
Test-driven Ontology Development in Protégé
Konstantin Schekotihin, Patrick Rodler, Wolfgang Schmid

University of Klagenfurt
Universitätsstr. 65-67
Klagenfurt, Austria

Email: firtstname.lastname@aau.at

Matthew Horridge, Tania Tudorache
Stanford University

1265 Welch Rd
Stanford, California, USA

Email: lastname@stanford.edu

Abstract—Over the past decade, various quality assurance
methodologies have emerged in the field of software engineering
for preventing, detecting, and fixing faults and bugs in software.
In particular, Test-driven Development (TDD) is now a popular
quality assurance technique whereby extensive usage of test cases
can be used to enforce the correctness of software artifacts. While
testing has made its way into the field of ontology engineering,
where some techniques for testing ontologies are now used in
prominent biomedical ontology projects, Test-driven Development
has yet to achieve significant uptake.

In this paper we propose a Logic-Based Test-driven Ontology
Development methodology, which takes cues from Test-Driven
Development in the field of software engineering. Our hope is that
this will encourage a “test-first” approach to ontology engineering
and that it will form part of the arsenal available to ontology
engineers in order to help them produce and maintain high
quality ontologies. Test cases in our framework are represented
by simple statements describing expected and/or unwanted logical
consequences of an intended ontology. As with Test-driven
Development in software engineering, our approach encourages
small, frequent iterations in the testing and development life-
cycle. We provide and present tool support for our approach
in the form of OntoDebug – a plug-in for the ontology editor
Protégé.

I. INTRODUCTION

Ontology creation and maintenance are complex and error-
prone activities. In part, this is due to the difficulties that
experts have with respect to encoding domain knowledge in
the form of logical descriptions [11]. It can also be due to the
misuse or misunderstanding of the knowledge representation
language that is used to build the ontology, fundamental errors
in the used modeling schemata and, attempts to fix bugs in
logical definitions without understanding their causes [14],
[22]. Well-known examples of such modeling errors reported
in [15] lead to incorrect inferences, such as “a foot is part
of a pelvis” or “diabetes is a disease of the abdomen”.
Identification of the causes of such erroneous inferences is
a complex task that might require a developer to review
hundreds or even thousands of logical statements. In large
projects that involve multiple experts working on an ontology,
such review processes can be very complex and might require
multiple domain experts to analyze subsets of the ontology
together. Our experience of such projects, and observations of
large biomedical ontology engineering projects, has convinced

This work was partially supported by the Carinthian Science Fund (contract
KWF-3520/26767/38701)

us that having the possibility of specifying test cases is critical
for ensuring the quality of published ontologies.

The problems listed above are not unique for the onto-
logy development process. Indeed, similar problems can be
observed in various areas where experts try to formalize their
knowledge about the domain using declarative or procedural
languages. For instance, in software development, bugs might
also be introduced due to inability to write a correct algorithm,
a misunderstanding of language constructs, incorrect mo-
deling, etc. Over the past few decades, various methodologies
have been suggested that aim to simplify the development
processes with work-flows that help to prevent, identify and
localize bugs early. Examples of such methodologies in soft-
ware engineering include the waterfall model [3], V-Model
[6], or agile methods [2]. The main idea behind all these
development models is to organize knowledge-based creative
work in a controlled and systematic way.

Test-driven development (TDD) is one of such methodolo-
gies in which the specification of requirements for a software
artifact and the subsequent verification of the specification is
done by means of test cases [1]. The TDD process involves
small iterations in which developers first specify a number of
test cases, then provide an implementation, and finally verify
it by running the test cases. If some test cases fail, then the
implementation is revised. When all tests are satisfied, the
process starts over from the definition of more test cases. These
small iterations continue until the artifact is finished.

There are two types of test cases considered in the literature:
syntactic and logic-based. The syntactic approaches are mostly
focused on the analysis of ontology axioms using some
predefined [4] or programmed [16] patterns, SPARQL queries
[8], etc. Each pattern corresponds to some good (bad) ontology
development practice and defines lexical structures that should
(must not) appear in the ontology. The notion of a logic-based
test case – a (set of) axiom(s) that must or must not be entailed
by the target ontology – was first introduced in [7] and later
appeared in, e.g., [24], [28]. The suggested approaches allow
for ontology testing and debugging to ensure correctness of
the knowledge encoded in the current version of an ontology.
That is, all defined test cases specifying (non-)entailments of
the target ontology must hold for the ontology at hand.

Unfortunately, most of the existing approaches do not
provide the level of tool support necessary for the successful
application of TDD in practice. For instance, they can visualize

Proceedings of the 9th International Conference on Biological Ontology (ICBO 2018), Corvallis, Oregon, USA 1

ICBO 2018 August 7-10, 2018 1



changes in entailments wrt. the last modifications of an onto-
logy [12] or provide testing services for specific ontologies
[29]. In the most advanced approaches, like OntologyTest [8]
or TDDOnto2 [5], a developer can define syntactic and/or
logic-based tests for some selected types of axioms, e.g. class
or assertion ones, and verify whether the tests hold for a given
ontology. However, these tests can only be used to express
requirements to entailed axioms and cannot be applied to
identify various types of unwanted entailments. Moreover, if
a test case fails, such tools provide no support for localization
and repair of detected bugs.

Contributions. In this paper we present a novel approach to
logic-based test driven development (TDD) for ontology engi-
neering. We show how logic-based TDD can be incorporated
into ontology engineering work-flows and we present tools
that support the process. Our contributions are as follows:

• We present an approach to logic-based TDD that aims
to facilitate the creation of high-quality ontologies by
means of a precise requirements specification and a tight
verification loop.

• We show how a logic-based TDD process can be executed
in Protégé using the OntoDebug1 plug-in. This plugin
supports the definition of test cases in the form of general
class axioms which must be entailed or not entailed by the
target ontology [24]. In this way the developer can specify
requirements for the target ontology and automatically
verify them using the plug-in.

• For failed tests, we demonstrate how a user can identify
causes of the problem in the target ontology using the
debugging interface provided by OntoDebug. This part of
our framework implements a number of published algo-
rithms and strategies [7], [10], [17], [18], [19], [20], [21],
[25], [26] allowing for a high-performance localization
of fault causes using off-the-shelf reasoners available in
Protégé, such as Pellet [27] or Hermit [13].

• Finally, we present an overview of the possible ways of
fixing an ontology in the TDD cycle using the default
Protégé toolbox as well as the repair interface of Onto-
Debug. Our approach facilitates the testing of alterations
to the target ontology in a safe, non-intrusive way – that
is, modifications are performed on a virtual copy of the
ontology and are applied to the target ontology only if
the user is satisfied with the result and all test cases pass.

In the following we present the logic-based TDD methodo-
logy in Section II and show how it can be implemented using
Protégé with the OntoDebug plug-in in Section III.

II. TEST-DRIVEN ONTOLOGY DEVELOPMENT

Test-driven ontology development (TDD) is an ontology
development process that involves the specification of re-
quirements with respect to (a part of) the target ontology,
the implementation of logical descriptions/definitions that are
required to support the test cases, as well as the verification

1See http://isbi.aau.at/ontodebug for the source code and documentation.

1: Define 2: Test

4: Debug

3: Implement

Intended 
ontology

Empty/existing 
ontology

No new 
test cases

Missing 
descriptions

Violated 
requirements

Tests 
succeeded

Tests 
defined

Start

Fig. 1. Workflow of test-driven ontology development

of the obtained ontology with respect to the specification.
The requirements are specified as test cases, each of which
is a general class axiom (GCI). We also assume that any
existing test cases that are present in the existing ontology
are consistent with it.

The TDD work-flow, shown in Fig. 1, starts with either
an empty ontology, or an existing ontology that needs to
be extended. It comprises four main activities: definition of
test cases (Define), their execution (Test), ontology editing
(Implement), and ontology debugging (Debug). Where, the
latter step only takes place if any test cases fails. In what
follows we discuss each activity in more detail:

a) Define: In the first step, the developer defines some
test cases. Test cases are split into two categories (1) Positive
test cases and (2) Negative test cases. For both types, an axiom
is specified that, must be entailed in the case of positive test
cases (for the test to pass), and must not be entailed in the
case of negative test cases (for the test to pass). Positive test
cases may also have a set of supporting axioms specified that
are not part of the ontology under test, but are required in
combination with the ontology for the axiom to be entailed
and for the test to pass. For example, one could add the
supporting axiom x Type Secretary (for a fictitious new
individual x) in order to check for x Type Employee i.e.
whether secretaries are correctly modeled as employees.

A positive test case can be seen as a check that the ontology
under test contains enough (correct) axioms such that the
specified axiom holds as an entailment. A negative test case
can be seen as a check that the ontology under test does
not contain axioms such that the specified GCI holds as an
entailment. An example of a negative test case would be the
axiom Student SubClassOf Professor which asserts that
students must not be entailed to be professors.

It should be noted that, in order to specify a test case the
user should clearly understand the logical (non-)consequences
of the ontology under test, or, in other words, the target domain
to be modeled. Furthermore, as is the case with software
development, aiming for one hundred percent test coverage
is hard. Therefore, in practice, we expect that test cases will

Proceedings of the 9th International Conference on Biological Ontology (ICBO 2018), Corvallis, Oregon, USA 2

ICBO 2018 August 7-10, 2018 2



be defined for portions of the ontology under test and newly
added extensions to the ontology. We hope that the positive
effect of this approach is that it will help to ensure the quality
of newly added class descriptions.

b) Test: In the testing step, the developer executes the
test cases. If all test cases pass then the current TDD iteration
is finished. As a result, the ontology under test corresponds
to the intended one with respect to the portions covered by
the test cases. In this case, the developer can return to the
specification of further test cases or finish the TTD process,
meaning that no further test cases are envisaged.

If some test case fails, one or both of the following scenarios
are given: (i) missing descriptions, i.e. the developed ontology
lacks axioms that support the entailment required by the
test case, and (ii) violated requirements, i.e. axioms in the
developed ontology contradict the specified requirements.

The first scenario only occurs if there is a positive test
case which requires the ontology under test (plus supporting
axioms) to entail an axiom, but this axiom is not entailed.
Therefore, the developer should proceed to the implement step
of the process below and extend the ontology.

The second scenario indicates that axioms in the ontology
under test (plus supporting axioms) do not allow all test
cases and other quality requirements (e.g., consistency, no
unsatisfiable classes) to be satisfied. More precisely, when
assuming all positive test cases (which constitute required
consequences) being added to the ontology, the resulting
ontology violates at least one negative test case (i.e., has an
unwanted consequence) or becomes inconsistent or incoherent.

Due to logical monotonicity, a further development of the
ontology (in terms of adding additional axioms) in this second
scenario is meaningless, since the obtained result cannot
correspond to the intended ontology as specified by the test
cases and other requirements. Therefore, the developer should
proceed to the debug step and try to improve the ontology
by localizing and repairing the axioms responsible for the
observed deficiencies.

c) Implement: This is a standard development task in
Protégé for which the editor was originally designed. The
added value of adhering to the suggested TDD paradigm is
that it helps the developer to differentiate between ontology
parts that need further implementation (addition of axioms)
and those that require refactoring (deletion or modification of
axioms), based on the outcome of test case verifications. That
is, failed test cases referring to missing axioms call for further
implementation activities in the respective part of the ontology,
whereas failed test cases pointing out inconsistencies suggest
repair activities in the relevant ontology parts (see Debug
below). To keep the process simple and manageable, TDD,
by its very nature, postulates that developers stick to local
and small changes and proceed by systematic specification
and verification of test cases.

d) Debug: The debugging phase starts when the test
cases have been executed and one or more of them fails, i.e.
when the target ontology violates the requirements defined by
the failed test cases, or when the ontology is inconsistent or in-

coherent. The goal of this procedure is to determine the faulty
axioms in the ontology and to support the developer while
repairing those axioms. Taking into account the complexity of
inferences possible in expressive languages, such as OWL [9],
the debugging task is almost impossible without sophisticated
tool support. In Protégé one can use two mechanisms for fault
localization: computation of justifications [10] and debugging
with OntoDebug [23].

III. PROTÉGÉ SUPPORT FOR TDD

Protégé is one of the most popular open-source tools for the
development of ontologies and it provides rich functionality
for the creation, modification, querying, and visualization
capability. In addition, Protégé has built-in support for various
extensions – plug-ins – that can enhance user experience
by providing additional functionality. OntoDebug is one such
plug-in that in conjunction with the standard Protégé functio-
nality provides the support that is necessary for TDD activities
(see Fig. 2), including:

a) definition of test cases, allowing for specification of
requirements to the intended ontology;

b) execution of test cases, indicating if there are any viola-
tions of requirements or missing axioms;

c) ontology development, enabling definition of axioms,
automated refactoring, visualizations, etc.;

d) fault localization, identifying ontology axioms that must
be corrected such that the intended ontology can be
formulated; and

e) repair, helping the developer to correct the localized
faulty axioms.2

In what follows, we discuss this functionality in more detail.
We use the simple Koala tutorial ontology to exemplify the
main notions.

Example 1. Koala3 is an educational ontology, which exhibits
modeling problems that occur due to misunderstandings of
description logics. This ontology defines a number of classes,
such as Person, Marsupials, Koala, Quokka, Female, etc.,
and some properties like isHardWorking, hasDegree, etc.

a) Definition of test cases: Positive and negative test
cases can be defined using the “Saved Test Cases” view of
the OntoDebug plug-in, shown in Fig. 3. In our example, the
developer has specified three test cases. The two positive tests
define expected entailments of the intended ontology, namely,
that females and students are persons. The negative test case
asserts that the axiom Person SubClassOf Marsupials
must not be entailed by the ontology.

b) Execution of test cases: OntoDebug supports two
modes: manual and automatic test verification. Complete ve-
rification of all test cases must be started manually using
the “Start” button highlighted in Fig. 3. Manual verification

2It should be noted that OntoDebug is still under active development. It is
possible that future versions might deviate in functionality as well as in look
& feel.

3This ontology can be loaded from bookmarks in Open from
URL... menu of Protégé

Proceedings of the 9th International Conference on Biological Ontology (ICBO 2018), Corvallis, Oregon, USA 3

ICBO 2018 August 7-10, 2018 3



PROTÉGÉ

ONTODEBUG

Ontology

4: Interactive fault 
localization

Reasoner 2: Execution of
test cases

5: Repair interface

User

1: Definition of 
test cases

Violated requirements

fault found

R
e

p
ai

re
d

 o
n

to
lo

gy
 

Te
st

 c
as

es

3: Ontology 
Development

Missing descriptions

n
o

 f
au

lt
s 

fo
u

n
d

Fig. 2. Test-driven development in Protégé with OntoDebug

Fig. 3. Specification of test cases for the Koala ontology

is the default behaviour (like reasoner activation in Protégé)
since frequent automatic triggering of reasoning services might
result in undesired freezing of the user interface. If test
failures are encountered, or the ontology is inconsistent, or
the ontology comprises unsatisfiable classes, then OntoDebug
will automatically proceed to the debugging step.

Test results are indicated with a green or a red icon to
the right of the test specification. For example, since the
Koala ontology entails that Student is a subclass of Person,
the corresponding test case is labeled with a green icon.
In contrast, the test case stating that Female is a subclass
of Person is not entailed by the ontology and is therefore
assigned the red icon. The developer should therefore switch to
Protégé’s “Entities” tab and augment the ontology with axioms
to ensure that this is entailed.

c) Ontology development: In the development stage the
ontology is modified according to the criteria defined in the test
cases using a variety of tools available in Protégé. To verify the
progress, i.e. whether all defined requirements are fulfilled, the
developer can switch to OntoDebug and check the labels of the
positive test cases or start a reasoner. The latter step allows for
verification of the ontology for consistency, satisfiability of its
classes, getting the inferred axioms and analyzing justifications

Fig. 4. Detected fault in the Koala ontology

for these inferences with the Protégé Explanation Plug-In.
If, during development and regular reasoning, the developer

notices an erroneous entailment, she can add it as a negative
test case at the press of a button. Similarly, correct entailments
can be added as positive test cases. Violations of consistency
and coherency requirements do not require any additional
definitions and OntoDebug can start with the fault localization
immediately.

Example 2. Reconsider the Koala ontology, in which, due
to mistakes made while developing the ontology, manual
invocation of a reasoner infers unsatisfiable classes: Koala,
KoalaWithPhD, and Quokka. Protégé shows these classes in
red (see Fig. 4) indicating the developer that the requirement
for coherency is violated. Given these three violations, the
developer can proceed to OntoDebug and start the debugging
session.

d) Fault Localization: After a fault is detected, the fault
localization process starts with definition of a “background
theory”. This is a set of ontology axioms that should be
considered as correct by the debugger, thus, allowing it to
focus on the relevant ontology parts. In the user interface
of OntoDebug, shown in Fig. 5 (1), this can be done by
finding, selecting, and moving axioms from the list of possibly
faulty axioms to the list of correct axioms. Now imagine that
the developer has modified only SubClassOf axioms before
observing the fault in Example 2 and would like the debugger
to focus on these axioms only. In this case, all assertions
and property restrictions should be moved from the list of
Possibly Faulty Axioms to the list of Correct Axioms in the
Input Ontology view (1).

After this step the developer starts an interactive debugging
session by pressing the “Start” button, just as for the verifica-
tion of test cases. In the first step, the debugging algorithms
compute repairs, presented in Fig. 5 (2), which are subsets
of possibly faulty axioms. All axioms of a repair must be
modified or in the simplest case merely removed in order to

Proceedings of the 9th International Conference on Biological Ontology (ICBO 2018), Corvallis, Oregon, USA 4

ICBO 2018 August 7-10, 2018 4



correct the fault in the developed ontology.
In case the information provided by test cases is insufficient

the debugger might find a number of alternative repairs.
Therefore, additional test cases must be acquired allowing for
identification of the correct repair. The acquisition process
is completely automated in OntoDebug. Thus, the debugger
generates and asks the developer a sequence of queries about
desired entailments and non-entailments of the intended onto-
logy in the Queries view, shown in Fig. 5 (3). The acquisition
of new test cases continues until the developer spots the correct
repair in the list or only one repair remains.

Example 3. Continuing with the Koala example, the three
classes in this ontology are unsatisfiable since the develo-
per used one of the two properties isHardWorking and
hasDegree with the domain Person to describe each of the
three classes listed above. Given this domain definition, the
reasoner derives that Koala, KoalaWithPhD, and Quokka
are subclasses of the class Person. However, the ontology
comprises an axiom that defines classes Marsupials and
Person as disjoint. This results in unsatisfiability of the
three classes, which are defined as subclasses of the class
Marsupials.

When the developer starts the debugger it is able to identify
10 possible repairs and the interactive debugging session is
started. In the second iteration of this session, see Fig. 5 (3),
the developer is asked whether or not “a Koala with PhD is a
Koala” and “a Koala with PhD is a Person” must be entailed by
the ontology. These queries can be answered by the developer
using the common knowledge about the domain of koalas.
Thus, the first axiom is classified positively whereas the second
axiom – negatively.

After the “Submit” button is pressed, OntoDebug adds the
axioms to the set of positive or negative test cases according
to the answers of the previous questions. In our example, the
first question comprised two axioms: “a Koala is a Marsupial”
which was answered positively and “a Koala is a Person”
which was classified as negative, as presented in Fig. 5 (4).

OntoDebug can tolerate cases when the developer has
trouble with the classification of axioms when answering
questions. For instance, if some axiom cannot be classified
as either positive or negative, the developer can simply skip it
and leave the classification unspecified. OntoDebug will then
try to find a different question whose axioms might be easier
for the developer to classify. In addition to this, if the developer
has misclassified an axiom and would like to backtrack, she
can simply remove this axiom from either of the Acquired
Test Cases lists. OntoDebug will automatically update the set
repairs and suggest a new question.

e) Repair: After a correct repair is identified, the develo-
per should introduce modifications to the developed ontology
and modify at least all axioms of the repair. For this purpose
one can use either the standard toolkit of Protégé or the repair
interface of OntoDebug, presented in Fig. 6. This interface
reuses Protégé’s built-in editors and enables safe, non-invasive
per-axiom modification. In addition, the user can use Protégé’s

1

3 4

2

Fig. 5. Interactive debugging session (second iteration)

Fig. 6. Repair interface of OntoDebug

explanation functionality to analyze relations between some
selected axiom of the repair and other axioms in the developed
ontology that result in a fault. This feature is supposed to give
the user a hint of how the axiom contributes to the fault in
question and what to change in the axiom in order to obtain
a repaired ontology.

Example 4. Consider an explanation for the second axiom of
the selected repair, shown in Fig. 6 for the Koala example. This
explanation comprises five relevant axioms which indicate that
a Quokka is a Marsupials (axiom 5) and a Person (axioms
2 and 4) simultaneously. However, since Marsupials and
Person are disjoint classes (axiom 1), the Quokka class is
unsatisfiable.

In order to ensure that the modifications actually correct
faults in the ontology, the repair interface provides a possibility
to check whether all requirements are fulfilled or not simply by
clicking on the “Ok” button. If modifications introduced in the

Proceedings of the 9th International Conference on Biological Ontology (ICBO 2018), Corvallis, Oregon, USA 5

ICBO 2018 August 7-10, 2018 5



repair process do not correct previously localized faults or they
introduce new ones, violating any of the requirements, then
the plug-in will start a new debugging session automatically.
If this is not the case, then OntoDebug informs the developer
that the obtained ontology is correct.

After all faults are repaired, the performed modifications can
be committed to the ontology and all acquired test cases saved.
In this way our debugger enables a continuous acquisition and
maintenance of test cases, which is a key aspect of the TDD
process. The more test cases, the higher the likelihood that the
resulting ontology is fault-free.

When a TDD session finishes, the user can
a) return to the first step and start with the definition of new

test cases providing specifications for some unimplemen-
ted parts of the ontology, or

b) finish the development and save the resulting ontology.
Finally, it should be noted that the current functionality

provided by Protégé and OntoDebug does not focus on the va-
lidation of the entire ontology, but rather pursues a symptom-
driven fault repair. That is, once a deficiency, e.g. an incon-
sistency or a violation of a test case, becomes evident, Onto-
Debug assists in restoring the ontology correctness in terms
of the given or acquired test cases. As part of future work,
we plan to develop strategies for test case suggestion given
an ontology that is compatible with the desired criteria. Such
strategies could, for instance, be guided by logical counterparts
to “code smells” from the field of software engineering, such
as OWL anti-patterns [22] or common modeling mistakes [14].
Finally, we envisage that it will also be possible in the future
to make the execution of test cases part of the Continuous
Integration style of development that is becoming popular in
communities such as the biomedical ontology community.

IV. CONCLUSIONS

In this paper we have presented logic-based test-driven
development (TDD) for ontology engineering. We have pre-
sented tools that support the approach in the form of the
OntoDebug plug-in for Protégé. TDD is driven by test cases
defined by an ontology engineer as a specification for an
intended part of the ontology. These test cases are then used to
verify that the subsequently developed ontology corresponds
to the intended one. As a result, TDD encourages iterations
of the development process such that in every iteration the
developer is focused on a small part of the intended ontology.
Moreover, the development process helps to ensure that a new
iteration can only be started if the developer has first specified
the required parts of the intended ontology as test cases.
The debugging support provided by OntoDebug in Protégé
ensures simple and efficient localization of faults by having
the ontology engineer answer a sequence of relevant questions.
The knowledge about the intended ontology obtained during
a question and answering session is converted into further test
cases, thus, further assisting ontology developers as they strive
for the production of high quality ontologies.

REFERENCES

[1] K. Beck, Test-driven development: by example. Addison-Wesley, 2003.

[2] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries et al.,
“Manifesto for agile software development,” 2001.

[3] H. D. Benington, “Production of large computer programs,” IEEE Ann.
Hist. Comput, vol. 5, no. 4, pp. 350–361, 1983.

[4] O. Corcho, C. Roussey, L. Manuel, V. Blázquez, I. Pérez, U. D. Lyon,
U. Lyon, L. Umr, and A. Landais, “Pattern-based OWL Ontology
Debugging Guidelines,” in ISWC, 2009, pp. 68–82.

[5] K. Davies, C. M. Keet, and A. Lawrynowicz, “TDDonto2: A test-driven
development plugin for arbitrary tbox and abox axioms,” in ESWC
(Satellite Events), 2017, pp. 120–125.

[6] K. Forsberg and H. Mooz, “The relationship of system engineering to
the project cycle,” in INCOSE International Symposium, vol. 1, no. 1,
1991, pp. 57–65.

[7] G. Friedrich and K. Shchekotykhin, “A General Diagnosis Method for
Ontologies,” in ISWC, 2005, pp. 232–246.

[8] S. Garcı́a-Ramos, A. Otero, and M. Fernández-López, “OntologyTest: A
tool to evaluate ontologies through tests defined by the user,” in IWANN
(2), 2009, pp. 91–98.

[9] B. C. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, and
U. Sattler, “OWL 2: The next step for OWL,” J. Web Semant., vol. 6,
no. 4, pp. 309–322, 2008.

[10] M. Horridge, B. Parsia, and U. Sattler, “Laconic and Precise Justificati-
ons in OWL,” ISWC, pp. 323–338, 2008.

[11] P. N. Johnson-Laird, “Deductive reasoning,” Annu. Rev. Psychol, vol. 50,
pp. 109–135, 1999.

[12] N. Matentzoglu, M. Vigo, C. Jay, and R. Stevens, “Making entailment
set changes explicit improves the understanding of consequences of
ontology authoring actions,” in EKAW, 2016, pp. 432–446.

[13] B. Motik, R. Shearer, and I. Horrocks, “Hypertableau Reasoning for
Description Logics,” JAIR, vol. 36, pp. 165–228, 2009.

[14] A. Rector, N. Drummond, M. Horridge, J. Rogers, H. Knublauch,
R. Stevens, H. Wang, and C. Wroe, “OWL Pizzas: Practical Experience
of Teaching OWL-DL: Common Errors & Common Patterns,” in EKAW,
2004, pp. 63–81.

[15] A. Rector, L. Iannone, and R. Stevens, “Quality assurance of the content
of a large dl-based terminology using mixed lexical and semantic
criteria: experience with snomed ct,” in K-CAP, 2011, pp. 57–64.

[16] A. L. Rector, S. Brandt, and T. Schneider, “Getting the foot out of the
pelvis: modeling problems affecting use of SNOMED CT hierarchies in
practical applications,” JAMIA, vol. 18, no. 4, pp. 432–440, 2011.

[17] P. Rodler, “Interactive Debugging of Knowledge Bases,” Ph.D.
dissertation, Alpen-Adria Universität Klagenfurt, 2015. [Online].
Available: http://arxiv.org/pdf/1605.05950v1.pdf

[18] ——, “On active learning strategies for sequential diagnosis,” in DX
Workshop, vol. 4, 2018, pp. 264–283.

[19] P. Rodler and W. Schmid, “On the impact and proper use of heuristics
in test-driven ontology debugging,” in RuleML+RR, 2018, pp. 164–184.

[20] P. Rodler, W. Schmid, and K. Schekotihin, “Inexpensive cost-optimized
measurement proposal for sequential model-based diagnosis,” in DX
Workshop, 2018, pp. 200–218.

[21] P. Rodler, K. Shchekotykhin, P. Fleiss, and G. Friedrich, “RIO: Mi-
nimizing User Interaction in Ontology Debugging,” in RR, 2013, pp.
153–167.

[22] C. Roussey, O. Corcho, and L. M. Vilches-Blázquez, “A catalogue of
OWL ontology antipatterns,” in K-CAP, 2009, pp. 205–206.

[23] K. Schekotihin, P. Rodler, and W. Schmid, “Ontodebug: Interactive
ontology debugging plug-in for protégé,” in FoIKS, 2018, pp. 340–359.

[24] K. Shchekotykhin, G. Friedrich, P. Fleiss, and P. Rodler, “Interactive
ontology debugging: Two query strategies for efficient fault localization,”
J. Web Semant., vol. 12, pp. 88–103, 2012.

[25] K. Shchekotykhin, G. Friedrich, P. Rodler, and P. Fleiss, “Sequential di-
agnosis of high cardinality faults in knowledge-bases by direct diagnosis
generation,” in ECAI, 2014, pp. 813–818.

[26] K. Shchekotykhin, D. Jannach, and T. Schmitz, “MergeXplain: Fast
computation of multiple conflicts for diagnosis,” in IJCAI, 2015, pp.
3221–3228.

[27] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A
practical OWL-DL reasoner,” J. Web Semant., vol. 5, no. 2, pp. 51–53,
2007.

[28] D. Vrandecic and A. Gangemi, “Unit tests for ontologies,” in OTM
Workshops (2), 2006, pp. 1012–1020.

[29] J. D. Warrender and P. Lord, “How, what and why to test an ontology,”
CoRR, vol. abs/1505.04112, 2015.

Proceedings of the 9th International Conference on Biological Ontology (ICBO 2018), Corvallis, Oregon, USA 6

ICBO 2018 August 7-10, 2018 6


