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ABSTRACT

This paper describes our approach designed for the MediaEval
2018 Predicting Media Memorability Task. First, a subspace
learning method called Memorability Preserving Embedding
(MPE) is proposed to learn discriminative subspace from the
original feature space according to the memorability scores.
Then the Support Vector Regressor (SVR) is applied to the
learned subspace for memorability prediction. The predic-
tion performance demonstrates that SVR can achieve good
performance even in a very low-dimensional subspace, which
implies that the subspace learned by the MPE is capable of
preserving important memorability information. Moreover,
the results indicate that the short-term memorability is more
predictable than the long-term memorability.

1 INTRODUCTION

Predicting media memorability plays a key role in many real-
world applications such as media retrieval and recommenda-
tion, and has attracted much attention recently [1, 4, 6, 9–
12, 14]. The MediaEval 2018 Predicting Media Memorability
Task aims to seek solutions to the problem of predicting
how memorable a video will be [3]. Specifically, given a set
of training video data (each data sample is associated with
its visual features and the corresponding memorability s-
core), the participants are asked to build a model using the
training data and utilize the trained model to predict the
memorability score of test data.

Images and videos often have very high dimensionality,
which brings computational challenges to the analysis tasks.
To solve the memorability prediction task in an efficient way,
in this paper, we propose a supervised subspace learning
method called Memorability Preserving Embedding (MPE).
The motivation of designing such a subspace learning method
for the task rather than directly performing the prediction
is that we believe most of the discriminative information of
the high-dimensional media data is actually embedded in
a relatively low-dimensional subspace and discovering such
a subspace could enhance the performance of prediction.
Therefore, the proposed MPE aims to learn a transforma-
tion matrix to project the high-dimensional training data
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to a low-dimensional subspace, in which the memorability
information and manifold structure of the dataset are well
preserved. In the test stage, we use the learned transforma-
tion matrix to map the test data to the subspace, and apply
a Support Vector Regressor (SVR) [13] to the subspace for
final memorability prediction.

2 MEMORABILITY PRESERVING
EMBEDDING

Given the training set 𝒳 = {(x1, 𝑙1), (x2, 𝑙2), ..., (x𝑛, 𝑙𝑛)},
with x𝑖 ∈ R𝐷 (𝑖 = 1, · · · , 𝑛) being the visual feature vector
of the 𝑖-th video and 𝑙𝑖 ∈ [0, 1] being the corresponding
memorability score, MPE aims to learn a𝐷×𝑑 transformation
matrix W to map x𝑖 (𝑖 = 1, · · · , 𝑛) to a low-dimensional
subspace, where the memorability information and manifold
structure of the dataset can be well preserved. To achieve
this goal, MPE optimizes the following objective function:

W =argmin
W

𝑛∑︁
𝑖,𝑗=1

‖W𝑇(x𝑖−x𝑗)‖2 ·
(︀
𝛼𝑆𝑖𝑗 + (1−𝛼)𝑁𝑖𝑗

)︀
, (1)

where 𝑆𝑖𝑗 = 𝑒𝑥𝑝(−(𝑙𝑖 − 𝑙𝑗)
2/2𝜎2) measures the similarity

between the memorability score of x𝑖 and that of x𝑗 , 𝑁𝑖𝑗 =
𝑒𝑥𝑝(−||x𝑖−x𝑗 ||2/2𝜎2) measures the closeness between x𝑖 and
x𝑗 , and 𝛼 ∈ [0, 1] is the parameter balancing the memorability
information and the manifold structure.

Eq. (1) could be equivalently rewritten as follows:

W = argmin
W

𝑡𝑟(W𝑇XLX𝑇W), (2)

where X = [x1,x2, ...,x𝑛] ∈ R𝐷×𝑛 is the data matrix, L =
D−A is the 𝑛×𝑛 Laplacian matrix [7], and D is a diagonal
matrix defined as 𝐷𝑖𝑖 =

∑︀𝑛
𝑗=1 𝐴𝑖𝑗 (𝑖 = 1, ..., 𝑛), where 𝐴𝑖𝑗 =

𝛼𝑆𝑖𝑗 + (1 − 𝛼)𝑁𝑖𝑗 . Then the optimal W can be obtained
by finding the eigenvectors corresponding to the smallest
eigenvalues of the following eigen-decomposition problem:

XLX𝑇w = 𝜆w. (3)

After obtaining W, for each high-dimensional data sample
x𝑖 in the development and test sets, we can obtain its low-
dimensional representation by y𝑖 = W𝑇x𝑖. Then we apply
SVR to y𝑖 for memorability prediction.
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Table 1: The performance (in terms of Spearman
Correlation and MSE) of our approach on the test
set of MediaEval 2018 Predicting Media Memorabil-
ity Task.

Run1
(𝑑 = 4)

Run2
(𝑑 = 5)

Run3
(𝑑 = 9)

Run4
(𝑑 = 10)

Spearman
Long 0.0774 0.0962 0.0647 0.0634
Short 0.1332 0.1268 0.0656 0.0717

MSE
Long 0.0214 0.0214 0.0213 0.0213
Short 0.0082 0.0080 0.0078 0.0079

3 RESULTS AND ANALYSIS

In this section, we report our experimental results on the
MediaEval 2018 Predicting Media Memorability Task [3].
Specifically, we participate in two subtasks: 1) short-term
memorability subtask and 2) long-term memorability subtask.

We use both video specialized features and image features,
which are provided by the task, to construct the original
feature space. For the video features, we use the 101-D C3D
feature vector. For the image features, we use the 122-D
local binary pattern (LBP) feature vector and the 768-D
color histogram feature vector. We select these features as
they have demonstrated good performance in visual analysis
tasks [5, 8, 15]. For each video, the first, the median, and
the last frames are selected as the representatives of the
video, so the total dimension of the original feature space is
𝐷 = 101 + 3× (122 + 768) = 2771.

We use all 8000 video data samples in the development
set for training. Before subspace learning, we normalize the
values of different features to [0, 1]. For the MPE method, we
set 𝛼 = 0.5 and 𝜎 = 1.

∙ For Run 1, we set the reduced dimension 𝑑 = 4. Then
we learn the 𝐷×𝑑 (i.e., 2771×4 in this case) transfor-
mation matrix W via MPE using the development
set, and utilize W to map both development and
test data onto the 4-D subspace. Finally, we train
the 𝜈-SVR [13] using the development set in the 4-D
subspace and employ the trained 𝜈-SVR model to
predict the memorability score of the test data in
the same subspace. We use the RBF kernel and set
𝜈 = 0.5 and 𝛾 = 1/𝐷 [2].

∙ For Run 2, we set the reduced dimension 𝑑 = 5.
∙ For Run 3, we set the reduced dimension 𝑑 = 9.
∙ For Run 4, we set the reduced dimension 𝑑 = 10.

The remaining procedure and the parameter setting
in Runs 2, 3, and 4 are the same as those in Run 1.

Table 1 shows the performance (in terms of Spearman
Correlation and MSE) of our approach. From the results, we
have several observations. First, we observe that the results
(both Spearman and MSE) on the short-term subtask are
better than those on the long-term subtask, which indicates
that the short-term memorability is more predictable than
the long-term memorability. Besides, by comparing the MSE
of runs 1 and 2 (𝑑 = 4, 5) and that of runs 3 and 4 (𝑑 = 9, 10),

Table 2: The performance (in terms of Spearman
Correlation and MSE) of our approach on the de-
velopment set of MediaEval 2018 Predicting Media
Memorability Task.

𝑑 = 4 𝑑 = 5 𝑑 = 9 𝑑 = 10 𝐷

Spearman
Long 0.1422 0.1514 0.1654 0.1675 0.1414
Short 0.3047 0.3059 0.3065 0.3070 0.2946

MSE
Long 0.0212 0.0212 0.0211 0.0210 0.0211
Short 0.0061 0.0061 0.0061 0.0061 0.0062

we notice that runs 1 and 2 are better than runs 3 and
4 in terms of Spearman, and are comparable in terms of
MSE. This fact may imply that most of the discriminative
information is embedded in a very low-dimensional subspace
and increasing more dimensions may not necessarily improve
the performance.

To further validate the effectiveness of subspace learning,
we compare the performance of SVR on the learned subspace
and that on the original 2771-D space using the development
set. We use 5-fold cross validation and average the results.
The Spearman coefficient and MSE in Table 2 show that the
performance on the original space is slightly worse than that
on learned subspaces, supporting our assumption that the
original high-dimensional space may contain redundant or
even noisy information, and reducing the dimensionality with
supervised information could improve the subsequent learning
performance. However, the results in terms of Spearman
coefficient is far from satisfactory. The reason might be that
MPE is a linear mapping method, which is not sufficient
to capture the complex discriminant information embedded
in the high-dimensional feature space. This motivates us
to consider extending our method to the nonlinear case to
improve the performance.

4 CONCLUSION

This paper describes our approach designed for memorability
prediction. A subspace learning method, MPE, is proposed to
learn the subspace that preserves the memorability informa-
tion. After that, SVR is utilized for memorability prediction
in the learned subspace. The results on the MediaEval 2018
Predicting Media Memorability Task validate the effective-
ness of our approach. Our future work will focus on exploring
the physical meaning of the learned subspace, as this could
improve the interpretability of our approach. Moreover, we
plan to generalize our method to nonlinear scenario to en-
hance its data representation ability.
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