
A focus group for operationalizing software
sustainability with the MEASURE platform

Nelly Condori-Fernandez
Universidade da Coruña, Spain

Vrije Universiteit Amsterdam, The Netherlands
n.condori.fernandez@udc.es
n.condori-fernandez@vu.nl

Alessandra Bagnato
Softeam

Paris, France
alessandra.bagnato@softeam.fr

Eva Kern
Leuphana University Lueneburg

Environmental Campus Birkenfeld
Germany

eva.kern@leuphana.de

Abstract—Measuring the sustainability of software products
is sill in the early stages of development. However, there are
different approaches how to assess sustainability issues of soft-
ware and its engineering - including metrics with a practical
orientation as well as more theoretical models covering software
sustainability. As an example for one step in moving forward
bringing existing approaches together, the paper presents a focus
group study conducted to find out in which extent the quality
attributes related to the technical sustainability can be measured
by using existing metrics available at the MEASURE platform.
Our first results show that the extent of measurability varies
across the software development phases. Functional correctness,
robustness, maturity, and testability are the most measurable
quality attributes.

Index Terms—technical sustainability, measurement, focus
group, software metrics

I. INTRODUCTION

Assessment based on the notion of sustainability, as a soft-
ware quality property, is still emerging and poorly understood
[1]. Consequently, how software should be assessed against
sustainability concerns is still immature even though it is
attracting increasing attention from both research and practice.

This is especially the case when it comes to technical
sustainability of software. According to [2], [3] technical
sustainability has the central objective of long-time usage of
systems and their adequate evolution with changing surround-
ing conditions and respective requirements. However, so far,
there is a knowledge gap how to transfer theoretical knowledge
into practical routines [4]–[7]. Here, software measurement
can help in creating transparency into software properties and
in providing information on sustainability issues of software to
developers. Sustainability issues of software are discussed in
more details in [8]–[10]. Thus, in the following paper, we will
concentrate on the presentation of bringing the metrics of a
measurement platform - the MEASURE platform - and aspects
of a Software Sustainability Model [11] together. Doing so,
we bring practical and scientific approaches in assessing the
technical sustainability of software products together.

The paper is structured as follows: Section II presents the
MEASURE platform and the Software Sustainability Model.
These are the basic information of the focus group workshop.
The design of focus group, including a description of the
participants, research questions, and methods, is introduced in

Section III. Section IV illustrates the validity of the research
done before summarizing and discussing the results of our
study in Section V.

II. BACKGROUND

A. The MEASURE platform

The MEASURE ITEA3 consortium (Softeam R&D, 2017)
[12] aims to develop a comprehensive set of tools for au-
tomated and continuous measurement over all stages of the
software development life cycle (specification, design, devel-
opment, implementation, testing, and production). It includes
the development of better metrics and ways to analyses the
big data produced by continuous measurements, the validation
of those metrics by the integration of the metrics and tools
into running processes in various industrial partners, and the
creation of decision support tools for project managers through
the visualization of the collected data.

This European MEASURE ITEA 3 project develops a
framework of metrics [13], [14] bottom-up with a list of in-
dustry partners and integrated them into a systematic structure
to help creating a reference for companies to improve their
assessment all phases of the software development life cycle
metrics. MEASURE work is based on the OMGs Structured
Metrics Metamodel (SMM) models [15]. The MEASURE
platform consists of a web application that allows to deploy,
configure, collect, compute, store, combine and visualize mea-
surements by execution of software measures that may be
defined according to the SMM specification. The MEASURE
project can develop a body of knowledge that shows software
engineers why, how and when to measure quality of process,
products and projects. Nowadays, an emergent quality property
of the software systems is sustainability. Although there is an
urgent demand for innovative solutions and smart applications
for a sustainable society worldwide, sustainability measure-
ment and assessment is a big challenge. The MEASURE
project developed a set of 150 metrics related to different
aspects of software engineering. With the work done within
this paper and the focus group we contribute to address
sustainability under a multi-dimensional perspective on the
entire software development life cycle. Figure 1 illustrates a
typical dashboard in the MEASURE platform.



Fig. 1: Dashboard of the MEASURE platform

B. The software sustainability-quality model

Lago et al. [3] and Venters et al. [16] agree on defining
software sustainability in terms of multiple and interdependent
dimensions (e.g. economic, technical, social, environmental,
individual). Several efforts have been put to define software
sustainability in terms of quality requirements (e.g. [10], [16]–
[19]). For instance, Condori-Fernandez and Lago [19] pro-
vided (i) a detailed characterization of each software sustain-
ability dimension, which is a first step towards its respective
operationalization, and (ii) a list of direct dependencies among
the four sustainability dimensions: economic, technical, social,
and environmental.

The economic dimension aims to ensure that software-
intensive systems can create economic value. It is taken care
of in terms of budget constraints and costs as well as market
requirements and long-term business objectives that get trans-
lated or broken down into requirements for the system under
consideration. The social dimension aims to allow current
and future generations to have equal and equitable access
to the resources in a way that preserves their socio-cultural
characteristics and achieve healthy and modern society. The
environmental dimension seeks to avoid that software-intensive
systems harm the environment they operate in. And, the
technical dimension is concerned with supporting long-term
use and appropriate evolution/adaptation of software-intensive
systems in constantly changing execution environment. Based
on these definitions, quality attributes (QA) that contribute
to the corresponding sustainability dimensions of software-
intensive systems were identified [19]. As a result of this char-
acterization per sustainability dimension in terms of quality
attributes and identification of direct dependencies, a software
sustainability-quality model was proposed, which can be found
in [11].

III. FOCUS GROUP STUDY DESIGN

A. Goal and research questions

The goal of our focus group study, according to the
Goal/Question/Metric template, is as follows:
Analyze metrics from the MEASURE platform and Software
Sustainability-Quality Model [11]
for the purpose of operationalizing quality attributes that
contribute to technical sustainability
from the viewpoint of software engineer (researcher or practi-
tioner)
in the context of the MeGSuS workshop1.

Our focus group study represents an early assessment
exercise of the MEASURE platform. We define the following
research question:

RQ1: In which extent can the MEASURE platform be
useful for measuring technical sustainability?

For determining the potential usefulness of MEASURE for
operationalizing the sustainability-quality attributes, from our
research question, we set out three specific questions to our
participants:

RQ1.1: Do you agree with the contribution of the selected
quality attributes as contributors to technical
sustainability?

RQ1.2: In which phase of the software development life
cycle, do you think it would be feasible to measure
the list of quality attributes?

1http://eseiw2018.wixsite.com/megsus18



RQ1.3: Which metrics from the MEASURE platform can
be useful for measuring technical sustainability?

B. Participants

For answering our research question, we considered it advis-
able that our participants should have a very good knowledge
competence on software measurement, as well as interest in
any research topic related to software sustainability. Both
criteria were successfully satisfied by our eight participants,
attendees of the MeGSuS workshop. Two of them were
practitioners. All of them contributed to the workshop focusing
on software measurement and showed their interest in the topic
by that.

C. Instrumentation and data collection

The focus group study was organized in four small groups,
to run the study, the following instrumentation was distributed
among the groups:

• Technical sustainability definition
• List of quality attributes and corresponding definitions of

the attributes
• Metrics from the MEASURE platform, whose definitions

were accessible via a wiki website2

After reading and clarifying the definitions, the participants
selected the phase of the software development, they felt most
familiar with. Regarding our two first specifics questions,
verbal data was collected, whereas for our third question, a
large sheet of paper containing a grid was used by each focus
group.

Fig. 2: Matrix used for mapping selected metrics with the
quality attributes (QA)

As shown in Figure 2, participants used an ”X” for repre-
senting the relation: ”M can measure QA” or ”QA can be
measured by M”.
Those ”X” enclosed by a circle were used to identify a set of
basic metrics that can measure a QA.

Table I shows the twenty two quality attributes of technical
sustainability that were analyzed by our focus group partici-
pants.

2https://github.com/ITEA3-Measure/Measures/wiki

TABLE I: Technical sustainability-quality attributes identified
in [19]

ID Characteristics Quality attributes
QA1 Functional suitability Functional correctness
QA2 Compatibility Interoperability
QA3 Reliability Availability
QA4 Functional suitability Functional appropriateness
QA5 Satisfaction Usefulness
QA6 Reliability Fault tolerance
QA7 Maintainability Modifiability
QA8 Satisfaction Trust
QA9 Context coverage Context completeness
QA10 Effectiveness Effectiveness
QA11 Robustness Robutsness
QA12 Portability Adaptability
QA13 Performance efficiency Time behaviour
QA14 Maintainability Modularity
QA15 Maintainability Testability
QA16 Reliability Recoverability
QA17 Compatibility Coexistence
QA18 Reliability Maturity
QA19 Efficiency Efficiency
QA20 Survivability Survivability
QA21 Performance efficiency Capacity
QA22 Security Integrity

D. Procedure

As shown in Figure 3, the procedure of our focus group
study involves the following four phases:

1) Preparation phase: This phase has two objectives: i) to
get a common understanding on what software sustainability
means regarding technical sustainability dimensions, ii) to
decide which sustainability dimensions are going to be used
in the next phase. This phase has been carried out by the
organizers of the focus group, consisting of one moderator
and two assistants.

After having a discussion (before realizing the focus group),
and considering also the time allocated for this study as part
of the MeGSuS workshop, the researchers decided to work
with the technical sustainability dimension.

The activities of the next phases were carried out during the
focus group.

2) Phase 1: What?: The objective of this phase is to
validate the contribution of the corresponding QAs to the
technical sustainability dimension. Thus, in this phase, par-
ticipants answered RQ1.1. The moderator introduced briefly
the motivation of the focus group, presented an overview of
the sustainability-quality model as well as a plan of activities
to be carried out. The outcome of this phase is a list of selected
QAs that will be analyzed in the following phases.

The average time taken for this phase was about 10 minutes.
3) Phase 2: When?: The objective of this second phase

is to discuss on which phases of the software life cycle the
selected qualities could be measured. Thus in this phase, based
on their participants experience, RQ1.2 was answered. The
average time taken was about 5 minutes.

4) Phase 3: How?: The objective of this third phase is
to assess the usefulness of the metrics from the MEASURE
platform. Thus, in this phase, participants answered RQ1.3.



Fig. 3: Focus group procedure

It took approximately 25 minutes. All participants of the
four focus groups shared their mapping results, by empha-
sizing the reasoning behind the mappings, difficulties of un-
derstanding the purpose of some metrics and discussing open
questions on the connection of the issues. In this phase, we
were open to new metrics that could be suggested by the
participants. However, due to time restrictions, this data was
not collected.

IV. THREATS TO VALIDITY

We identified the following threats to validity [20] of our
study.

• External validity. It is the ability to generalize the results
from a sample to a population. As focus groups tend to
use rather small, homogeneous samples, generalization
is the main limitation of our study. Our study involved
four mini-groups, with people from different countries,
but most of them were researchers. To mitigate this threat,
we are going to replicate this first focus group, involving
more groups representing a diverse sample of people.

• Internal validity. It is strengthened by a moderator
providing an appropriate amount of guidance without
introducing any of his/her own opinion or stifling free
expression. In order to reduce this threat, the moderator
used an introductory material (Powerpoint-slides) for
contextualizing the focus group study.

• Construct validity. It is concerned with whether the
focus group is actually measuring what they are trying
to measure. In our focus group, we focus on investigate
the coverage and measurability aspects. By using two
different existing approaches - one with a more practical

orientation and one theoretical model - having a common
focus, the direction of the focus group was specifically
predefined. This ensured that the focus of discussion was
also set on the technical sustainability dimension.

V. RESULTS AND DISCUSSION

In order to answer our main research question related to the
usefulness of the MEASURE platform for measuring the tech-
nical sustainability dimension, we analyzed the collected data
from each focus group (see matrix, Figure 6). Usefulness of
the platform is analyzed regarding coverage and measurability
aspects, which are discussed as follows.

A. Analyzing the coverage of the MEASURE platform

Considering the total of metrics available at the MEASURE
platform [21], [22], [13], which are organized by software
development phase, Table II shows the percentage of software
metrics selected by the participants of each mini-focus group
as useful for measuring any QA of the technical sustainability
dimension. According to these results, we observe that all
metrics available for the specification phase (100%) could be
related with the corresponding QAs, whereas only 25% of 51
metrics for the implementation phase were related.

Next we present the selected metrics by each mini-focus
group.

1) Metrics for the specification phase: Table III : ”Selected
metrics of the specification phase” shows the 10 selected
specification phase metrics that were mapped with the QAs
of the technical sustainability dimension.



TABLE II: Percentage of metrics selected by the focus group
participants per development phase

Phase Number of
selected metrics

Total
of metrics3 Percentage

Specification 10 10 100%
Design 16 35 46%
Implementation 13 51 25%
Testing 15 22 68%

2) Metrics for the design phase: Table IV: ”Selected
metrics of the design phase” shows the 18 selected design
phase metrics that were mapped with the QAs of the technical
sustainability dimension.

3) Metrics for the implementation phase: Table V : ”Se-
lected metrics of the implementation phase” shows the 13
selected implementation phase metrics that were mapped with
the QAs of the technical sustainability dimension.

4) Metrics for the testing phase: Table VI: ”Selected
metrics of the testing phase” shows the 21 selected testing
phase metrics that were mapped with the QAs of the technical
sustainability dimension.

As shown in the matrix (Figure 2 in Appendix), the spec-
ification, design, implementation, and testing metrics where
associated to the quality attributes presented in Table I.

B. Analyzing the measurability of the quality attributes

Considering the twenty-two QAs of the technical sustain-
ability dimension (see Table I), Figure 4 shows the percentages
of QAs that can be measured by at least one of the selected
metrics. Most of the QAs can be measured at the specification
phase (82%, 18 of 22 QAs), followed by design (59%, 13
of 22 QAs), testing (32%, 7 of 22 QAs) and implementation
(23%, 5 of 22 QAs).

Fig. 4: Percentage of measurable quality attributes per phase

This indicates that most of the QAs related to the technical
sustainability can be qualified as measurable. In order to
represent the extent of measurability for each development
phase, we calculated the number of available metrics selected
from the platform for measuring each QA (see Figure 5).
According to these results, we observe that our participants
found that functional correctness, robustness and maturity can
be measured by using a good number of metrics at the testing

phase (13 metrics). In case of the specification phase, espe-
cially functional correctness and functional appropriateness are
of high importance, meaning covered by many metrics (5 of
10 metrics). Efficiency is connected with most of the metrics
of the design phase while the quality attribute is not covered
in the other phases analyzed. Overall, functional suitability is
connected to many of the proposed metrics for the analyzed
software development phases.

VI. CONCLUSIONS

In this paper, we describe the result of the the focus group
designed to discuss on ”What, when and how to measure
software sustainability”. The authors organized the study
within the MeGSuS 2018: 4th International Workshop on
Measurement and Metrics for Green and Sustainable Software
Systems [23].

Through the focus group, we found a good number of
metrics that were selected from the MEASURE platform as
”potentially” useful for measuring quality attributes of the
technical sustainability dimension along certain phases of the
software development life cycle (i.e. design, specification,
testing, implementation). This result provides evidence on the
coverability of the MEASURE platform for the specification,
design, implementation and testing phases.

Moreover, the study has also shown that most of the
technical sustainability-quality attributes are measurable. The
results can be appreciated and are summarized in Figure 5,
where we can highlight the following results: .

• Metrics for the specification phase were distributed
among the various QAs with higher metrics related to
QA1 and QA4.

• Metrics for the design phase were distributed among the
various QAs with higher metrics related to QA19, QA15
and QA14.

• Metrics for the implementation phase focus, according to
the results of the focus group, on a limited number of QAs
(QA15, QA7, QA22) related to technical sustainability
dimension. The subgroup considered that maintenability
/ testability, maintenability / modifiability, and security
were the QAs associated to the higher number of imple-
mentation metrics (see Table V) .

• Metrics for the testing phase focus on a limited num-
ber of QAs (QA1, QA11, QA18) related to technical
sustainability dimension. The sub-group considered that
functional suitability, robustness, and reliability were the
QAs associated to the higher number of testing metrics
(see Table VI).

Functional correctness, robustness, maturity and testability are
the most measurable quality attributes considering the four
phases. The focus group acknowledged that the technical
sustainability dimension [19] could be operationalized by
the MEASURE platform implemented metrics. For validating
these results, we are going to replicate the study to find both
similarities and differences.



Fig. 5: Measurability: Number of metrics per quality attribute related to technical sustainability

Another future work of the team include providing MEA-
SURE visualization dashboards to support users in the evalua-
tion of the technical sustainability of a given software artifact.

ACKNOWLEDGMENT

We thank all the participants who took part in our focus
group study: Jérôme Rocheteau from the Institut catholique
d’arts et métiers (Icam) site of Nantes, Birgit Penzen-
stadler from California State University Long Beach, Shola
Oyedeji from Lappeenranta University of Technology, Denisse
Muñante from University of Bordeaux, Diogo Silveira Mendoa
from Pontifical Catholic University of Rio de Janeiro, and
Thibault Beziers la Fosse from Laboratoire des Sciences
du Numrique de Nantes, Software Modeling Group (LS2N-
NAOMOD).

The research presented in this paper is partially funded by
the ITEA3 Project no. 14009 called MEASURE (1st December
2015 and running till 31st August 2019).

REFERENCES

[1] P. Lago, “Software and sustainability [inaugural lecture],”
http://dare.ubvu.vu.nl, Jan. 2016.

[2] B. Penzenstadler and H. Femmer, “A generic model for sustainability
with process-and product-specific instances,” in Proceedings of the 2013
workshop on Green in/by software engineering. ACM, 2013, pp. 3–8.

[3] P. Lago, S. A. Koçak, I. Crnkovic, and B. Penzenstadler, “Framing
sustainability as a property of software quality,” Communications of the
ACM, vol. 58, no. 10, pp. 70–78, 2015.

[4] S. Selyamani and N. Ahmad, “Green computing: the overview of aware-
ness, practices and responsibility among students in higher education
institutes,” J. Inf. Syst. Res. Innov, 2015.

[5] R. Chitchyan, C. Becker, S. Betz, L. Duboc, B. Penzenstadler, N. Seyff,
and C. C. Venters, “Sustainability design in requirements engineering:
state of practice,” in Proceedings of the 38th International Conference
on Software Engineering Companion. ACM, 2016, pp. 533–542.

[6] I. Manotas, C. Bird, R. Zhang, D. Shepherd, C. Jaspan, C. Sadowski,
L. Pollock, and J. Clause, “An empirical study of practitioners’ perspec-
tives on green software engineering,” in Software Engineering (ICSE),
2016 IEEE/ACM 38th International Conference on. IEEE, 2016, pp.
237–248.

[7] C. Pang, A. Hindle, B. Adams, and A. E. Hassan, “What do pro-
grammers know about software energy consumption?” IEEE Software,
vol. 33, no. 3, pp. 83–89, 2016.

[8] C. Calero and M. Piattini, “Introduction to green in software engineer-
ing,” in Green in Software Engineering. Springer, 2015, pp. 3–27.

[9] L. M. Hilty and B. Aebischer, “Ict for sustainability: An emerging
research field,” in ICT Innovations for Sustainability. Springer, 2015,
pp. 3–36.

[10] E. Kern, L. M. Hilty, A. Guldner, Y. V. Maksimov, A. Filler, J. Gröger,
and S. Naumann, “Sustainable software productstowards assessment
criteria for resource and energy efficiency,” Future Generation Computer
Systems, vol. 86, pp. 199–210, 2018.

[11] O. Condori Fernandez and P. Lago, A Sustainability-quality
Model: (version 1.0). VU Technical Report, 11 2018. [Online].
Available: https://research.vu.nl/en/publications/a-sustainability-quality-
model-version-10

[12] Softeam R&D, “MEASURE project website,” http://measure.softeam-
rd.eu/, Oct. 2017, last accessed on 2018-11-01.

[13] A. Abherve, A. Bagnato, A. Stefanescu, and A. Baars, “Github
project for the MEASURE platform,” https://github.com/ITEA3-
Measure/MeasurePlatform/graphs/contributors, Sep. 2017, last accessed
on 2018-11-01.

[14] A. Abherve, “Github project for the SMM Measure API library,”
https://github.com/ITEA3-Measure/SMMMeasureApi, Aug. 2017, last
accessed on 2018-11-01.

[15] Object Management Group, “The Software Metrics Meta-Model Spec-
ification 1.1.1,” http://www.omg.org/spec/SMM/1.1.1/, Apr. 2016, last
accessed on 2018-11-01.

[16] C. Venters, L. Lau, M. Griffiths, V. Holmes, R. Ward, C. Jay, C. Dibs-
dale, and J. Xu, “The blind men and the elephant: Towards an empirical
evaluation framework for software sustainability,” Journal of Open
Research Software, vol. 2, no. 1, 2014.

[17] C. Calero, M. Á. Moraga, and M. F. Bertoa, “Towards a software
product sustainability model,” CoRR, vol. abs/1309.1640, 2013.
[Online]. Available: http://arxiv.org/abs/1309.1640

[18] A. Raturi, B. Penzenstadler, B. Tomlinson, and D. Richardson,
“Developing a sustainability non-functional requirements framework,”
in Proceedings of the 3rd International Workshop on
Green and Sustainable Software, ser. GREENS 2014. New
York, NY, USA: ACM, 2014, pp. 1–8. [Online]. Available:
http://doi.acm.org/10.1145/2593743.2593744

[19] N. Condori-Fernandez and P. Lago, “Characterizing the contribution
of quality requirements to software sustainability,” Journal of Systems
and Software, vol. 137, pp. 289 – 305, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121217302984

[20] R. A. Krueger, Focus groups : a practical guide for applied
research / Richard A. Krueger ; foreword by Michael Quinn Patton.



Sage Publications Newbury Park, Calif, 1988. [Online]. Available:
http://www.loc.gov/catdir/enhancements/fy0654/87033413-t.html

[21] A. Abherve and A. Bagnato, “Repository of measures specification
in smm,” https://github.com/ITEA3-Measure/Measures/wiki, Aug. 2017,
last accessed on 2018-12-01.

[22] A. Bagnato and A. Abherve, “Repository of measure implementations,”
https://github.com/ITEA3-Measure/Measures, Aug. 2017, last accessed
on 2018-12-01.

[23] E. K. Alessandra Bagnato, Nelly Condori Fernandez, “4th work-
shop on measurement and metrics for green and sustainable
software systems (megsus18) october 9, 2018 - oulu, finland,”
http://eseiw2018.wixsite.com/megsus18, Aug. 2018, last accessed on
2018-12-01.



APPENDIX

Fig. 6: Mapping between quality attributes related to technical sustainability dimension and metrics from the MEASURE
platform. (X = ”Metric can measure quality attribute” or rather ”Quality attribute can be measured by metric”, ? = ”connection
needs to be discussed”)



TABLE III: Selected metrics of the specification phase

ID Short name Description

SM1 Number of
Requirement

Total number of requirement defined in the
selected scope.

SM2 Number of Tests Total number of tests defined in the selected scope.

SM3
Requirements
Satisfaction Quality
Indice

Percentage of requirements that have been satisfied.

SM4
Requirement
Traceability To
Implementation Indice

Percentage of requirements that have been satisfied.

SM5 Requirement
Coverage Indice

The average number of requirements tracing
an architecture model.

SM6 Requirement
Complexity Indice

The average number of sub requirements
defined to rafine an existing requirement.

SM7 Number
Of Risks

Total number of risks defined
in the selected scope.
.

SM8 Number Of
Business Rules

Total number of requirement defined
in the selected scope.

SM9 Number
Of Goals

Total number of goals defined
in the selected scope.

SM10
Requirement
Traceability To
Test Indice

The % of requirement of tracing a test model.



TABLE IV: Selected metrics of the design phase

ID Short name Description

DM1 Class
Complexity Index

The number of direct subclasses of a class.
A class implementing an interface counts
as a direct child of that interface.

DM2 Package
Dependecies Ratio The average number of dependencies from a package.

DM3 Number
of Methods Total number of methods defined in the selected scope.

DM4 Software Component
decomposition

The number of software compoments identified
in an application architecture.

DM5 Number of Classes Total number of classes in the selected scope
DM6 Number of Interfaces Total number of interfaces in the selected scope.
DM7 Number of Methods Total number of methods defined in the selected scope.
DM8 Number of Components Total number of Components defined in the selected scope.
DM9 Number of Packages Total number of Packages defined in the selected scope.

DM10 Class
Dependency Ratio The average number of dependencies from a class.

DM11 Package
Dependency Ratio The average number of dependencies from a package.

DM12 Model Abstractness
Index

The% of abstract classes (and interfaces)
divided by the total number of types in a package.

DM13 Number of Fields Total number of fields defined in the selected scope.
DM14 Number of Use Cases Total number of use cases defined in the selected scope.
DM15 Number of Actors Total number of actors defined in the selected scope.

DM16 Number of
Component Types

Total number of interfaces component types in the
java Modelio model. Along with the total number of data,
this metric provides an idea of the functional richness
of the modelled application.

DM17 Number of
Aggregated Components

Total number of aggregated components in the
java Modelio model. Along with the number of
composed components, this metric reflects the usage
of the software decomposition in the modelled application.

DM18 Number of
Composed Components

Count the number of Interface annotated
@ComposedComponent in Java Model.



TABLE V: Selected metrics of the Implementation phase

ID Short Name Description

IM1 Cognitive
Complexity

defining how hard it is to understand
the code’s control flow.

IM2 Security
Rating

defining as A = 0 vulnerability,
B = at least 1 minor vulnerability,
C = at least 1 major vulnerability,
D = at least 1 critical vulnerability,
E = at least 1 blocker vulnerability

IM3 Security remediation
effort on new code

Effort to fix all vulnerability issues
found on the code changed in leak periods

IM4 Security
remediation effort Effort to fix all vulnerability issues.

IM5 Reliability rating

A = 0 bug, B = at least 1 minor bug,
C = at least 1 major bug,
D = at least 1 critical bug,
E = at least 1 blocker bug

IM6 Reliability remediation
effort Effort to fix all bug issues.

IM7 Reliability remediation
effort on new code

Effort to fix all bug issues found on
the code changed in the leak period

IM8 File complexity Average complexity by file.
IM9 Code Smells Number of code smells.

IM10 New issues
by severity

Number of new issues with severity
(blocker,critical, major, minor)

IM11 New Issues Number of new issues

IM12 Maintainability rating Rating given to your project related
to the value of your Technical Debt Ratio.

IM13 Technical debt Effort to fix all maintainability issues.



TABLE VI: Selected metrics of the testing phase

ID Metric Description

TM1 Condition
Coverage

On each line of code containing some boolean expressions,
the condition coverage simply answers the following question:
’Has each boolean expression been evaluated both to true and false?’.
This is the density of possible conditions in flow control
structures that have been followed during unit tests execution.

TM2
Condition
Coverage
On New Code

On each line of code containing some boolean expressions,

the condition coverage simply answers the following question:
’Has each boolean expression been evaluated both to true and false?’.
This is the density of possible conditions in flow control structures
that have been followed during unit tests execution.

TM3 Condition
Coverage Hits List of covered conditions.

TM4 Conditions By Line Number of conditions by line.

TM5 Covered
Conditions By Line Number of covered conditions by line.

TM6 Coverage

It is a mix of Line coverage and Condition coverage.
Its goal is to provide an even more accurate
answer to the following question: How much of the
source code has been covered by the unit tests?

TM7 Coverage
On New Code

It is a mix of Line coverage and Condition coverage.
Its goal is to provide an even more accurate answer
to the following question: How much of the source code
has been covered by the unit tests?
Restricted to new / updated source code.

TM8 Line Coverage

On a given line of code, Line coverage simply answers
the following question:
Has this line of code been executed during the execution of the unit tests?.
It is the density of covered lines by unit tests:

TM9 Line Coverage
On New Code

On a given line of code, Line coverage
simply answers the following question:
Has this line of code been executed during the execution of the unit tests?.
It is the density of covered lines by unit tests
Restricted to new / updated source code.

TM10 Line Coverage Hits List of covered lines.
TM11 Lines To Cover Number of lines of code which could be covered by unit tests

TM12 Lines To Cover
On NEw Code

Number of lines of code which could be covered by unit tests
Restricted to new / updated source code.

TM13 Skipped
Unit Tests Number of skipped unit tests.

TM14 Uncovered
Conditions Number of conditions which are not covered by unit tests.

TM15 Uncovered Conditions
On New Code

Number of conditions which are not covered by unit tests.
Restricted to new / updated source code.

TM16 Uncovered
Lines On New Code

Number of conditions which are not covered by unit tests.
Restricted to new / updated source code.

TM17 Unit Tests Number of unit tests.
TM18 Unit Tests Duration Time required to execute all the unit tests.
TM19 Unit Test Errors Number of unit tests that have failed.
TM20 Unit Test Failures Number of unit tests that have failed with an unexpected exception.

TM21 Unit Test Success
Density Percent Test success density = (Unit tests - (Unit test errors + Unit test failures)) / Unit tests * 100


