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Abstract—Manual curation of scientific literature for ontology-
based knowledge representation has proven infeasible and unscal-
able to the large and growing volume of scientific literature. Auto-
mated annotation solutions that leverage text mining and Natural
Language Processing (NLP) have been developed to ameliorate
the problem of literature curation. These NLP approaches use
parsing, syntactical, and lexical analysis of text to recognize and
annotate pieces of text with ontology concepts. Here, we conduct
a comparison of four state of the art NLP tools at the task of
recognizing Gene Ontology concepts from biomedical literature
using the Colorado Richly Annotated Full-Text (CRAFT) corpus
as a gold standard reference. We demonstrate the use of semantic
similarity metrics to compare NLP tool annotations to the gold
standard.

I. INTRODUCTION

There has been a rapid increase in the number of scientific
articles published each year [1]. However, the majority of
information in these scientific articles remains in the form of
free text, and is therefore, opaque to computational analyses
[2]. In several data intensive fields such as Biology, ontologies
have been adopted as the de-facto mode of data representation
to enable data integration, sharing, and, to make data compu-
tationally amenable [3].

While ontologies have helped transform information from
free-text to a machine readable form, the process of this
data transformation involves a huge bottleneck. The majority
of ontology-based data annotation is performed via manual
curation of scientific literature - the process of reading and
annotating parts of text with one or more ontology concepts
[4]. Manual curation is tedious, time consuming, and highly
unscalable to the growing body of scientific literature.

To counter these difficulties, there has been a push to de-
velop automated solutions based on Natural Language Process-
ing (NLP) that can automatically read literature and identify
ontology concepts from text, thereby performing automated
annotation of literature.

One of the primary tasks for these NLP methods is Named
Entity Recognition (NER) - identifying entities such as genes,
proteins, or ontology concepts from text [5]. NER is an
important component of information extraction and annotation
for a wide range of domains such as biomedical research,
biology, etc [6]. In other applications, NER is one of the crucial
preliminary steps for subsequent creation of complex ontology-
based expressions [7]. For example, the Entity Quality (EQ)
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annotation format is widely used to describe clinical and
evolutionary phenotypes [8], [9]. Curators identify appropriate
ontology concepts to represent the affected Entity and the
Quality in a phenotype, and then combine the concepts to
create an EQ expression. In more complex annotations, the
Entity component might comprise multiple concepts that are
combined using relational/spatial terms. In all of these scenar-
ios, the first and crucial step is recognizing individual ontology
concepts from text before building complex expressions.

Here, we focus on ontology-based Named Entity Recogni-
tion and conduct a formal comparison of methods and tools
for recognizing ontology concepts from scientific literature in
an automated manner. We present a comparison of four state
of the art concept recognition tools (MetaMap [10], NCBO
Annotator [1], Textpresso [11], and SciGraph [12]). We use
the Colorado Richly Annotated Full-Text (CRAFT) corpus
[13] as a Gold Standard reference to compare and assess the
performance of these four NLP tools.

The CRAFT corpus contains 67 open access, full length
biomedical articles annotated with concepts from several on-
tologies (such as Gene Ontology [3], Protein Ontology [14],
Sequence Ontology [15], etc.). In our experiment, we em-
ployed each of the four NLP tools to annotate the articles
in the CRAFT corpus with Gene Ontology concepts and
subsequently compared the resulting annotations to CRAFT’s
GO annotations in order to assess the tool’s annotation perfor-
mance.

Precision and Recall are the most widely used metrics to
assess the performance of any information retrieval system.
However, these traditional metrics of performance don’t take
into account the notion of partial information retrieval. For
example, in a traditional database, information is either re-
trieved or not retrieved by a search system, leading to a boolean
characterization of performance. However, when aiming to
“retrieve” an appropriate ontology concept for a piece of
text, a tool might partially retrieve the concept as compared
to a Gold Standard. For example, the Gold Standard might
annotate a piece of text with the Gene Ontology concept
“apoptotic process” while an NLP tool might annotate the
same text with the concept “programmed cell death”. From
the perspective of Precision and Recall, this is an instance of
information not being retrieved or incorrect retrieval. However,
subsumption reasoning within the Gene Ontology indicates
that the two concepts are closely related since “apoptotic
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process” is a direct sub-class of “programmed cell death”.
Thus it can be argued the NLP tool retrieves a semantically
similar, albeit, a slightly more general version of the Gold
Standard’s annotation.

We propose the use of semantic similarity metrics to capture
the degree of relatedness between an NLP tool’s performance
as compared to the Gold Standard to account for the notion of
partial retrieval for ontology-based systems. Semantic similar-
ity is defined as the degree of relatedness between ontology
concepts or objects based on their ontology annotations [16].
The use of other metrics that utilize the ontology hierarchy to
evaluate NLP annotations can also be seen in BioCreative IV
[17].

II. RELATED WORK

There have been several studies that provide an overview of
text mining and NLP techniques as applied to biological/bio-
medical literature [18–21].

One of the recent studies focusing on comparison of anno-
tation tools by Funk et al. [22] conducts a comparison of three
tools - MetaMap, NCBO Annotator, and ConceptMapper [23].
Performance of these tools is evaluated on eight biomedical
ontologies using the CRAFT corpus as a gold standard. The
paper explores different parameter setting for the tools to
identify the most optimal combinations.

Most notable among these studies is from Kelley et al. [24],
[25] as they investigate strategies to build the National Center
for Biomedical Ontology Annotator (NCBO Annotator). Kel-
ley et al. [25] compared two concept recognition tools, Mgrep
[26] and MetaMap [10] using multiple data sets and vocab-
ularies/ontologies of different sizes to evaluate the scalability
and performance of each tool. Their results show that Mgrep
consistently recognized fewer unique concepts than MetaMap;
which led to a higher precision score in every evaluation with
the exception of one. Kelley et al. use Precision and Recall to
quantify the performance of the two tools therefore missing
closely related but not exactly matching annotations retrieved
by the tools. In contrast, we use semantic similarity metrics
that are capable of quantifying exact matches and matches
of varying degrees of relatedness to provide a more accurate
assessment of a tool’s annotation performance.

Similarly, Galeota and Pelizzola. [27] performed a compari-
son of MetaMap [10] and ConceptMapper. In their comparison
they used a public repository (Sequence Read Archive) of
raw experiment data and its corresponding metadata, three
ontologies for annotating, and knowledge-based semantic sim-
ilarity measures such as ‘path finding’ (shortest path between
concepts) and Information Content based metrics. Their find-
ings show that ConceptMapper outperformed MetaMap in
precision and recall, however MetaMap performed better than
ConceptMapper when presented with entire sentences.

III. METHODS

Articles from the CRAFT corpus v2.0 were used as input for
each NLP tool. The CRAFT corpus [28] contains 67 publicly
available articles that have been manually annotated on six
ontologies including the Gene Ontology.

The annotation performance of four tools - MetaMap,
NCBO Annotator, SciGraph Annotator, and Textpresso was
evaluated at the task of annotating the 67 articles in the CRAFT
corpus with GO concepts. Below, we provide methodological
details, execution configurations, and parameters of the four
NLP tools.

A. NLP Tools
1) MetaMap: MetaMap is a program designed to recog-

nize and annotate biomedical text to concepts in the Unified
Medical Language System (UMLS) Metathesaurus [10]. The
program operates via four primary steps. First, text is parsed
to tag parts of speech such as nouns to provide a syntactic
analysis. Parsed phrases are then used to generate variants
that account for acronyms, abbreviations, synonyms, etc. Next,
candidate strings/concepts within the UMLS Metathesaurus
that match one or more of the above variants are identified
to build a candidate set of annotations. The candidate set is
further evaluated against the input text using several metrics
to assess the strength of the annotations. The highest scoring
candidate is used to form the final mapping for the phrase.

MetaMap was run using the scheduled batch processor with
the following parameters:
• -V USAbase: Selects the USA base data version
• -L 17: Selects the 2017 version of the SPECIALIST

lexicon
• -Z 1718: Selects the 2017AB UMLS Metathesaurus as

the knowledge source
• -E: Indicates the end of a citation with the ’EOT’ flag
• -T: Tagger output - lines up the tagged output on the

lines below the input.
• -I: Displays the UMLS IDs for each tagged concept
• -R GO: Restricts annotations to the Gene Ontology
UMLS concepts identified by MetaMap were mapped to GO

identifiers (GO release date 04/28/2017). In some instances,
MetaMap generates multiple annotations corresponding to a
piece of text (phrase). To determine the precise piece of text
being annotated to a concept, we verified if the concept name
of the annotation was a sub-string of the phrase. If yes, we
recorded the annotation as being tagged to the sub-string and
not to the larger phrase. If not, the annotation was associated to
the larger phrase. For example, if the phrase “several thousand
liver gene expression quantitative trait loci” was annotated
with the GO concept “gene expression”, the annotation would
be tagged to “gene expression” in text because it is a sub-
string of the original phrase. However, if the phrase “on the
regulation of many physiological traits” was annotated to GO
concept “regulation of biological process” then the annotation
would be mapped to the full phrase “on the regulation of many
physiological traits” rather than a specific sub-string within the
phrase.

2) NCBO Annotator: The National Center for Biomedical
Ontology (NCBO) Annotator [1] was developed to recognize
ontology concepts from biological and biomedical text. NCBO
Annotator is implemented to provide annotations to 207 dif-
ferent ontologies.

First, the text to be annotated is provided as input along with
a dictionary containing concepts from one or more desired
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ontologies. An ontology concept recognizer named Mgrep
([26]) is used to match input text to concepts in the dictionary.
These matches called direct annotations are later expanded
to create semantic expansions using ontology semantics and
relationships.

For example, the is a relationship can be used to identify
subsumer concepts of direct annotations. The ontology concept
recognizer also uses one-to-one cross mappings between on-
tology terms to identify new annotations. For example, direct
annotations to a concept in one ontology can be expanded
to gather new annotations from another ontology based on
pre-existing bridge mappings between the two ontologies.
NCBO also proposes the use of semantic similarity metrics to
identify related concepts for direct annotations to create new
annotations.

Using their REST API, NCBO was run with the following
parameters on the Gene Ontology (release date 10/25/2017).
• ontologies=GO: Restricts the annotator to the Gene

Ontology
• text=: Passes the UTF-8 encoded text to the annotator
3) Textpresso: Textpresso [11] uses the Textpresso ontology

that contains concepts from 33 parent ontologies such as gene,
cellular component, nucleic acid, organism, phenotype, drugs
including the Gene Ontology. These parent categories may be
further classified into one or more sub-categories.

Textpresso breaks free text into sentences and words and
uses a text-to-XML converter that marks the text through and
generates XML documents [11]. Users can opt to retrieve
annotations from one or more parent/sub-categories along with
searching specific portions of the text such as the abstract/body,
etc. Textpresso was run using the default command with
no additional parameters specified. The Textpresso ontology
(release date 07/2011) at the time of execution used Gene
Ontology version GO v1.934.

4) SciGraph Annotator: The Monarch annotation service
[12] provides the SciGraph annotator that annotates user pro-
vided free text with ontology concepts and biological entities.
SciGraph annotator marks the text with concepts from the
Monarch knowledge graph that includes gene ontology terms,
genes, diseases, and phenotypes. SciGraph also allows the user
the flexibility of selecting any desired ontology for annotation.
SciGraph was run with the ann parameter on the Monarch
knowledge graph (as of 04/09/2018) that calls the annotation
service.

B. Evaluation of Tool Annotation Performance
Annotations generated by the four NLP tools were compared

to the CRAFT corpus for evaluating their annotation perfor-
mance. Annotations generated by the four tools and those in
the CRAFT corpus were represented in a consistent location-
based format that indicated annotations corresponding to the
piece of text between a starting character index and an ending
character index. This representation enabled the comparison of
annotation output across sources in a consistent manner.

Consider a piece of text with starting character index i and
ending index j. We denote a CRAFT annotation corresponding
to this text as Ci,j and a tool annotation for the same text
as Ni,j where N represents one of the four tools. NLP tool

annotations might be compared to those from CRAFT in one
of the following cases:
• Exact Match: Ci,j 6= Ø, Ni,j 6= Ø, and Ci,j = Ni,j

An exact annotation match occurs when a piece of text
is annotated with the same ontology concept in CRAFT
and a tool. For example, both the tool and CRAFT
corpus annotate the text “development” (i = 191, j
= 202) with the GO concept “developmental process”
(GO:0032502)

• Partial Match: Ci,j 6= Ø and Ni,j 6= Ø, Ci,j 6= Ni,j

A partial annotation match occurs when a piece of
text is annotated both by CRAFT and a tool but the
ontology concepts used vary between the two sources.
For example, both the tool and CRAFT corpus annotate
the text “antibody” (i = 5964, j = 5972). However,
CRAFT used the GO concept “immunoglobulin com-
plex” (GO:0019814) while the tool used “B cell receptor
complex” (GO:0019815).

• False Positive: Ci,j = Ø, Ni,j 6= Ø
A false positive annotation occurs when a tool generates
an annotation for a piece of text that does not contain
an annotation in CRAFT. For example, a tool annotated
“homeostasis” (i = 233, j = 244) with “homeostatic
process” (GO:0042592), but there was no annotation in
CRAFT for the same text.

• False Negative: Ci,j 6= Ø, Ni,j = Ø
A false negative annotation occurs when a tool fails
to annotate a piece of text that has been annotated in
CRAFT. For example, the CRAFT corpus annotates the
text “immune function” (i = 204, j = 219) with “immune
system process” (GO:0002376), but the tool did not
annotate that piece of text.

C. Semantic Similarity

The accuracy of a tool’s annotation matches (exact and
partial) in comparison to CRAFT was assessed using Jaccard
semantic similarity. The Jaccard similarity (J) of two ontology
concepts/classes (A, B) in an ontology is defined as the ratio
of the number of classes in the intersection of their subsumers
over the number of classes in their union of their subsumers
[16], [29].

J(A,B) =
|S(A) ∩ S(B)|
|S(A) ∪ S(B)|

where S(A) is the set of classes that subsume A. Jaccard
similarity ranges from 0 (no similarity) to 1 (exact match).
Jaccard similarity is designed to measure similarity between
ontology concepts based on their proximity to each other in
the ontology - the farther two concepts are from each other,
the less similar they are.

IV. RESULTS AND DISCUSSION

The CRAFT corpus contains 67 open access, full-length
papers annotated with concepts from 6 ontologies. The corpus
contains 91,446 total annotations and 3,242 unique annotations
spanning 6 ontologies. Table I shows the total and unique num-
ber of annotations categorized by ontology. CRAFT contains a
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total of 32,416 GO annotations (35.4% of all ontology annota-
tions) with an average of 416 annotations per paper. These GO
annotations are distributed across three sub-ontologies Cellular
Component (CC), Molecular Function (MF), and Biological
Process (BP) (Figure 1). Results in Figure 1 indicate that
a large portion of GO annotations in the CRAFT belong to
the Biological process sub-ontology with Molecular Function
accounting for the least number of annotations.

TABLE I. DISTRIBUTION OF ANNOTATIONS IN THE CRAFT CORPUS
BY ONTOLOGY

Ontology Number of total annota-
tions

Number of unique annota-
tions

Gene Ontology 32,416 1,236
Sequence Ontology 22,090 260
Protein Ontology 15,594 889
Chemical Entities of Bio-
logical Interest

8,137 553

NCBI Taxonomy 7,449 149
Cell Type Ontology 5,760 155
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Fig. 1. Distribution of annotations across the three sub-ontologies of the
Gene Ontology

Four NLP tools (MetaMap, NCBO Annotator, Textpresso,
and SciGraph) were used to annotate the 67 CRAFT articles
with GO concepts. First, we observed the performance of the
four tools using the total number of unique and non-unique
annotations generated by each tool as compared to the CRAFT
Corpus (Table II). Here, we see that Textpresso retrieves the
most number of annotations among the four tools, surprisingly,
about 24% more than the CRAFT corpus. However, Textpresso
annotations contain a very low number of unique GO terms
indicating that these annotations do not span across the Gene
Ontology well. MetaMap retrieves about 82% of the CRAFT
total annotation count and 94% of CRAFT’s unique annotation
count. NCBO Annotator and SciGraph generate a substantially
lower number of annotations as compared to MetaMap and
Textpresso.

We also examined if the distributions of NLP annotations
at different depths of the GO were similar to CRAFT anno-

TABLE II. NUMBER OF TOTAL AND UNIQUE GO ANNOTATIONS IN THE
CRAFT CORPUS AND RETRIEVED BY EACH TOOL.

Annotation Source Total GO annotations (%
CRAFT)

Unique GO annotations
(% CRAFT)

CRAFT 32,416 1,236
Textpresso 40,509 (124 %) 37 (3%)
MetaMap 26,815 (82%) 1,174 (94%)
NCBO Annotator 15,611 (48%) 894 (72%)
SciGraph Annotator 13,149 (40%) 780 (63%)

tations. We observe striking similarities in the distributions
of annotations across GO depths for CRAFT and the NLP
tools except Textpresso (Figure 2). The majority of Textpresso
annotations belong at level 1 (direct children of the root) with
a distinct lack of annotations at deeper levels. This trend is
in stark contrast to trends seen with CRAFT and the other
three tools where the number of unique terms increases with
increasing depth peaking at level 6 and declining after. This
result is unsurprising given the low number of unique GO
terms retrieved by Textpresso (Table II).
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Fig. 2. Comparison of the distribution of annotations at different levels of
the Gene Ontology from different annotation sources.

Next, we examined each tool’s performance with respect
to the proportion of false positives and negatives (Table III).
These results indicate that a staggering proportion of anno-
tations generated by MetaMap and Textpresso, the two tools
generating the most annotations (Table II) are false positives or
false negatives. In comparison, SciGraph and NCBO Annotator
generate lower false positives.

We hypothesize that the large number of false positives and
false negatives from MetaMap might be an artifact of our
interpretation of MetaMap’s results. Without a clear mapping
between the exact piece of text being annotated to a concept,
we used a fuzzy matching between the tagged phrase and
the annotation which might have contributed to these false
positives.

We suspect that a proportion of false positives generated by
the tools might be because CRAFT annotations were generated
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using an outdated version of the GO whereas the tools use
newer versions of the GO with a more complete set of ontology
concepts.

TABLE III. FALSE POSITIVE AND FALSE NEGATIVE ANNOTATIONS BY
THE NLP TOOLS AS COMPARED TO THE CRAFT CORPUS.

Annotation Source False Positives (% annota-
tions)

False negatives (% anno-
tations)

MetaMap 25,823 (96.3%) 31,446 (97.0%)
Textpresso 26,692 (65.9%) 22,937 (70.8%)
SciGraph Annotator 6,494 (49.4%) 27,607 (85.2%)
NCBO Annotator 6,914 (44.3%) 24,892 (76.8%)

Next, we focused on exact and partial matches between the
tools and CRAFT. Surprisingly, we notice that most of the
tools generate appreciably more exact matches as compared
to partial matches (Table IV). These numbers also indicate
that a rather small proportion (2-18%) of total annotations
generated by a tool are exact or partial matches to CRAFT.
We see that NCBO Annotator produces the highest number of
exact matches followed by SciGraph. Surprisingly, despite it’s
high number of generated annotations, MetaMap produces just
2.7% exact matches and 0.4% partial matches.

TABLE IV. NUMBER OF EXACT AND PARTIAL MATCHES BETWEEN GO
ANNOTATIONS IN THE CRAFT CORPUS AND THOSE GENERATED BY EACH

TOOL.

Annotation Source Number of exact matches
(% matches)

Number of partial matches
(% matches)

NCBO Annotator 5,921 (18.3%) 2,776 (8.6%)
SciGraph Annotator 5,016 (15.5%) 1,639 (5.1%)
Textpresso 4,006 (12.4%) 9,811 (30.3%)
MetaMap 866 (2.7%) 126 (0.4%)

The four tools generated a total of 15,809 exact matches and
14,352 partial matches to CRAFT. We analyzed the overall
quality and accuracy of these matched annotations by compar-
ing them to corresponding CRAFT annotations using Jaccard
semantic similarity. Here, we see that MetaMap has a very high
similarity to CRAFT ( 90%) followed by SciGraph and NCBO.
This result further reinforces our hypothesis that the MetaMap
false positives are likely a result of our fuzzy interpretation
of its annotation output. It is important to note that although
MetaMap results in the highest semantic similarity score, the
pool of annotations being analyzed is substantially smaller as
compared to the other tools. Textpresso annotations show the
lowest similarity scores. Given the discrepancy in the depth of
distribution between Textpresso’s annotations and the CRAFT
corpus, it is unsurprising to see the low semantic similarity
score between Textpresso and CRAFT. As in the above tests,
SciGraph and NCBO perform well (75-81% similarity) with
relatively few false positives and false negatives.

Another factor that could affect the semantic similarity
scoring and the performance of the tools is the difference in
ontology versions used for annotation between CRAFT and the
various tools. Some of the NLP tools compared in this study
do not support user specified ontology versions for annotation.

We examined if it is easier for NLP tools to annotate
GO concepts with simple names (as measured by number of
words in the concept name) as compared to concepts with
multiple word names. Since the primary process employed
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Fig. 3. Semantic similarity comparison of partial and exact matches between
NLP tool annotation and the CRAFT corpus. Error bars indicate two standard
errors of the mean.

by the NLP tools here is to analyze and match text lexically
to concept names, we hypothesized that it might be easier to
recognize short concept names as compared to longer ones. To
explore this, we plotted the semantic similarity of annotation
matches categorized by the number of words in the concept
names. Interestingly, we do not see any consistent decreases
in semantic similarity as the number of words in the GO
concept name increases (Figure 4). This indicates that the ease
of annotation does not decline as ontology concept names get
longer and more complex.
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Fig. 4. Comparison of annotation performance indicated by semantic
similarity for GO concept names of different lengths. Error bars represent
two standard errors of the mean.
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V. CONCLUSIONS

Here, we conducted a comparison of MetaMap, NCBO
Annotator, Textpresso, and SciGraph at the task of annotating
scientific literature with Gene Ontology concepts. We found
that while Textpresso generated the most amount of annota-
tions, a large proportion of the annotations were false positives
or false negatives. Also, Textpresso annotations featured a
disproportionate number of high level GO terms as compared
to CRAFT and other tools. MetaMap generated the largest
number of false positives and false negatives but had the high-
est similarity to CRAFT based on partial and exact matches.
Although NCBO and Scigraph retrieve lower annotations as
compared to the other tools, their performance in terms of
false positives and false negatives is better in comparison
to the other tools. The semantic similarity of NCBO and
SciGraph is very comparable to the top performer, MetaMap.
As compared to MetaMap and Textpresso which show extreme
results, SciGraph and NCBO perform well on all evaluation
categories indicating potential utility for scientific applications.
Overall, the proportion of false positives and false negatives
across all the tools indicates that there is substantial room for
improvement in NLP tools for ontology-based Named Entity
Recognition.

VI. DATA AND SOFTWARE

The CRAFT data source can be found at http://
bionlp-corpora.sourceforge.net/CRAFT/. Code for results and
analysis can be found at https://github.com/lucasbeasley/
average-jaccard.
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