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Abstract. Multiple approaches to machine consciousness emphasise the
importance of metacognitive states and processes. A considerable num-
ber of cognitive systems researchers prefer architectures that are not
classically symbolic, and in which learning, rather a priori structure, is
central. But it is unclear how these grounded architectures can support
metacognition of the required sort. To investigate this possibility, a basic
design sketch of such an architecture is presented.
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1 Motivation

1.1 Metacognition and Machine Consciousness

Cognition is used here, rather idiosyncratically, to mean processes and states that
enable an agent to act appropriately with respect to a subject matter (especially
one that is distal and/or abstract). Metacognition, here, is cognition about cog-
nition: processes and states that enable a cognitive agent to act appropriately
with respect to (especially, but not exclusively, its own) cognitive processes and
states. A paradigmatic example would be beliefs about (and subsequent reason-
ing about, and action on) beliefs. There are at least three distinct reasons why
modelling metacognition might be crucial to modelling consciousness:

1. Metacognition might be central to consciousness itself. For example, most
if not all higher-order thought theories of consciousness (e.g. [8]) explicitly
stipulate that what it is for a mental state to be a conscious mental state is
that it is represented by a higher-order (viz, metacognitive) state.

2. It might be that the proper explanation of some purported properties of con-
sciousness proceeds by way of explaining why conscious agents are disposed
to attribute those properties to their own conscious states. Such explanations
are thus inherently metacognitive.

3. It might play a role in explaining cognitive phenomenology, as opposed to
sensory phenomenology.
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(More is said about 2 and 3 in section 4.) If any of these lines of reasoning
are correct, metacognitive states and processes are of central importance to
computational models of human-like consciousness (reasons 2 and 3) or any
consciousness at all (reason 1).

Observation 1: Artificial intelligence approaches to modelling metacognition
to date have almost exclusively employed classical symbolic architectures. It has
usually been presupposed that not only the second-order states, but even the
lower-level states that are the objects of metacognition are classically symboli-
cally structured.

1.2 Grounded Architectures

On the other hand, a considerable number of cognitive systems researchers es-
chew such architectures in favour of ones that are grounded, in that they explain,
rather than presuppose, behaviour and capacities typically believed to require
symbolic representation and processing. Where such architectures invoke rep-
resentation and processing at all, it is sub-symbolic, with a concrete semantics
that concerns (at least in the first instance) the dynamic here-and-now of sen-
sorimotor engagement, rather than context-free, abstract, fully conceptual ways
of representing the world, such as those (supposedly) employed by the theorist.
Such architectures typically invoke learning, for (hopefully familiar) reasons that
cannot be reiterated here.

Observation 2: Those employing grounded architectures have tended to fo-
cus, understandably, on modelling “lower-level” cognitive phenomena such as
perception and action selection, and have tended to shy away from modelling
higher cognitive capacities, of which metacognition is a paradigmatic example.

1.3 Toward Grounded Metacognitive Architectures

There is a prima facie tension between Observations 1 and 2: Metacognitive
modelling has tended not to be grounded; grounded architectures are rarely
applied to model metacognitive phenomena. Thus there is a relative lack of of
architectures for metacognition that are not classically symbolic, and in which
learning, rather a priori structure, is central.

However, metacognition has great potential for improving the abilities of
grounded architectures: not just for improving learning, but also for playing
a role in providing (otherwise absent) sophisticated representational features,
such as systematicity, productivity, logical quantification, modality (possibil-
ity/necessity), etc. Although there is a growing, relatively recent literature on
the related topic of metalearning (e.g., [9, 7]), the concern there has more to do
with optimising machine learning, and there is little or no discussion of topic at
hand: machine consciousness.

To address this deficiency, a design sketch of such an architecture is presented
in what follows Even in such an undeveloped state, the sketch can be used to
clarify the kinds of architectures in question, the design challenges they face,
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and the requirements they must meet to assist in an explanation of some of the
most difficult features of consciousness.

It should be emphasised that the sketch is incomplete not only as concerns de-
tail (depth), but also as concerns the number of components included (breadth).
Rather than a full cognitive architecture, what is presented here is only what is
necessary to illustrate the proposed metacognitive design.

2 A Design for Grounded Metacognition

2.1 The First-Order Subsystem

Although the metacognitive subsystem described below can be applied to a very
wide range of first-order systems, including (passive) classification/pattern recog-
nition networks, it will be easier to identify its distinctive features in the context
of an action-involving first-order system.

Consider a robot in an effectively 2D environment of simple coloured poly-
gons. The robot is static except that it can move its single camera to fixate
on points in the 2D field. The result R of fixating on point (x, y) is that the
sensors take on a particular value s out of a range of possible values S. That is,
R(x, y) = s ∈ S.

The visual environment is dynamic in that at any given time one or more
polygons may disappear or appear. However, the time between such changes is
long relative to the learning described below: learning in response to a change
will be assumed to have converged before the next change takes place. (The
risks of this assumption can be mitigated by giving the robot a change detection
component, that indicates when such an alteration of the 2D field has taken
place, and which may be used to re-initialise the learning process, if necessary).

The robot learns a forward model F with parameters (weights) w̄ from points
of fixation (x, y) to expected sensory input s at the fixated location: Fw̄(x, y) =
s ∈ S.

2.2 The Metacognitive Subsystem

Since F , in effect, manifests the robot’s “beliefs” about the state of its environ-
ment, and F is parameterised by w̄, representations of (“beliefs” about) w̄, and
operations/transformations on w̄, amount to a kind of metacognition.

The metacognitive system, then, can also be realised in a forward model, M.
But the simplicity of the first-order forward model is inadequate for metacogni-
tion, for two reasons.

First, it is not feasible to represent metacognitive actions directly in terms
of their effects, as was done with R(x, y); rather they should be conceived as
functions from an input weight state, and an operator on that state, to an
output weight state. To illustrate, a similar representation for the first-order
model (but not one being used in the architecture described in this paper) would
be a function R from the current point of fixation (x, y) and an operator O to a
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new point of fixation (x′, y′); for example: R(x, y,Ou,v) = (x + u, y + v). Thus,
for the metacognitive subsystem, we have: Mj̄(w̄, Ok) = w̄′.

Of course, the operators Ok in the previous equation have not yet been
defined, which is the result of a second difference between the first-order and
metacognitive subsystems: while we have intuitive ideas as to what should con-
stitute the primitive action basis set for many first-order cognitive systems, it
is less clear what such a set should be for metacognition. This problem is con-
founded by the fact that metacognitive operators, by their very nature, are likely
to be highly dependent on the implementation details of the first-order subsys-
tem, and thus relatively subjective. A key part of a grounded metacognitive
architecture, then, will be some principled scheme for deriving or learning such a
basis set of operators, or actions. To this end, three strategies for the acquisition
of metacognitive operators are under consideration (that individuate such op-
erators by reference to weight clusters, sensory clusters, and inflections in error
history, respectively), but there is no space here to detail these proposals. But a
further point can be made: once such strategies are under consideration, a case
can also be made for learning, rather than a priori imposing, the basis set of ac-
tions for the first-order subsystem. It may be that whatever scheme for learning
is arrived at for learning metacognitive operators might be a good starting point
for acquiring the first-order basis actions.

Despite the differences, there is a parallel between the first-order and metacog-
nitive subsystems in that in both, a forward model of the impact that operators
or actions have on their domains (sensations or weights, respectively) can be
used, for example, to assist in action selection [2]. Details of how this might be
done in the case of metacognition are given below.

Construed this way, metacognitive networks will be of much higher dimen-
sionality than first-order ones (since one of the dimensions of the metacognitive
network will be equal to the number of parameters in the first-order network).
Perhaps this fact explains why such approaches to metacognition have not seen
much or any development until now, when hardware advances make at least
modest versions of this architecture tractable. On the other hand, an important
part of future would will be to justify the considerable computational cost that
this will incur: metacognition should earn its keep.

3 Learning to Use Metacognitive Actions

Once a set of metacognitive operators are in place (by applying, say, one of
the three strategies mentioned above), an agent can learn a forward model
Mj̄(w̄, O) = w̄′ over first-order weight states. That is, the agent can learn the
expected effects that performing one of these operators (that is, taking metacog-
nitive action) on a given weight set would have, just as an agent can learn what
effects its first-order actions have on its sensory input. The key difference is
that the key contingencies to be learned are not (just) “within-level”, as with
learning the relation between movements and sensory input. Rather, cross-level
contingencies can also be learned. Since forward models can, in some situations,
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be inverted to yield inverse models, a space of several kinds of cross-level models
can generated, and learned:

– 2nd order forward/1st order forward models: If I were to make this change
to my belief state, then what would I expect to see if I were to take this
action? That is, given a metacognitive operator O, and an first-order action
of interest a, calculate s = Fw̄′(a), where w̄′ = Mj̄(w̄, O)).

– 2nd order forward/1st order inverse model: If I were to make this change to
my belief state, what action would then be expected to yield a given sensory
input? That is, given a metacognitive operator O, and a first-order sensory
input of interest s, calculate a = F−1

w̄′ (s), where w̄′ = Mj̄(w̄, O)).
– 2nd order inverse/first-order inverse models: What metacognitive opera-

tor/operator sequence, if any, can get me to a weight state such that there
is an action that can yield a sensory input of interest? (Asking this question
might be particularly useful in contexts that can benefit from creative prob-
lem solving.) That is, given a first-order sensory input of interest s, calculate
O = M−1

j̄
(w̄, w̄′), such that for some a, s = Fw̄′(a)).

This learning can be of either the machine learning/neural network variety,
or more classically symbolic, even though what is being learned about may be,
as it is here, neural network states. But there may be some explanatory benefits
(e.g. concerning origin, or a general parsimony) in having M realised in the same
kind of neural network, say, as F .

An important possibility that can only be noted in passing here is that
metacognitive learning may be facilitated by explicitly preferring first-order mod-
els that support metacognitive operators (via adding an error term to F ′s objec-
tive function, say) . Such dovetailing may also occur indirectly (via something
akin to the Baldwin Effect).

4 The Upshot for Machine Consciousness

4.1 A Revisionist Solution to the Hard Problem

Earlier work ([10, 5, 6]) has argued for an indirect way for machine consciousness
to tackle the Hard problem of consciosuness [1], conceived here as the problem
of explaining how can something physical can have the properties (intrinsicness,
ineffability, etc.) we typically ascribe to our conscious experiences. The first
step is to account for the aspects of consciousness that proponents of the Hard
problem concede are not Hard (attention, cognition, memory, learning, etc). The
second step is to show why it is that systems with complex combinations of those
capacities tend to believe certain things about the states that they are in: e.g.,
that their states have intrinsic, qualitative character, of the kind for which a Hard
problem would arise. This two-step approach to machine consciousness requires
metacognitive models, since the belief tendencies in the second step are second-
order. One cannot provide this explanation just by stipulating that a system
has the second-order beliefs in question: one must explain why a given state
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constitutes such a belief, and why the system has a tendency to hold (and resist
revising) such beliefs. Thus, such explanations require a grounded metacognitive
model. It is proposed that the kinds of architectures (involving F , Ok, M , etc.),
in that are models of systems that have beliefs about their own beliefs, are a
first step toward explaining the particular kinds of meta-belief that play a role
in defining the Hardness of consciousness.

4.2 Cognitive Phenomenology

In addition to this role, a further relation between these architectures and ma-
chine consciousness concerns a possible explanation of cognitive phenomenology
(the experience of being in a given cognitive state) as opposed to sensory (or
sensorimotor phenomenology). There is no consensus that there is even such a
thing as cognitive phenomenology, but prior work on how forward models like F
can characterise the content of sensory experience ([3, 4]), together with the par-
allels between F and M , suggest a simple account. Just as the content of sensory
phenomenology at a time may be given by the set of sensorimotor expectations
F realises at that time, so also the content of cognitive phenomenology at a time
may be given by the set of metacognitive expectations M realises at that time.
Just as the content of sensorimotor experience may consist in the set of answers
to questions such as “What input would I receive were I to move my eyes this
way?”, the content of “cognitive experience” may consist in the set of answers
to questions such as “What cognitive state would I be in were I to apply this
metacognitive operator?”.

The plausibility of this account of cognitive phenomenology increases when it
is made clear that this kind of expectation-based account of experiential content
is not restricted to expectations manifested in the lowest-level forward model
(of either the first-order (F ) or metacognitive (M) subsystems). Each of these
subsystems can contain an abstraction hierarchy, consisting of more abstract (as
opposed to higher-order, or meta-) representations of their inputs and outputs,
and the relations between them.

For example, once Fw̄(a0) = s0 is learned for lowest (0th) level action and sen-
sory schemes, action and sensory hierarchies (Ai+1(ai) = ai+1, Si+1(si) = si+1)
can themselves be learned, grounded by F . These can be thought of as tradi-
tional pattern classifier networks, in which higher levels produce more abstract
representations of the lowest level inputs (a0 and s0, respectively). These hier-
archies generate a corresponding hierarchy of (all first-order, but of increasing
abstraction) forward models F i (the superscript here being logically distinct
from the −1 superscript used before to denote an inverse model). This allows for
a characterisation of experiential content of varying abstraction, so that expe-
rience need not only be in terms of basic motor commands and sensory inputs,
but also actions such as open-the-door and inputs such as book-shaped-object.

The above first-order example illustrates, by extension, comparable possi-
bilities for the metacognitive system. By learning abstraction hierarchies for
weight states and metacognitive operators, it becomes possible to model cogni-
tive phenomenology that goes beyond the most concrete level to more abstract
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characterisations, involving experience of, say, changing one’s mind to a more
cautious appraisal of the situation, etc.

The fact that these abstraction hierarchies can cross-cut the first-order/meta
hierarchy implies a wide range of architectures of increasing complexity. One
dimension of variation concerns how the first-order hierarchy of models F i is
implemented. One way is for each of the F i to be implemented with independent
sets of weights, resulting in a corresponding set of distinct M i to operate over
them. Besides requiring a large amount of resources, ensuring integrity between
changes on all these levels looks to be a daunting (and expensive) task. Another
approach would be to implement only F 0, with F i>0(ai) = si approximated by
S(F 0(A−i(ai))). That is, the action hierarchy is inverted to yield a 0th-order
representation of the abstract action ai; this low-level action is fed into the 0th-
order forward model to yield a low-level expectation of sensory input, which is
in turn fed into the sensory pattern hierarchy to yield an abstract representation
of that low-level sensory input, to yield the required abstract expected input, si.
An analogous dimension of variation exists for the hierarchy of metacognitive
models M i: the expensive option of having distinct implementations, or a virtual
option of grounding the M i in M0 in a manner similar to what was just described
for the first-order subsystem.
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