from the

Table I: Pairwise Test Suite

PaymentType DeliveryType TotalAmount
Bill Express 500
Bill Standard 1

CreditCard Standard 500
CreditCard Express 1

specification. The IPM is represented as a set of n input
parameters IPM = {p1, ..., pn} and each input parameter pi
is represented as a non-empty set of values Vi = {v1, ..., vmi}.

Test inputs are composed from the IPM such that every test
input contains a value for each input parameter. Formally, a
test input is a set of parameter-value pairs for all n distinct pa-
rameters and a parameter-value pair (pi, vj) denotes a selection
of value vj ∈ Vi for parameter pi.

Listing 1 depicts an exemplary IPM to test the check-
out service of an e-commerce system with three input pa-
rameters and two values for each input parameter. One
possible test input for this IPM is [PaymentType:Bill,

DeliveryType:Standard, TotalAmount:1]. Formally, a
test input τ = {(pi1 , vj1), ..., (pin , vjn)} is denoted as a set of
pairs. In this paper, we use the aforementioned notation with
brackets which is equal to τ = {(p1, v2), (p2, v1), (p3, v1)}.

The composition of test inputs is usually automated and a
combination strategy defines how values are selected [1]. Since
testing each value only once is not sufficient to detect inter-
action faults and exhaustively testing all interactions among
all input parameters is almost never feasible in practice, other
coverage criteria like t-wise are proposed.

For illustration, Table I depicts a test suite for the
e-commerce example that satisfies the pairwise coverage
criterion. For more information on the different cover-
age criteria, please refer to Grindal et al. [1]. To satisfy
the coverage criterion, all pairwise value combinations of
PaymentType×DeliveryType, PaymentType×TotalAmount
and DeliveryType × TotalAmount must be included in at
least one test input. If the first test input was not exe-
cuted, pairwise coverage would not be satisfied because the
combinations [PaymentType:Bill, DeliveryType:Expr

ess],[PaymentType:Bill, Total Amount:1], [Delive
ryType: Express, Total Amount:1] would be untested.

In comparison to exhaustive testing, fewer test inputs are
required to satisfy the other coverage criteria. But as the
example illustrates, problems with only one test input might
lead to combinations being not covered and failures that are
triggered by these combinations remain undetected.

If we suppose that the checkout service requires a total
amount of at least 25 dollar, then two test inputs of the example
(Table I) with [TotalAmount:1] are expected to abort with
a message to buy more products. In those cases, the SUT
deviates from the normal control-flow and an error-handling
procedure is triggered. The value [TotalAmount:1] that is
responsible for triggering the error-handling is called invalid
value. If we also suppose that the checkout service rejects
payment by bill for total amounts greater than 300 dollar, then
[PaymentType:Bill, TotalAmount:500] would trigger
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error-handling as well. Even though both values are valid, the
combination of them denotes an invalid value combination.

Valid test inputs do not contain any invalid values and
invalid value combinations. In contrast, an invalid test input
contains at least one invalid value or invalid value combination.
If an invalid test input contains exactly one invalid value or
one invalid value combination, it is called a strong invalid test
input.

Once the SUT evaluates an invalid value or invalid value
combination, error-handling is triggered. The normal control-
flow is left and all other values and value combinations of the
test input remain untested. They are masked by the invalid
value or invalid value combination [13]. This phenomenon is
called input masking effect which we adapt from Yilmaz et
al. [20]: “The input masking effect is an effect that prevents a
test case from testing all combinations of input values, which
the test case is normally expected to test”.

To prevent input masking, a strict separation of valid and
invalid test inputs is suggested [1], [10]–[13]. Combination
strategies are extended to support t-wise generation of invalid
test inputs. Values can be marked as invalid to exclude them
from valid test inputs and to include them in invalid test
inputs. The invalid value is then combined with all (t−1)-wise
combinations of valid values. An extension that we proposed
also allows to explicitly mark and generate t-wise invalid test
inputs based on invalid value combinations [13].

C. Fault Characteristics

According to IEEE [18], an error is ”the difference between
a computed, observed, or measured value or condition and the
true, specified, or theoretically correct value or condition.“ It
is the result of a mistake made by a human and is manifested
as a fault. In turn, a fault is statically present in the source
code and is the identified or hypothesized cause of a failure.
A failure is an external behavior of the SUT, i.e. a behavior
observable or perceivable by the user, which is incorrect with
regards to the specified or expected behavior.

In CT, we assume that the execution path through the SUT
is determined by the values and value combination of the test
input. If an executed statement contains a fault that causes
an observable failure and if a certain value or a certain value
combination is required for executing the statement, then the
value or value combination is called a failure-triggering fault
interaction (FTFI). The number of parameters involved in a
FTFI is its dimension denoted as d with 0 ≤ d ≤ n. For
instance, if the checkout service contains a fault and accepts a
total amount of one but only if express is chosen as the delivery
type, then [TotalAmount:1, DeliveryType:Express] is
a FTFI with a dimension of two.

In general, different types of triggers exist to expose failures
[21]. A trigger is a set of conditions to expose a failure if
the conditions are satisfied . We focus on FTFI, i.e. failures
triggered by test input variations, rather than on failures
triggered by ordering or timing of stimulation.

In addition, we introduce the following terms for robustness
fault characteristics. A failure is a robustness failure if the

FTFI contains an invalid value or an invalid value combi-
nation. Then, the number of parameters that constitute the
invalid value or invalid value combination are denoted as the
robustness size. In case of an invalid value, the robustness size
is one.

The extension to support t-wise generation of invalid test
inputs is based on the assumption that failures are triggered
by an interaction of an invalid value (or invalid value com-
bination) and a (t − 1)-wise combination of valid values of
the other parameters. This is a robustness interaction and
its robustness interaction dimension can be computed by
subtracting the robustness size from the FTFI dimension.
There is no robustness interaction if the robustness size
and FTFI dimension are equal, i.e. the robustness interac-
tion dimension is zero. For instance, there is no robustness
interaction if [TotalAmount:1] or [PaymentType:Bill,

Total Amount:500] trigger failure. In contrast, the robust-
ness interaction dimension of the aforementioned example
[TotalAmount:1, DeliveryType:Express] is one be-
cause the invalid value interacts with one valid value.

III. RELATED WORK

If the highest dimension of parameters involved in FTFIs is
known before testing, then testing all d-wise parameter value
combinations should be as effective as exhaustive testing [4].
However, d cannot be determined for a SUT a-priori because
the faults are not known before testing. Hence, the motivation
of fault characterization in black-box testing is to empirically
derive fault characteristics to guide future test activities.

Existing research on the effectiveness of black-box testing
derives the distribution and maximum of d among different
types of software based on bug reports. Wallace and Kuhn
[2] review 15 years of recall data from medical devices,
i.e. software written for embedded systems. Kuhn and Reilly
[3] analyze bug reports from two large open-source software
projects; namely the Apache web server and the Mozilla web
browser. Kuhn and Wallace [4] report findings from analyzing
329 bug reports of a large distributed data management system
developed at NASA Goddard Space Flight Center. Bell and
Vouk [5] analyze the effectiveness of pairwise testing network-
centric software. They derive their fault characteristics from a
public database of security flaws and create simulations based
on that data. Kuhn and Okum [6] apply combinatorial testing
with different strengths to a module of a traffic collision avoid-
ance system which is written in the C programming language.
Though, the experiments use manually seeded ”realistic“ faults
rather than a specific bug database. Cotroneo et al. [21] again
analyze bug reports from Apache and the MySQL database
system and Ratliff et al. [22] report the FTFI dimensions of
242 bug reports from the MySQL database system.

As concluded by Kuhn et al. [7], the studies show that most
failures in the investigated domains are triggered by single
parameter values and parameter value pairs. Progressively
fewer failures are triggered by an interaction of three or more
parameter values. In addition to the distribution of FTFIs,
a maximum interaction of four to six parameter values is
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identified. No reported failure required an interaction of more
than six parameter values to be triggered. Thus, pairwise
testing should trigger most failures and 4- to 6-wise testing
should trigger all failures of a SUT [8].

Several tools include the concept of invalid values to support
the generation of invalid test inputs [10]–[12]. An algorithm
that we proposed [13] extends the concept to invalid value
combinations. In their case study, Wojciak and Tzoref-Brill
[23] report on system level combinatorial testing that includes
testing of negative scenarios. There, t-wise coverage of neg-
ative test inputs is required because error-handling depends
on a robustness interaction between invalid and valid values.
Another case study by Offut and Alluri [24] reports on the
first application of CT for financial calculation engines but
robustness is not further discussed.

From an empirical point of view, the effectiveness of
negative test scenarios is yet unclear. To the best of our
knowledge, it is only Pan et al. [14], [15] who characterize
data on faults from robustness testing. The results of testing
robustness of operating system APIs indicate that most robust-
ness failures are caused by single invalid values. Though, there
is no more information on failures triggered by invalid value
combinations. Also, as Kuhn et al. [4] state, more empirical
studies are required to confirm (or reject) the distribution
and upper limit of FTFIs for other software types. Therefore,
we conducted another case study which is described in the
subsequent sections.

IV. CASE STUDY DESIGN

A. Research Method

We follow the guidelines for conducting and reporting
case study research in software engineering as suggested
by Runeson and Höst [25]. As they state, a case study
”investigates a contemporary phenomenon within its real life
context, especially when the boundaries between phenomenon
and context are not clearly evident“. Case study research
is typically used for exploratory purposes, e.g. seeking new
insights and generating hypotheses for new research.

The guidelines suggest to conduct a case study in five steps.
First, the objectives are defined and the case study is planned.
As a second step, the data collection is prepared before the
data is collected in a third step. Afterwards, the collected data
is analyzed and finally, the results of the analysis are reported.

B. Research Objective

The overall objective of this case study is to gather informa-
tion on the effectiveness of combinatorial testing with invalid
test inputs, and to compare the obtained results with the ones
of other published case studies. For example, the work by
Pan et al. [14], [15] indicates that most robustness failures
in operating system APIs are triggered by single values rather
than value combinations, i.e. a FTFI dimension and robustness
size of one. Hence, our aim is to either confirm or reject
this indication for enterprise applications. This leads to the
following two concrete research objectives:

RO1: Identify the different FTFI dimensions of robustness
failures that can be observed in our case study.

The generation of t-wise invalid test inputs is based on the
assumption that failures are triggered by a robustness interac-
tion between the invalid value (or invalid value combination)
and (t− 1)-wise combination of the valid values of the other
parameters. If the highest robustness interaction dimension
is known before testing, then testing all t-wise invalid test
inputs of that dimension should be as effective as exhaustive
robustness testing.
RO2: Identify different robustness sizes and derive the robust-
ness interaction dimensions that can be observed in our case
study.

C. Case and Unit of Analysis

The case is a software development project from an IT
service provider for an insurance company. A new system
is developed to manage the lifecycle of life insurances. It is
based on an off-the-shelf framework which is customized and
extended to meet the company’s requirements. In total, the
new system consists of 2.5 MLOC and an estimated workload
of 5000 person days. The core is an inventory sub-system
with a central database to store information on customer’s life
insurance contracts. In addition, complex financial calculation
engines and business processes like capturing and creating new
customer insurances are implemented. The business processes
also integrate with a variety of different already existing
systems which are, for instance, responsible to manage infor-
mation about the contract partners, about claims and damages
and to the support insurance agents.

Since life insurance contracts have decade-long lifespans
and rely on complex financial models, the correctness of the
system is business critical. Mistakes can have severe effects
which can even amplify over the long-lasting lifespans and
cause enormous damage to the company. Therefore, thorough
testing is important.

Even though, the business processes are managed by the
new system, they rely on other systems of which each again
relies on other systems. This makes it hard to test the system
or its parts in isolation. It is also difficult to control the state
of the systems and to observe the complete behavior which
makes testing even more complicated.

Therefore, most testing is conducted on a system level
within an integrated test environment in which all required
systems are deployed. The test design is often based on expe-
rience and error-guessing. Tests are executed mostly manually
because of the low controllability and observability.

D. Data Collection Procedure

To yield the research objectives, the case study relies on
archival data from the aforementioned software development
project. A project-wide issue management system contains all
bug reports from the project start in 2015 to the productive
deployment at the beginning of 2018. In general, a bug report
is a specifically categorized issue which coexists with other
project management- and development-related issues.
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For our case study, we analyzed the issue’s title, its category,
its initial description, additional information in the comment
section and its status. Further on, some bug reports are also
connected to a central source code management system. If
a bug report does not contain sufficient information, the
corresponding source code modifications can be analyzed as
well.

The issues are filtered to restrict the analysis to only
reasonable bug reports. Therefore, issues created automatically
by static analysis tools are excluded. Further on, only issues
categorized as bug reports whose status is set to complete are
considered because we expect only them to contain a correct
description on how to systematically reproduce the failure.

E. Data Analysis Procedure

Once the bug reports are exported from the issue manage-
ment system, each bug report is analyzed one at a time. First, it
is checked if the bug report describes a failure in the sense that
an incorrect behaviour is observable by the user. Otherwise,
the bug report is rejected.

Afterwards, the trigger type of the reported failure is
determined. The bug report is not further analyzed if no
systematically reproducible trigger is found. It is also rejected
if the failure is not triggered by a test input variation but rather
triggered by unlikely ordering or timing. If a specific value
or value combination is identified to trigger the failure, the
dimension of the FTFI is determined in the next step.

Then, the bug report is classified as either positive or
negative depending on whether any invalid values or invalid
value combinations are contained. If it is classified as negative,
i.e. if it is a robustness failure, the robustness size of the invalid
value or invalid value combination is determined as well.

A robustness size which is lower than the FTFI dimension
indicates a robustness interaction between the invalid value
(combination) and valid combinations of the other parame-
ters. If possible, the robustness interaction dimension is also
extracted from the bug report.

V. RESULTS AND DISCUSSION

A. Analyzed Data

In total, 683 bug reports are analyzed. All reported bugs
are revealed and fixed during the development phase of the
system. Even though filters are applied to export the bug
reports, 249 bug reports are classified as unrelated, because
the issue management system is also used as a communication
and task management tool. For instance, problems with config-
urations of test environments, refactorings or build problems
are categorized as bug reports as well.

The remaining 434 bug reports describe failures, they are
classified as follows. Eight bug reports do not provide enough
information for further analysis and classification. 38 reported
bugs require specific timing and ordering of sequences to be
triggered. For instance, one sequence to trigger a failure is
to search for a customer, open its details, edit the birthday,
press cancel and edit the birthday again. Three reported bugs
are related to robustness testing. They are triggered by other

systems that timeout and do not response to requests. All these
bug reports are excluded form further analysis because CT is
about varying test inputs rather than varying sequences and
timing.

The remaining 388 bug reports describe failures triggered
by some test input. A subset of 176 bug reports describes
integration failures with other systems where values are not
correctly mapped from one data structure to another. They can
be triggered by any test input. There are so many reported inte-
gration issues (45% out of 434 bug reports) because the system
consists of several independently developed components which
are early and often integrated with the other components and
other systems using one of the test environments.

Finally, 212 bug reports are considered to be suitable for
CT, which is 49% of all 434 bug reports that describe failures
which is 55% of all 388 bug reports that are triggered by some
test input To reproduce one of the bugs reported, the test input
requires at least one specific value.

B. Observed FTFI Dimensions

The observed FTFI dimensions for the 212 bug reports are
depicted in Table II. Most failures are triggered by single
parameter values and parameter value pairs and progressively
fewer failures are triggered by 3- and 4-wise interactions. In
our case, no reported bug requires an interaction of more than
4 parameters in order to trigger the failure.

Table III presents the cumulative percentage of the FTFI
dimensions. The last three columns refer to our case study and
shows that 76% of all reported failures require 1-wise (each
choice) coverage to be reliably triggered. It adds up to 96%
when testing with pairwise coverage and 100% are covered
when all 4-wise parameter value combinations are used for
testing.

To compare our results, the first columns of the table show
the results of previous case studies, briefly introduced in the
related work section. The numbers and also the average per-
centage values are taken from Kuhn et al. [7]. The distribution
of FTFIs obtained in our case study is not in contradiction to
the other cases. However, the distribution is mostly similar
to cases [2] and [4]. While there are no obvious similarities
with embedded systems for medical devices [2], the large
data management system [4] is probably quite similar to our
case in terms of requirements and used technologies. Similar
to our case, the bug reports are also from a development
project whereas the other studies analyze fielded products
[7]. For all three cases, most failures are triggered by single
parameter values and almost all failures are triggered by the
combination of single parameter values and pairwise parameter
value combinations. All failures should be triggered by 4-wise
parameter value combinations.

So far, only the dimension of failure-triggering fault in-
teractions is considered but differences between positive and
negative scenarios are not discussed.

All in all, 51 robustness failures are identified which are
classified as follows. 22 failures are caused by incorrect error-
detection of abnormal situations because conditions to detect
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Table II: Observed FTFI Dimensions

d All Positive Negative
1 162 121 41
2 40 31 9
3 6 5 1
4 4 4 -
5 - - -
6 - - -

Table III: Cumulative Percentage of FTFI Dimensions

Previous Studies Our Study
d [2] [3]a [3]b [4] [5] [21] [22] Avg. All Pos. Neg.
1 66 28 41 67 18 9 49 39.7 76 75 80
2 97 76 70 93 62 47 86 75.9 96 94 98
3 99 95 89 98 87 75 97 91.4 98 98 100
4 100 97 96 100 97 97 99 98.0 100 100
5 99 96 100 100 100 99.0
6 100 100 100.0

abnormal situations are either wrong or missing. Consequently,
these abnormal situations are not discovered. For instance,
bank transfer is accepted as a payment option even though
incorrect or no bank account information is provided.

In 19 cases, reported failures are caused by incorrect error-
signaling. Errors are signaled if an abnormal situation is
detected but the error should be handled somewhere else. For
instance, a misspelled first name is detected by a user regis-
tration service but the error message complaints a misspelled
last name.

For three reported failures, the abnormal situation is cor-
rectly detected and the error is correctly signaled. However,
the system performs incorrect error-recovery because the
instructions to recover from the abnormal situation contain
faults. For instance, the user is asked to correct wrong input,
e.g. a misspelled first name. After the input is corrected, the
system does not recover and the corrected input cannot be
processed.

In seven cases, failures are triggered by the system’s runtime
environment. For instance, a NullPointerException is sig-
naled when the runtime environment detects unexpected and
illegal access of NULL values. Since developers did not expect
NULL values, no respective error-handlers are implemented and
the processes terminate. These failures denote incorrect flows
from error-signaling to error-recovery.

Table II depicts the observed FTFI dimensions and their
distribution divided into positive and negative test scenarios.
As can be seen, the maximum dimension of robustness interac-
tion is three. Compared to positive test scenarios, the negative
scenarios discover fewer failures and the FTFI dimensions are
also lower. For single parameter values and parameter value
pairs, the ratio is 3:1 of valid vs invalid test inputs and no
invalid test inputs are identified for higher dimensions.

While these numbers indicate that most failures are trig-
gered by valid test inputs, we emphasize that the test design
is based on experience and error-guessing, robustness testing
was not in the focus. Hence, the ratio can also result from
a general bias towards testing of positive scenarios which is
identified in research [26]–[28].

Nevertheless, these findings underpin the results of Pan et
al. [14], [15] who observe that most robustness failures in
operating systems APIs are triggered by single invalid values.
In their study, 82% of robustness failures are triggered by
single invalid values. We observe the same ratio in our case.

The bug reports also demonstrate the importance of strong
invalid test inputs, i.e. test inputs with exactly one invalid
value or exactly one invalid value combination. For instance,

the component that manages contracting parties ensure data
quality by checking that, e.g. the title of a person matches the
gender of the first name and that the first name and family
name are correct and not confused with each other. However,
when using an unknown invalid title, the system responds with
a wrong error message saying that the family name was wrong.
If an invalid family name was combined with the unknown
title, the failure would not have been discovered.

To yield the second research objective, the 10 invalid test
inputs with a FTFI dimension greater than one are further
analyzed. As a result, two reported bugs that describe failures
with robustness interactions are discovered. Even though a
combination of two and three specific parameter values is
required to trigger the robustness failures, the robustness size
is only one and two, respectively.

Furthermore, two reported bugs require an interaction of
invalid value (combinations) and a valid value of another
parameter. One reported bug is related to the communication
between two systems. The response of the second system
contains one parameter value with error information to indicate
whether the requested operation succeeded or failed. Another
parameter provides details about the internal processing of the
request and a certain value indicates an internal resolution of
the error. In that case, the calling system is expected to handle
the error in a different way.

Another reported bug belongs to the storage of de-
tails on contracting parties where one contracting party
must be responsible for paying the insurance premiums.
This responsibility is stored as a role called contribu-
tor. If direct debit is chosen as the payment method
but an invalid bank account, i.e. an invalid IBAN num-
ber, is provided, the resulting error message remains even
after the invalid IBAN is replaced by a valid IBAN.
While the combination [payment-method:direct-debit,

account-number:invalid] is required as an invalid com-
bination, the bug report states that this phenomenon could only
be observed for [role:contributor].

VI. THREADS TO VALIDITY

The biggest thread to validity is that case studies are difficult
to generalize from [25]. Especially, because only one particular
type of software of one company is analyzed. The archival
data of the case study is only a snapshot and the ground truth,
i.e. the set of all failures that can be triggered, is unknown.
Hence, the data set can be biased, for instance, towards positive
scenarios which has been observed in research [26]–[28].
Since the bug reports result from tests based on experience
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an error-guessing, it may apply here as well.
The data can also be biased towards certain fault character-

istics. Relevant and reasonable bug reports may be excluded
by our filtering because the bug reports are incorrectly cat-
egorized. Maybe not all triggered failures are reported. For
instance, a developer who finds a fault might just fix it without
creating a bug report.

VII. CHALLENGES FOR COMBINATORIAL TESTING

One challenge in combinatorial testing is to find an effective
coverage criteria. Based on the aforementioned empirical
studies, a recommendation for positive scenarios is to use
pairwise coverage to trigger most failures and 4- to 6-wise
coverage that should trigger all failures. For the application
in practice, one major challenge is to generate test suites of
minimal or small size with 4- or 6-wise coverage.

To test negative scenarios, different challenges in combina-
torial testing can be observed.

In our case study, four classes of incorrect error-handling
are identified. First, incorrect error-detection is caused by
conditions which are either too strict or too loose. Second,
incorrect error-signaling results in a wrong type of error to
be signaled. Third, incorrect recovery of a signaled error is
caused by a fault in the appropriate recovery instructions.
Fourth, incorrect flow from error-signaling to error-recovery is
caused by a signaled error for which no appropriate recovery
instructions are implemented.
Challenge 1 - Avoid the Input Masking Effect: Incorrect
error-detection that is caused by a too strict condition can be
revealed by positive test input that mistakenly triggers error-
recovery. But, revealing a condition that is too loose requires
invalid test input that mistakenly does not trigger error-
recovery. To ensure that too strict and too loose conditions
can be detected, the generation of valid and invalid test inputs
must be separated and both sets of test input must satisfy
separate coverage criteria.
Challenge 2 - Generate Strong Invalid Test Inputs: Another
challenge is the generation of strong invalid test inputs such
that one invalid value or invalid value combination cannot
mask another. Incorrect error-detection and incorrect error-
recovery may remain undetected if the signal that would result
from an incorrect condition is masked by the computation of
another invalid value or invalid value combination.
Challenge 3 - Consider Invalid Value Combinations: Since
the error-detection conditions may depend on an arbitrary
number of input values, it is not sufficient to only consider in-
valid values as most combinatorial testing tools do. As our case
study and Pan et al. [14], [15] show, 80% of the robustness
failures are triggered by invalid values, i.e. a robustness size
of one, but also 20% of the robustness failures require invalid
value combinations to be triggered. Error-detection with more
complex conditions must be tested as well. Invalid value
combinations should be excluded when generating positive test
inputs but included when generating invalid test inputs [13].
Therefore, appropriate modeling facilities and algorithms that
consider invalid value combinations are another challenge.

Challenge 4 - Support Alternative Coverage Criteria: To
reveal incorrect handling and incorrect recovery, the SUT must
be stimulated by the failure-triggering invalid test input. The
majority of analyzed robustness failures does not indicate any
robustness interaction between valid values and invalid values
or invalid value combinations. Then, the failure is triggered
by the invalid value or invalid value combination. To satisfy
the coverage criterion, it is sufficient to have a separate test
input for each invalid value or invalid value combination.

However, robustness failures where invalid values or in-
valid value combinations interact with valid values and
valid value combinations could also be observed. The fail-
ure is triggered by a t-wise interation of one or more
valid values and the invalid value or invalid value combi-
nation. For instance, suppose the valid role=contributor

is responsible for selecting the strategy which is used
to process the bank data of a customer. If the invalid
combination of [payment-method:direct-debit] and
[account-number:invalid] is handled incorrectly by the
selected strategy, then the interaction of all three values is
required to trigger the failure.

The observed failures of our case study are in line with
a case study by Wojciak and Tzorref-Brill [23] who faced
error-handling that would be different depending on firmware
in control and system configurations. Different configuration
options can also be modelled as input parameters, a robustness
interaction of configuration options with invalid values and
valid value combinations is also reasonable.

Since only low dimensions of robustness interaction are
observed, we believe it is unlikely that the generation of 4-
to 6-wise test suites is a challenge here as well. Instead,
alternative coverage criteria that, for instance, allow a variable
strength interaction with some other input parameters can
become a relevant to reduce the number of test inputs.

VIII. CONCLUSION

The effectiveness of negative test scenarios is unclear from
an empirical point of view. We conducted a case study to get
information on failures triggered by invalid test inputs. The
motivation for our and others studies was that if all failures
are triggered by an interaction of d or fewer parameter values,
then testing all d-wise parameter value combinations should
be as effective as exhaustive testing [4].

In our case study we analyzed bug reports which originate
from a development project that manages life insurances. In
total, 683 bug reports are analyzed. 434 bug reports describe
actual failures and 212 of them are failures triggered by a
2-wise or higher interaction of parameter values.

In general, the distribution of FTFI dimensions conforms
to the pattern of previous empirical studies. But in contrast
to positive test scenarios, fewer robustness failures with lower
FTFI dimensions are identified. Overall, the robustness failures
are grouped in four classes: incorrect error-detection, incorrect
error-signaling, incorrect recovery from a signaled error and
incorrect flow from error-signaling to error-recovery. Most ro-
bustness failures (80%) are triggered by single invalid values.
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The remaining robustness failures require an interaction of two
and three input parameter values. Two reported bugs require
an interaction of valid values with an invalid value or invalid
value combinations to trigger the robustness failure.

Based on the findings of this case study, we derive chal-
lenges for combinatorial robustness testing. To ensure that
failures do not remain hidden, possible masking should be
reduced. Valid and invalid test inputs should be separated and
invalid test inputs should be strong, i.e. should only contain
one invalid value or invalid value combination.

Further on, it is not sufficient to only consider invalid values
as most combinatorial testing tools do. Invalid value combi-
nations should be excluded when generating valid test inputs
but considered for invalid test inputs. Therefore, appropriate
modeling facilities and algorithms are required.

Since only low robustness interactions are observed, the
generation of test inputs with 4- to 6-wise coverage is not that
important for negative scenarios. But, the support of variable
strength generation for invalid inputs is another challenge.

Most robustness failures do not involve any robustness inter-
action. But, there are situations where robustness interactions
can be observed since different input values, configuration
options or internal states are modelled as input parameter
values. Depending on expected costs of failure, t-wise testing
of invalid test inputs is an option.

In the future, we will work on facilities that support the
modelling of invalid value combinations and we will integrate
variable strength in a combinatorial algorithm for invalid input
generation. To reduce the number of invalid test inputs, we will
conduct experiments to investigate the efficiency of different
coverage criteria.
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