

Conceptual modeling of goals and metrics to
visualize the measurement of sustainability

Birgit Penzenstadler

Department of Computer Engineering
and Computer Science

California State University Long Beach
Long Beach, California, USA

birgit.penzenstadler@csulb.edu

Abstract—This keynote first presents a couple of approaches
from past and current work in visualizing and breaking down
high-level sustainability goals into measurable goals and how to
relate them to indicators and metrics, from both the field of
software engineering as well as sustainable development. Then
we will take a dive into other models that have been used to
structure and visualize the relation from high-level goals and all
the way down to detailed metrics and sketch out a few
opportunities to make increased use of those in a research
agenda for MegSuS.

Keywords—sustainability, sustainability measures, software
systems for sustainability, visualization, metrics.

I. FLOURISHING INSTEAD OF FIXING
According to the Oxford dictionary, sustainability is the

ability to be maintained at a certain rate or level, as well as the
avoidance of the depletion of natural resources in order to
maintain an ecological balance.

Ehrenfeld [1] proposes to take that further, where
sustainability (as an end) should be understood as the ability
to flourish indefinitely (means). He points out that our current
problem is that we are trying to reduce unsustainability, which
is not creating sustainability. He adds that as a society, we
seem to be addicted to solving our problems through a
reductionist framework, which manifests itself in technology
fixes that keep us trapped in the wrong path. We try to apply
a technology fix to create more eco-efficiency, and due to
rebound effects, unconsciousness, and even addiction (to our
technology fixes), we remain in a state of unsustainability –
instead of taking on a new paradigm and new mindset that
would allow us (with a certain delay) to be able to transition
onto a sustainable path. To get towards flourishing, Ehrenfeld
proposes four steps:

1. Take ethical decisions based on values,
2. Develop collective visions of the future (outside of

the old circular patterns),
3. Replace old structures and strategies, and
4. Live inside the question.

While all four steps require a big shift in thinking and

major changes, they promise to lead us towards manifesting a
transition that none of our technology fix routes has been able
to achieve.

As researchers, we are in a position to lead the way for
living inside the question, and we need to step into that
responsibility. That means to not buy into the technology fix
path, which is very tempting in our field of research. So the
question is how we can go beyond this limited perception of
making an IT solution more eco-efficient than it currently is,
and instead contemplate a bigger picture. How can we, as

software engineering researchers, be the facilitators of a larger
joint vision of the future?

II. SCOPING SUSTAINABILITY
Tainter [2] proposes that in order to analyze the

sustainability of something, we need to get very clear on the
scoping, and answer the questions of:

1. What to sustain? What is the purpose of the system,
or the mission behind it?

2. For whom? Who are the stakeholders? Are some of
them maybe beyond organizational reach, being
impacted but not considered during development?

3. For how long? A decade? A generation? A
century? Can we think beyond standard business
plan terms?

4. At what cost? What is the return on investment,
and what are the environmental and social impacts?

Applying those four questions to a specific software
system under consideration, we note that we can answer the
first question on several levels, on a conceptual level or on a
technical level. If we are to respond on a technical level, we
go back to the technology fix loop. If we can respond on a
conceptual level, we focus on the functionality or service that
the system under consideration is supposed to support. The
next question is how we can integrate that into the
development of software-intensive systems.

III. DESIGNING FOR SUSTAINABILITY
The Karlskrona Manifesto on Sustainability Design was

one of the first answers proposed on a conceptual level, before
considering a specific system purpose and optimizing a
technical solution. The manifesto makes observations about
common misconceptions around sustainability and
development towards sustainability and proposes a set of
principles and commitments. These principles are [3]:

1. Sustainability is systemic. Sustainability is never
an isolated property. Systems thinking has to be the
starting point for the transdisciplinary common
ground of sustainability.

2. Sustainability has multiple dimensions. We have
to include those dimensions into our analysis if we
are to understand the nature of sustainability in any
given situation.

3. Sustainability transcends multiple disciplines.
Working in sustainability means working with
people from across many disciplines, addressing
the challenges from multiple perspectives.

4. Sustainability is a concern independent of the
purpose of the system. Sustainability has to be

considered even if the primary focus of the system
under design is not sustainability.

5. Sustainability applies to both a system and its
wider contexts. There are at least two spheres to
consider in system design: the sustainability of the
system itself and how it affects sustainability of the
wider system of which it will be part.

6. Sustainability requires action on multiple levels.
Some interventions have more leverage on a
system than others. Whenever we take action
towards sustainability, we should consider
opportunity costs: action at other levels may offer
more effective forms of intervention.

7. System visibility is a necessary precondition and
enabler for sustainability design. The status of
the system and its context should be visible at
different levels of abstraction and perspectives to
enable participation and informed responsible
choice.

8. Sustainability requires long-term thinking. We
should assess benefits and impacts on multiple
timescales and include longer-term indicators in
assessment and decisions.

9. It is possible to meet the needs of future
generations without sacrificing the prosperity of
the current generation. Innovation in
sustainability can play out as decoupling present
and future needs. By moving away from the
language of conflict and the trade-off mindset, we
can identify and enact choices that benefit both
present and future.

If software engineers are to take those principles account
while engineering the requirements and design of their
systems, we will see a significant shift towards more
sustainability in software-intensive systems development.
The work on the manifesto includes developing methods that
make their application straight-forward, and we have
evaluated these methods in first industry studies [4].

IV. TRANSFORMATION MINDSET
The next question that arises is where our current solutions

are in terms of maturity. Mann, Bates, and Maher [5] have
analyzed the maturity of ICT (information and
communication technology) solutions for sustainability and
found that most solutions are in the area of compliance, e.g. to
standards, and use in terms of user behavior. Instead, the
authors argue, we need a sustainability-based transformation
mindset. The transformation mindset includes ten
propositions [6]:

1. Socioecological restoration over economic
justification

2. Transformative system change over small steps to
keep business as usual

3. Holistic perspectives over narrow focus
4. Equity and diversity over homogeneity
5. Respectful, collaborative responsibility over

selfish othering
6. Action in the face of fear over paralysis or willful

ignorance
7. Values change over behavior modification
8. Empowering engagement over imposed solutions
9. Living positive futures over bleak predictions

10. Humility and desire to learn over fixed knowledge
sets

When faced with the challenge of how to bring such a
mindset into practice, requirements engineering is the key
activity within software-intensive systems development to
affect change [6]. As proposed in several pieces of related
work [7], an artifact-based approach to requirements
engineering with a focus on sustainability as a first-citizen
objective makes the contribution by and impacts of ICT for
sustainability better tangible and visible.

V. REQUIREMENTS ENGINEERING FOR SUSTAINABILITY
Requirements Engineering for Sustainability (RE4S) helps

elicit and document requirements with a focus on analyzing
the different dimensions of sustainability in the wider system
context.

The first artifact breaking down the sustainability goals of
the system is a dedicated goal model [8], organized according
to different dimensions of sustainability, namely individual,
social, environmental, economic, and technical. Then we
analyze the potential impacts of the system for the dimensions
and for the orthogonal three orders of effect [9], namely direct
effects, enabling effects, and systemic effects. We can
visualize a summary of such an analysis in a Sustainability
Analysis Diagram (SusAD), as illustrated for a procurement
system in [6], and for a resilient smart garden system in [10].
Figure 1 shows the empty template for a sustainability analysis
diagram along with guidance for a first draft. Both the goal
model and the sustainability analysis diagram allow for a tie-
in with metrics to assess chosen interventions.

Fig. 1: Template for a sustainability analysis diagram.

VI. CONCLUSION
The complexity of sustainability asks for effective

visualization of conflicts & contradictions. We can visualize
goals to identify metrics and analyze effects to measure
sustainability. Thereby, goal modeling helps visualize the
vision, and a sustainability analysis diagram helps visualize
the impacts and effects. Future work is under way towards best
practice patterns.

REFERENCES
1. Ehrenfeld, John R., and Andrew J.

Hoffman. Flourishing: A frank conversation about
sustainability. Stanford University Press, 2013.

2. Tainter, Joseph A. "Social complexity and
sustainability." ecological complexity 3.2 (2006):
91-103.

3. Becker, C., Chitchyan, R., Duboc, L., Easterbrook,
S., Penzenstadler, B., Seyff, N., & Venters, C. C.
(2015, May). Sustainability design and software:
The karlskrona manifesto. In Proceedings of the
37th International Conference on Software
Engineering-Volume 2 (pp. 467-476). IEEE Press.

4. Seyff, N., Betz, S., Duboc, L., Venters, C., Becker,
C., Chitchyan, R., Penzenstadler, B. and Nöbauer,
M., 2018, August. Tailoring Requirements
Negotiation to Sustainability. In 2018 IEEE 26th
International Requirements Engineering
Conference (RE) (pp. 304-314). IEEE.

5. Mann, Samuel, Oliver Bates, and Raymond Maher.
"Shifting the maturity needle of ICT for
Sustainability." Proceedings of the 5th Intl.

Conference on Information and Communication
Technology for Sustainability ICT4S (2018)

6. Becker, C., Betz, S., Chitchyan, R., Duboc, L.,
Easterbrook, S.M., Penzenstadler, B., Seyff, N. and
Venters, C.C., 2016. Requirements: The key to
sustainability. IEEE Software, 33(1), pp.56-65.

7. Penzenstadler, Birgit. "Infusing Green:
Requirements Engineering for Green In and
Through Software Systems." 3rd Intl. Workshop on
Requirements Engineering for Sustainable
Systems, RE4SuSy@ RE. 2014.

8. Penzenstadler, B., & Femmer, H. (2013, March). A
generic model for sustainability with process-and
product-specific instances. In Proceedings of the
2013 workshop on Green in/by software
engineering (pp. 3-8). ACM.

9. Hilty, Lorenz M., and Bernard Aebischer. “ICT for
sustainability: An emerging research field." ICT
Innovations for Sustainability. Springer, Cham,
2015. 3-36.

10. Penzenstadler, Birgit, Jayden Khakurel, Carl Plojo,
Marinela Sanchez, Ruben Marin, and Lam Tran.
"Resilient Smart Gardens—Exploration of a
Blueprint." Sustainability 10, no. 8 (2018): 2654.

