
Classifying the Measures of Software Sustainability
Shola Oyedeji

LUT School of Engineering (LENS)
Lappeenranta University of Technology

Lappeenranta, Finland
shola.oyedeji@lut.fi

Ahmed Seffah
LUT School of Engineering (LENS)

Lappeenranta University of Technology
Lappeenranta, Finland
ahmed.seffah@lut.fi

Birgit Penzenstadler
Department of Computer Engineering
and Computer Science California State
University Long Beach (CSULB) Long

Beach, California, USA
birgit.penzenstadler@csulb.edu

Abstract— Energy efficiency is one of the very few
measures widely used for evaluating green and sustainable
software systems. This paper investigates the current measures
of software sustainability from the four different software
sustainability perceptions: Sustainability in Software
Development, Green Software Systems, Software for
Sustainability, Sustainability of the Software Eco System and
Software Sustainability Dimensions (Economic, Social,
Individual, Technical and Environment). While exploring the
literature on green and sustainable software systems, measures
of green software and software sustainability were identified,
compiled and classified according to the four sustainability
perceptions.

Keywords— green software, sustainable software, measures,
sustainability, sustainability perceptions, green measures,
software measurement.

I. INTRODUCTION

Sustainability is now one of the world major challenge
[1][2]. The United Nations Sustainable development Goals
(SDGs) shows the importance of sustainability in all facet of
human lives and development. Today’s economy rely on
information and communications technology (ICT) in which
software is a key factor and catalyst for all economic
activities and a major driver linking all sectors. As stated in
an Ericsson report that ICT can help reduce the global
greenhouse gas (GHG) emissions by 15% [3]. Currently ICT
itself contributes an estimated 2% to the global CO2
emissions and accountable for approximately 8% of the
European Union (EU) electricity consumption [4]. This
shows ICT can a huge potential to help support sustainability
and Green [5] but at same time it is important to explore
avenues to make ICT domain more green and sustainable
because of its huge impact on sustainability. Finding ways to
properly evaluate software in regards to green and
sustainability will provide avenues to reduce the current
negative impacts of ICT.

This research explores the ongoing perceptions in the
software engineering domain with the goal to identify the
current and future measures used in the evaluation of green
and sustainable software. Via triangulation of data from
diverse sources, the measures are clustered into the four
perceptions of sustainability in software engineering and
sustainability dimensions. The long term goal of this research
is to answer the following challenging questions: what are
the current measures used in evaluating green and
sustainability aspects of software systems and how can these
measures be grounded in the software sustainability
measurement theory.

II. BACKGROUND

A. Sustainability in Software Development
As a measurable attribute, software sustainability is more

than the perceptions of capacity to endure [6]. Sustainable
software measures should include the direct and indirect
negative impacts on economy, society, human beings, and
environment that result from development, deployment, and
usage of the software [7]. It is also beyond the current focus
of sustainability in requirements engineering where
sustainability is considered as a nonfunctional requirement
(NFR) by some [8][9][10]. In [2], the authors reported on a
software project in which sustainability requirements were
treated as quality requirements, and systematically elicited
and documented. Another work also proposed an approach to
tackle sustainability during software systems development
and maintenance that decomposes sustainability into four
aspect in software development life cycle such as the
development process, maintenance process, system
production and system usage [11]. This approach is useful
for a process engineer who instantiates this approach for a
software development company or requirements engineer
who instantiates it for a specific system under development.

The Software Sustainability Design Catalogue (SSDC)
that quantifies sustainability via a series of guidelines used
for incorporating sustainability into the design loop for
software system. The SSDC is created to promote effective
sustainability engineering and integration in phases of
software development life cycle. Design according to the
authors Oyedeji et al. [12] is a good way to achieve
sustainability in software development.

Furthermore a checklist and guide approach that
demonstrates how to include the objective of environmental
sustainability from the very early steps of software
development can assist in identifying key stakeholders. This
will facilitate the ability to accommodate new objectives of
improving the environmental sustainability of software
systems [13]. Roher et al. [14] suggests the use of
sustainability requirement patterns (SRPs), which will
provide software engineers with guidance on how to write
specific types of sustainability requirements with the goal to
overcome the barriers of incorporating environmental
sustainability into the requirements engineering process.

B. Green software system
Green software is an environmentally friendly software that
consumes less energy, provides less impacts on environment
and support carbon management [15]. It is also software that
fulfils high level requirements, ensuring the software
engineering process, maintenance, and disposal saves and/or
reduces resource waste [16] [17]. Green software is divided
into four parts: software that is energy efficient during

execution, software that are embedded to execute and
support smart operations in green manner, software to
produce environment viable products and policies [18]. The
goal of green software engineering is to provide supports for
efficient consumption of natural resources while
continuously monitoring, evaluating and optimizing the
aftermath effects caused during the software system life
cycle [19].

Erdélyi [20] paper provides an overview of different
activities and advice on what to do in order to develop green
software which uses energy efficiently and produce less
waste. The paper highlights three ways software engineering
can be green such as: produce green software, produce
software to support environmentally consciousness (green by
software) and produce less waste during development.

Dick et al. [21] provides basis for the right way to
engineer green software systems using development process
that ensures that the positive and negative effects of the
software is continuously monitored and evaluated in order to
optimize the software over its life cycle to be more green
(environmental friendly).

Colmant et al. [22] presented researches on to improve
the software-energy efficiency on multi-core systems.
Colmant et al. [28] motivations were driven by the huge
impact of the ICT on the world CO2 emissions which
represents 2%. Calero et al. [4] highlights some of the
meanings of green software notably a software that
consumes less energy to run and produces as little waste as
possible during its development and operation. Largely,
research on green software has focused more on energy
consumption and environmentally friendly software systems.

C. Software for Sustainability
There has been some interest in various domains such as

manufacturing, energy sector, transportation and for different
application in recycling, product packaging, data center
setup, gas emissions. Some of the good examples are in grid
computing, in Human Computer Interaction (HCI) to change
the habit of people.

In [23], authors presented a software system that support
sustainable lifestyles with an example of a domestic plant
guild to show how sustainable human systems can
effectively support a sustainable lifestyle, which can reduce
the cost of living as well as the ecological footprint.
Penzenstadler et al. [24] highlights vision for systems that
will be supporting sustainability in the future (2029) with a
set of fictional abstracts around the concepts of
sustainability, complexity, collapse, and resilience of ICT
systems.

Software can also provide support for sustainability in
different domains such as:

The use of software systems for tracking gas
emissions
Software for climate and disaster prediction
Smart infrastructural management software
Enterprise carbon and energy management software
Smart transportation software to reduce CO2

emissions.

Sustainability Knowledge and Learning
Management software
Software for environmental awareness on wildlife
and plants

D. Sustainability of the software ecosystem
Today software systems are the pillars of the economy,

the software eco system is probably the biggest system in the
world we human created. Software eco system has been
defined according to Jansen et al. [25] as a set of actors
functioning as a unit and interacting with a shared market for
software and services, together with the relationships among
them. These relationships are frequently underpinned by a
common technological platform or market and they operate
through the exchange of information, resources and artifacts.

Thus, the sustainability of software ecosystem involves
the sustainment of the global system of software systems and
services covering aspect of how different sub systems form a
huge interconnected system and all the interactions. It covers
all different components such as hardware, software and
network that is used to resolve complex relationships among
companies/organizations in all the different sectors and
industries [26].

Sustainability of the software ecosystem entails how can
the system of software systems endure with the evolving user
requirements and usage overtime with less negative impact
on the environments, social, technical and humans. This
means the ability of software ecosystem to continue to
function and evolve irrespective of any glitch is some part of
the ecosystem and should continuously fulfil users’ needs.

III. PERCEPTIONS OF SUSTAINABILITY IN/FOR SOFTWARE
SYSTEMS

In this research, we defined sustainability as a quality
construct in the same ways other factors are defined (see, for
example, the ISO 25 000 family of standards). In our
perception sustainability aims to create balance in the way
humans live, produce, and use products and services
(resources) with the objective to have less negative impact on
the environment and promote the wellbeing of all living
species. This means the capacity of software systems to
endure in certain ecosystems under current and future
conditions while satisfying the needs of users today and
tomorrow with minimum negative impact on the
environment; at the same time supporting business growth
and societal values.

Currently, the dimensions of software sustainability are
known and classified into five: economic, environment,
social, individual and technical [27] but there is currently no
clear categorisation for the perceptions of sustainability
in/for software engineering. This section explains the
categorization of software sustainability perceptions based
on the literature review from the background section.
Software sustainability evolution today can be perceive from
one of the following perception (see Figure 1); Sustainability
in Software Development, Software for Sustainability, Green
Software Systems, Sustainability of Software Ecosystems.

Sustainability in software development
(Development): this refers to the processes
involve in the development of software
(software development life cycle).

Software for sustainability (Usage): how
software are used to support sustainability, an
example is a software in fridge to minimize
energy wastage (embedded software).

Green software systems (Focused impact):
software systems that uses less energy resource
and promotes policies that supports green
awareness.

Sustainability of software ecosystems (Net
effect): This is the total impact of the entire
software ecosystem (systems of system)

The advancement of software sustainability from the four
perceptions has received different level of research attention
and contributions. Sustainability in software development,
Green Software system we observed has the most important
advancement in research compared to software for
sustainability and sustainability of software ecosystem that
were not fully explored.

Figure 1 portrays the categorization of software
sustainability perceptions.

Figure 1. Sustainability Perceptions in/for Software Engineering

IV. MEASURES AND MEASUREMENT OF GREEN AND
SUSTAINABILITY IN/FOR SOFTWARE SYSTEMS

This section presents different research work relating to
green and sustainable software system measures and
measurement. According to Britannica [28], measurement is
the science of assigning of a quantity, either quantitative or
qualitative, to a characteristic of an object or event, while
making it comparable to other objects or events. Here object
is the software and event is the development process.
Sustainability measurement is still a new idea [29] [30] [31]
[32]. Indeed, Lami et al. [31] stated that there are few studies
about ‘what’ aspects of sustainability to measure and ‘how’
to do it. Calero et al. [33] highlighted that nowadays,
sustainability is a key factor that should be considered in the
software quality models, though there has less research
channelled towards sustainability measurement. Seacord et
al. [29] stated that planning and management of software
sustainment is impaired by a lack of consistently applied,
practical measures, and there is no central theoretical
framework on measurement of software sustainability.

One of the most referenced sustainability measurement
model for software system is the GREENSOFT Model [7]. It
is a conceptual reference model for “Green and Sustainable
Software”, which has the objective to support software
developers, administrators, and software users in creating,
maintaining, and using software in a more sustainable way
[34]. Another software sustainability measurement approach
is the Sustainable Business Goal Question Metric (S-BGQM)
[35]. It encourages the incorporation and measurement of
sustainability during the entire software system development
processes. Kramer [36] also wrote about sustainability
measurement by proposing some set of questions that should
be addressed by any sustainability framework.

A study for monitoring software energy hotspot proposed
power model for software energy cost formula as Esoftware
= Ecomp +Ecom +Einfra, where Ecomp is the computational
cost (i.e., CPU process- ing, memory access, I/O operations),
Ecom is the cost of exchanging data over the network, and
Einfra is the addi- tional cost incurred by the OS and runtime
platform (e.g., Java VM) [37]. The study focused on energy
consumption of CPU and network demanding software at
different levels of granularity. Also, the formula proposed for
software energy efficiency (EF) is
UsefulWorkDone/UserdEnergy [38]. This generic measure
provide a way for evaluating the energy consumption of
different software parts and modules using white box testing
to measure which parts are consuming more energy and to
see which parts can be optimized for efficient energy usage.

In order to facilitate research on energy usage attribution,
software energy footprint lab was setup to provide insight on
energy footprint measurements with results interpreting
hardware dissipation profiles for various servers under
different kinds of software stress [39]. This shows the
relations between different hardware resource and the
amount of resource required by the running software in
relation to the power consumption.

Furthermore, a support tool is presented to analyze
legacy systems in order to estimate the energy consumption
and detect parts of the system with higher energy
consumption. Using the profiling technique, the tool
instrument legacy Java systems in order to keep track of its
execution. This information, together with the energy
consumption, enables the engineer to analyze legacy system
consumption detecting energy peaks in the system [40].

Additionally, a modular Energy-Aware Computing
Framework (EACOF) is proposed as a way to allow access
to energy consumption information of software through API
calls. The EACOF is separated into two task for collection
and utilization of dynamic energy consumption data which
reduce development and maintenance overhead required for
the successful completion of each task[41]. Another
approach is also proposed for monitoring power
consumption of software in order to assist software designers
and developer to reduce software power consumption and
have better energy efficiency [42]. This approach currently
monitors power consumption at source code level, this
approach will provide better insights on software energy
consumption if extended to the hardware running the
software.

As summarized in Table 1 and the research work detailed
in [43] [44] [45] and [46], other measures of green and
sustainable software have been on software and hardware

energy consumption with less research for measures
covering software sustainability dimensions such as
individual, social, economic and software sustainability
perceptions (Software for sustainability and Software
ecosystem).

The measures detailed in Table 1 are structure based on
categorization of software sustainability and green measures
for software sustainability dimensions and the four
sustainability perceptions. Each column after the main title

has a “YES or No” to indicate if the proposed measure in the
research paper cover any of the categories listed in Table 1.
Most of the measures descriptions does not explicitly
indicate that the authors considered sustainability
dimensions. Base on the descriptions and explanations of the
authors for all measures, we have categorized those measures
according to the right sustainability dimension (Economic,
Social, Individual, Technical and Environment) to show how
it relates to the four sustainability perceptions.

TABLE I. MEASURES FOR GREEN AND SUSTAINABLE SOFTWARE LINKED TO SUSTAINABILITY DIMENSIONS AND PERCEPTIONS

Name Definition Formula Software
Development
Lifecycle

Green
Software

Software for
sustainability

Software
ecosystem

Sustainability
Dimensions

[37] Software
energy cost

The computational cost of
performing task involving
CPU processing, memory
access, I/O operations and
exchanging data over the
network.

Esoftware = Ecomp
+Ecom +Einfra where
Ecomp is the
computational cost
(i.e., CPU process- ing,
memory access, I/O
operations), Ecom is
the cost of exchanging
data over the network,
and Einfra is the addi-
tional cost incurred by
the OS and runtime
platform (e.g., Java
VM)

Yes Yes No No Environment

[39] Software
energy
footprint

Not stated Experimental lab setup
details can be found in
[39]

No Yes No No Environment

Energy
Efficiency (EF)
[47]

Not stated Energy Efficiency =

UsefulWorkDone
/UsedEnergy

No Yes No No Environment,
Technical

Performance
Efficiency (PE)
[48]

Not stated, sub-
characteristics measure
listed as Time behavior,
Resource utilization,
capacity

Yes Yes No No Environment

Power Usage
Effectiveness
(PUE) [49]

The ratio of facilities
energy (supply side) to IT
equipment energy
(demand size)

PUE= Total Facility
Energy/IT equipment
Energy

No Yes No No Environment,
Technical

Performance
[50]

Not stated Not available No Yes No No Environment,
Technical

Efficiency [50] Not stated, third level
indicators provided as:
Time Behaviour,
Resource Utilization

Not available Yes Yes No No Environment,
Technical

Resource usage
[50]

Not stated, third level
indicators provided as:
CPU Usage, I/O Usage,
Memory Usage, Storage
Usage

Not available Yes Yes No No Technical

Energy impact
[50]

Not stated, third level
indicators provided as:
Energy Consumption,
CO2 Emission, Green
Energy Usage

Not available Yes Yes No No Environment

Energy
efficiency
(Speedup
Greenup,
Powerup, and)
[51]

Speedup is defined as the
ratio of serial code
runtime over parallel code
runtime.

Greenup is the ratio of the
total energy consumption
of the non-optimized code
(E) over the total energy
consumption of the
optimized code (Eo).

Powerup implies the
power effects of an
optimization. A less than

Speedup= /To where
 is the total

execution time of non-
optimized code, and
To is the total
execution time of the
optimized code.

Greenup = E /Eo
Assuming, P is the
average power
consumed by the non-
optimized code and Po
is the average power
consumed by the

No Yes No No Environment,
Technical

1 Powerup implies power
savings while a greater
than 1 Powerup indicates
that the optimized code
consumes more power in
average.

optimized code

Powerup =Po /P =

Speedup /Greenup

Software
Project’s
Footprint [30]

Natural resources and
environ- mental impact
used during software
development.

Transportation from/to
the office, and Long-
haul trips. Example
used in the article:

Work-From-Home
Days: 2 days out of
165 total team- days
(33 project days * 5
team members)=1.21%

Long-Haul Roundtrips:
By airplane: 6; By
train: 0.

Yes No No No Environment

Functional
Suitability (FS)
[48]

Functional Completeness,
Functional correctness,
Functional
appropriateness

Not available Yes Yes No No Technical

Compatibility
[48]

Not stated, sub-
characteristics measure
listed as Co-existence,
Interoperability

Not available Yes Yes No No Technical

Usability [48] Not stated, sub-
characteristics measure
listed as Appropriateness
recognizability,
Learnability, Operability,
User error protection,
User interface eesthetics

Not available Yes Yes No No Technical,
Individual

Reliability [48] Not stated, sub-
characteristics measure
listed as Maturity,
Availability, Fault
tolerance, Recoverability

Not available Yes Yes No No Technical

Portability [48] Not stated, sub-
characteristics measure
listed as Adaptability.
Installability,
Replaceability

Not available Yes Yes No No Technical

V. DISCUSSION

Table 1 provides details of measures attributed to green
and sustainable software. From Table 1, it can be identified
that most measures focused on energy efficiency or power
consumptions. With most focus on green software, there is a
limitation on having a holistic approach towards software
sustainability measurement. The measures of software
sustainability should consider the following:

Human (End users) system interaction: involves the
measures of the system sustainability based on how it
impacts on users and their level of awareness about
sustainability and green. It entails the well-being of the
software users’ community and the changing of the
human mindset.

Software system developers: evaluate the sustainability
of the processes and practices for the development and
integration of sustainability in software systems.

One of the key question/concern that should be clearly
answered by a sustainability measurement framework is the
difference between the different scales of software
measurement and the interpretation of these scales of
measurement for sustainability. The problem of software
sustainability measurement is not only in measuring but

rather giving meaningful interpretation of what the
measurement means. For example today, fridges are
categorized using A+, A++ and A+++ for quantifying and
measuring its energy efficiency. Normally A+ consumes less
energy, A++ has better energy efficiency than A+ and A++
has the best energy efficiency in today market. According to
the EU Directive 92/75/EC which established an energy
consumption labelling scheme [52], there are different
descriptions of the measures that quantify why Fridge is
labelled A+, A++ or A++ based on its energy consumption.
In the same line, there is need for a foundation or framework
to ground the different measures for software sustainability
measures and measurement with clear interpretation.

Currently, there is not enough firm scientific basis for
important choices on how sustainability related factors
should be defined and measured, the varying purposes for
which the measures are used. This makes it difficult to
effectively and efficiently evaluate software sustainability
using the right measures.

VI. CONCLUSION

In this position paper, we summarized the research
results on the categorization of software sustainability
perceptions. Using the identified four perceptions of software
sustainability, we referenced the current measures to each of

the four perceptions. The major focus of all identified green
and sustainable software measures are on green software.
Energy efficiency has received the most attention. Research
work is needed to identify and assess the validity of other
measures related to the other perceptions. Research on
measures of sustainability has to be grounded in the tradition
and theory of software measurement. This requires
considering software sustainability as a quality attribute and
define it in the same way other attributes are defined.

REFERENCES

[1] United Nations, World Economic and Social Survey
2013. 2013.

[2] G. saval Martin, mahaux, patrick heymans,
“Requirements Engineering: Foundation for
Software Quality,” Requir. Eng. Found. Softw.
Qual., vol. 4542, no. January, pp. 247–261, 2007.

[3] Ericsson, “Technology for Good,” Available online:
https://www.ericsson.com/assets/local/about-
ericsson/sustainability-and-corporate-
responsibility/documents/2015-corporate-
responsibility-and-sustainability-report.pdf
Accessed on 30-11-2017, 2014.

[4] C. Calero and M. Piattini, “Introduction to Green in
software engineering,” Green Softw. Eng., pp. 1–
327, 2015.

[5] N. Condori-Fernandez, G. Procaccianti, and N. Ali,
“Metrics for green and sustainable software:
MeGSuS 2014,” in Proceedings - 2014 Joint
Conference of the International Workshop on
Software Measurement, IWSM 2014 and the
International Conference on Software Process and
Product Measurement, Mensura 2014, 2014, pp.
62–63.

[6] B. Penzenstadler and A. Fleischmann, “Teach
Sustainability in Software Engineering?,” in 24th
IEEE-CS Conference on Software Engineering
Education and Training (CSEE&T), 2011.

[7] S. Naumann, M. Dick, E. Kern, and T. Johann, “The
GREENSOFT Model: A reference model for green
and sustainable software and its engineering,”
Sustain. Comput. Informatics Syst., vol. 1, no. 4, pp.
294–304, 2011.

[8] A. Raturi, B. Penzenstadler, B. Tomlinson, and D.
Richardson, “Developing a sustainability non-
functional requirements framework,” Proc. 3rd Int.
Work. Green Sustain. Softw. - GREENS 2014, pp.
1–8, 2014.

[9] C. C. Venters et al., “The Blind Men and the
Elephant Towards an Empirical Evaluation
Framework for Software Sustainability,” vol. 2, no.
1, pp. 1–6, 2014.

[10] B. Penzenstadler, A. Raturi, D. Richardson, and B.
Tomlinson, “Safety, security, now sustainability:
The nonfunctional requirement for the 21st
century,” IEEE Softw., vol. 31, no. 3, pp. 40–47,
2014.

[11] B. Penzenstadler, “Supporting Sustainability

Aspects in Software Engineering,” 3rd Int. Conf.
Comput. Sustain., pp. 1–4, 2013.

[12] S. Oyedeji, A. Seffah, and B. Penzenstadler, “A
catalogue supporting software sustainability
design,” Sustainability, vol. 10, no. 7, pp. 1–30,
2018.

[13] B. Penzenstadler, “Infusing green: Requirements
engineering for green in and through software
systems,” 3rd Intl. Work. Requir. Eng. Sustain. Syst.
2014, vol. 1216, no. 1, pp. 44–53, 2014.

[14] K. Roher and D. Richardson, “Sustainability
requirement patterns,” 2013 3rd Int. Work. Requir.
Patterns, RePa 2013 - Proc., pp. 8–11, 2013.

[15] S. Murugesan and G. Gangadharan, Harnessing
Green IT : Principles and Practices, no. September.
John Wiley & Sons, Ltd, 2012.

[16] T. Juha, “Good, bad, and beautiful software. In
search of green software quality factors,” CEPIS
Upgrad. XII 422–27, no. July, 2011.

[17] L. Erdmann Hilty, L., Goodman, J., Arnfalk, P. and
L. Erdmann Hilty, L., Goodman, J., Arnfalk, P.,
“The Future Impact of ICTs on Environmental
Sustainability,” IPTS Publ., no. August, p. 68, 2004.

[18] M. N. Malik and H. H. Khan, “Investigating
Software Standards: A Lens of Sustainability for
Software Crowdsourcing,” IEEE Access, vol. 6, pp.
5139–5150, 2018.

[19] J. T. Kern Eva, Markus Dick, Naumann Stefan,
Guldner Achim, “Green software and green
software engineering - definitions, measurements,
and quality aspects,” Proc. First Int. Conf. Inf.
Commun. Technol. Sustain. ETH Zurich, Febr. 14-
16, 2013, no. January, pp. 175–182, 2013.

[20] K. Erdélyi, “Special factors of development of green
software supporting eco sustainability,” SISY 2013 -
IEEE 11th Int. Symp. Intell. Syst. Informatics, Proc.,
pp. 337–340, 2013.

[21] M. Dick and S. Naumann, “Enhancing software
engineering processes towards sustainable software
product design,” 24th Int. Conf. Informatics
Environ. Prot. (EnviroInfo 2010), vol. 2010, pp.
706–715, 2010.

[22] M. Colmant, R. Rouvoy, and L. Seinturier,
“Improving the energy efficiency of software
systems for multi-core architectures,” Proc. 11th
Middlew. Dr. Symp. MDS 2014 - co-located with
ACM/IFIP/USENIX 15th Int. Middlew. Conf., pp. 2–
5, 2014.

[23] J. Norton, A. J. Stringfellow, J. J. L. Jr, B.
Penzenstadler, and B. Tomlinson, “Domestic Plant
Guilds : A Software System for Sustainability,” vol.
i, 2013.

[24] B. Penzenstadler et al., “ICT4S 2029 : What will be
the Systems Supporting Sustainability in 15
Years ?,” 2014.

[25] S. Jansen and M. Cusumano, “Defining software
ecosystems: a survey of software platforms and

business network governance : Software Ecosystems
Analyzing and Managing Business Networks in the
Software Industry,” Softw. Ecosyst. Anal. Manag.
Bus. Networks Softw. Ind., pp. 13–28, 2013.

[26] J. V. Joshua, D. O. Alao, S. O. Okolie, and O.
Awodele, “Software Ecosystem: Features, Benefits
and Challenges,” Int. J. Adv. Comput. Sci. Appl.,
vol. 4, no. 8, pp. 1–6, 2013.

[27] B. Penzenstadler and H. Femmer, “A generic model
for sustainability with process- and product-specific
instances,” GIBSE 2013 - Proc. 2013 Work. Green
Softw. Eng. Green by Softw. Eng., no. June 2015,
pp. 3–7, 2013.

[28] E. Britannica, “Measurement instruments and
systems. Accessed on 7-12-2017 from:
https://www.britannica.com/print/article/371701,”
pp. 1–2, 2017.

[29] R. Seacord et al., “Measuring Software
Sustainability,” J. Chem. Inf. Model., vol. 53, no. 9,
pp. 1689–1699, 2013.

[30] F. Albertao, J. Xiao, C. Tian, Y. Lu, K. Q. Zhang,
and C. Liu, “Measuring the Sustainability
Performance of Software Projects,” 2010 IEEE 7th
Int. Conf. E-bus. Eng., pp. 369–373, 2010.

[31] G. Lami and L. Buglione, “Measuring software
sustainability from a process-centric perspective,”
Proc. 2012 Jt. Conf. 22nd Int. Work. Softw. Meas.
2012 7th Int. Conf. Softw. Process Prod. Meas.
IWSM-MENSURA 2012, pp. 53–59, 2012.

[32] M. R. Idio, “Measuring Sustainability Impact of
Software,” vol. 16, no. 1, pp. 5–7, 2014.

[33] C. Calero, M. F. Bertoa, and M. Angeles Moraga,
“A systematic literature review for software
sustainability measures,” Green Sustain. Softw.
({GREENS)}, 2013 2nd Int. Work., pp. 46–53, 2013.

[34] S. Naumann, M. Dick, E. Kern, and T. Johann, “The
GREENSOFT Model: A reference model for green
and sustainable software and its engineering,”
Sustain. Comput. Informatics Syst., vol. 1, no. 4, pp.
294–304, 2011.

[35] S. Oyedeji, A. Seffah, and B. Penzenstadler,
“Sustainability Quantification in Requirements
Informing Design,” 6th Int. Work. Requir. Eng.
Sustain. Syst., vol. i, 2017.

[36] K.-L. Kramer, User Experience in the Age of
Sustainability. 2012.

[37] a Noureddine, A. Bourdon, R. Rouvoy, and L.
Seinturier, “Runtime monitoring of software energy
hotspots,” in Automated Software Engineering
(ASE), 2012 Proceedings of the 27th IEEE/ACM
International Conference on, 2012, pp. 160–169.

[38] T. Johann et al., “How to measure energy-efficiency
of software : Metrics and measurement results,” no.
April 2015, pp. 51–54, 2012.

[39] M. A. Ferreira, E. Hoekstra, B. Merkus, B. Visser,
and J. Visser, “Seflab: A lab for measuring software

energy footprints,” in 2013 2nd International
Workshop on Green and Sustainable Software,
GREENS 2013 - Proceedings, 2013, pp. 30–37.

[40] V. Cordero, I. G. R. De Guzmán, and M. Piattini,
“A first approach on legacy system energy
consumption measurement,” in Proceedings - 2015
IEEE 10th International Conference on Global
Software Engineering Workshops, ICGSEW 2015,
2015, pp. 35–43.

[41] H. Field, G. Anderson, and K. Eder, “EACOF: A
Framework for Providing Energy Transparency to
enable Energy-Aware Software Development,” pp.
1194–1199, 2014.

[42] S. Cagri, C. Furkan, C. James, K. Fouad, P. Lori,
and W. Kristina, “Towards Power Reduction
Through Improved Software Design,” pp. 1–8,
2007.

[43] P. Bozzelli, Q. Gu, and P. Lago, “A systematic
literature review on green software metrics,”
Sis.Uta.Fi, 2013.

[44] E. Kern, M. Dick, S. Naumann, A. Guldner, and T.
Johann, “Green Software and Green Software
Engineering – Definitions , Measurements , and
Quality Aspects,” pp. 87–94, 2013.

[45] T. Debbarma and K. Chandrasekaran, “Green
measurement metrics towards a sustainable
software: A systematic literature review,” 2016 Int.
Conf. Recent Adv. Innov. Eng. ICRAIE 2016, 2017.

[46] R. V. O. Connor and A. D. Eds, Software Process
Improvement and Capability Determination, vol.
155, no. June. 2011.

[47] T. Johann, M. Dick, S. Naumann, and E. Kern,
“How to measure energy-efficiency of software:
Metrics and measurement results,” 2012 1st Int.
Work. Green Sustain. Software, GREENS 2012 -
Proc., pp. 51–54, 2012.

[48] G. Oleksandr, K. Vyacheslav, and F. Mario,
“Software Quality Standards and Models Evolution:
Greenness and Reliability Issues,” vol. 469, pp.
277–299, 2016.

[49] E. Rondeau, F. Lepage, J. Georges, E. Rondeau, F.
Lepage, and J. Georges, “Measurements and
Sustainability,” 2015.

[50] S. A. . Koçak, G. I. . Alptekin, and A. B. . Bener,
“Evaluation of software product quality attributes
and environmental attributes using ANP decision
framework,” CEUR Workshop Proc., vol. 1216, pp.
37–44, 2014.

[51] S. Abdulsalam, Z. Zong, Q. Gu, and M. Qiu, “Using
the Greenup, Powerup, and Speedup metrics to
evaluate software energy efficiency,” 2015 6th Int.
Green Sustain. Comput. Conf., 2016.

[52] A. Michel, S. Attali, and E. Bush, “Energy
efficiency of White Goods in Europe : monitoring
the market with sales data,” no. June, pp. 1–53,
2015.

