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ABSTRACT
In this paper, we study the effects of different node and edge weight-
ing strategies of graph-based semantic representations on the accu-
racy of a scholarly paper recommendation scenario. Our semantic
representation relies on the use of Knowledge Graphs (KGs) for
acquiring relevant additional information about concepts and their
semantic relations, thus resulting in a knowledge-rich graph doc-
ument model. Recent studies have used this representation as the
basis of a scholarly paper recommendation system. Even when the
recommendation is made based on the comparison of graphs, little
has been explored regarding the effects of the weights assigned to
the edges and nodes in the representation. In this paper, we present
the initial results obtained from a comparative study of the effects
of different weighting strategies on the quality of the recommen-
dations. Three weighting strategies for edges (Number of Paths
(NP), Semantic Connectivity Score (SCS), and Hierarchical Similar-
ity (HS)) and two for nodes (Concept Frequency (CF) and PageRank
(PR)) are considered. Results show that the combination of the SCS
and CF outperform the other weighting strategy combinations and
the considered baselines.

KEYWORDS
Knowledge-based graph representations, scholarly papers recom-
mendation, semantics-aware recommender system

ACM Reference Format:
Rubén Manrique and Olga Marino. 2018. Knowledge graph-based weighting
strategies for a scholarly paper recommendation scenario. In Proceedings of
Knowledge-aware and Conversational Recommender Systems (KaRS) Work-
shop 2018 (co-located with RecSys 2018) (KaRS’18). ACM, New York, NY, USA,
4 pages.

1 INTRODUCTION
In recent years and with the advent of the Semantic Web and
Linked Open Data (LOD), new semantics-aware content representa-
tions have been proposed for the next generation of recommender
systems[4, 8]. LOD provides a variety of structured knowledge
bases in RDF format that are freely accessible on the Web and in-
terconnected to each other. As a result, there is a large amount of
machine-readable data available that could be exploited to build
more intelligent systems [8]. From this huge amount of data, Knowl-
edgeGraphs (KGs) are particularly important since they concentrate
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the knowledge of multiple domains, and in general, they specify a
large number of interrelationships between concepts [12].

In previous works by the authors, a semantic representation that
exploits the structured knowledge present in KGs for the task of rec-
ommending scholarly papers was proposed [5–7]. In these works,
the representations of both user profiles and scholarly papers are
based on the concepts mentions found in the paper’s content plus
additional processes that consider the semantic relation of the con-
cepts found in the KG. The resulting semantic representation is,
in essence, a directed weighted graph whose nodes represent con-
cepts and whose edges express the existence of a semantic linkage
between two concepts in the KG. The similarity score between a
user profile and a document is computed via a graph similarity al-
gorithm. Compared with standard content-based recommendation
systems that look at documents and user profiles as bags of terms
(i.e. keyword based representations), results show the superiority
of the semantic representation [5–7].

In the proposed semantic representation weights are assigned to
both nodes and edges. The weights of the nodes consider the im-
portance of the concept in the document, while the edges’ weights
capture the degree of associativity between concepts in the KG. Al-
though existing graph similaritymeasures can exploit theseweights,
the effect of different weighting strategies in the recommendation
has not been fully explored. In this paper, we present initial results
of a comparative study on the recommendation performance using
different weighting strategies for a graph-based representation. The
evaluation is done using a scholarly paper recommendation dataset
that contains the user profiles of eleven professors of computer
science [7].

The paper is organized as follows: Section 2 reviews some related
work in semantics-aware recommender systems. Section 3 presents
the semantic representation process and its diverse modules. Sec-
tions 4 and 5 present the considered weighting functions. Section
6 describes the evaluation framework and Section 7 the results.
Finally, conclusions and directions for future work are discussed in
Section 8.

2 RELATEDWORK
Recent contributions to semantics-aware recommender systems
have focused on exogenous semantic representations that intro-
duce the semantics by linking the recommendation item to a KG
[3, 4, 8, 9]. The ESWC 2014 Challenge [2], for example, worked on
books that were mapped to their corresponding DBpedia resource.
In scenarios where there is not a broad enough open knowledge
base that describes items or where most of the important informa-
tion about the item is encoded via textual content, these approaches
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cannot be easily used. In such cases, an alternative approach is to
build semantic representations by processing textual content and
mapping the concept mentions found to a KG via entity linking
tools in such a way that the item is represented by the multiple
concepts found. Piao et al. explore this approach for personalized
link recommendations on Twitter [13, 14] and more recently Man-
rique et al. for a scholarly paper recommendation task [6, 7]. In
this paper, we are also using this type of semantic representation,
however instead of using a vector representation of concepts we
use a graph-based representation. Therefore, we rely on a graph
similarity strategy to rank candidate items.

3 SEMANTIC REPRESENTATION
To build the semantic representation, we begin with the identifica-
tion of concepts mentions in the text (i.e. annotations). Different
tools for entity linking and word sense disambiguation can be used
for this task. As an example, consider the short input text in Figure 1.
After using an automatic annotation tool a set of URIs correspond-
ing to KG concepts is returned. It is important to mention that no
human verification is performed on the set of annotations retrieved
by the automatic tool. Then, expansion and filtering processes that
consider the semantic relationships found in the KG are applied.

The expansion process is used to enrich the representation with
concepts that are not explicitly mentioned in the text or not iden-
tified by the annotation tool but are strongly related with anno-
tations. Our previous results show that expanded concepts can
be important to reinforce the main topic of the document even if
they do not occur in the text. The expansion process adds more
discriminative power to the representation. We expand the set of
annotations to new related ones following two different approaches:
category-based and property-based. The category-based expansion
incorporates the hierarchical information of the concepts. For the
“Artificial_Intelligence” concept, for example, the category “Cate-
gory:Computational_neuroscience” is retrieved and incorporated
into the representation. For property-based expansion, the KG on-
tology is navigated and a set of related concepts is incorporated.
For example, from the “Robotics” annotation the concept “Cooper-
ation” is retrieved by following the “wikiPageWikiLink” property
in the ontology. Only outgoing links from a given annotation are
considered.

The filtering strategy seeks to eliminate irrelevant and possible
noisy concepts in the representation. The noisy concepts can be the
result of incorrect annotations, off-topic concepts found in the text
or added in the expansion step [6]. We found that noisy concepts
tend to be disconnected (i.e. a low number of connections with
other concepts). Property paths1 between every pair of concepts
are analyzed and constitute the base information for the graph edge
conformation. Basically, an edge is created if there is a property
path between the given pair of concepts. Then, the filtering strategy
eliminates concepts with a node degree below or equal to α .

Different property path lengths between concepts can be consid-
ered in the filtering process, so different semantic representations
can be produced for the same input text. The result of these pro-
cesses is a graph whose nodes are concepts and edges express the
existence of a linkage between two concepts in the KG. Finally,

1https://www.w3.org/TR/sparql11-property-paths/

Figure 1: Semantic representation process description

the importance of each concept and the strength of the edges are
evaluated via different weighting functions (see Sections 4 and 5).
The resulting representation follows Definition 1.

Definition 1.The semantic representationGi of a profile/document
pi is a directed weighted graph Gi = (Ni ,Ei ,w(c),w(e)), where
both nodes and edges have an associated weight defined by the
functions w(c) : N → �+ and w(e) : E → �+. The set of nodes
Ni = {c1, c2, ..., ck } are entities/concepts belonging to the space of
a KG. The node weightw(c) denotes how relevant the node c is for
the profile/document. An edge between two nodes (ca , cb ) repre-
sents the existence of at least one statement in the KG that links
both concepts. The weight of the edge w(e) denotes how strong
this linkage is between the considered concepts.

4 EDGEWEIGHTING FUNCTIONS

Number of paths (NP). NP is defined asNP(ci , c j ) =

∑τ
l=1 |paths

<l>
ci ,cj |

MP ,
where |paths<l>ci ,c j | is the number of paths of length l between con-
cepts ci and c j in the KG, and τ is the maximum length of path
considered. MP is a normalization parameter that is equal to the
maximum number of paths found for a pair of concepts in the
representation.

The Semantic Connectivity Score (SCS) [10] . SCS measures
latent connections between concept pairs and is computed as:
SCS(ci , c j ) = 1 − 1

1+(
∑τ
l=1 β

l |paths<l>ci ,cj |)
. β is a damping factor that

penalize longer paths (in our case β = 0.5). NP and SCS consider



Knowledge graph-based weighting strategies KaRS’18, October 7, 2018, Vancouver, Canada.

the number of paths between the given concepts as indicative of a
strong linkage.

Hierarchical Similarity (HS). We use the hierarchical informa-
tion of the concepts in the KG to calculate a measure of similarity
between the concepts. The higher the similarity, the stronger the
link between the concepts. If A is the set of categories for the con-
cept ci and B is the set of categories for the concept c j , HS is defined
as:

HS(ci , c j ) = max
(cati ∈A,catj ∈B)

taxsim(cati , catj ) (1)

taxsim =
δ (root , catlca )

δ (cati , catlca ) + δ (catj , catlca ) + δ (root , catlca )

Given the hierarchy of categoriesT , the catlca of two categories
cati and catj is the vertex of greatest depth inT that is the common
ancestor of both cati and catj . δ (cata , catb ) is the number of edges
on the shortest path between cata and catb .

5 NODEWEIGHTING FUNCTIONS
Concept frequency (CF) + Discounts. Inspired by TF-IDF, CF
analyzes the occurrences of the concept in the input content as
well as the frequency in the set of semantic representations. CF is
defined as: CF (c) = wcf (c) × loд M

mc
, where wcf (c) represents the

number of times that c appears in the input content,M is the total
number of documents/profiles in the dataset andmc is the number
of documents/profiles with the concept c in their representation.
After the expansion process, the representation could be diverted
towards frequent properties in the set of instances of the KG or
general categories in the hierarchical structure of the KG. For the
categories added through the expansion the following discount is
applied: CFdiscount (cat) = CF (cat) × 1

loд(SP ) ×
1

loд(SC)
where SP

is the set of concepts belonging to the category and SC is the set
of sub-categories in the category hierarchy. The idea behind this
discount strategy is that categories that are too broad and generic
are penalizes [11]. Similarly, for property-based expanded concepts,
the following discount is applied: CFdiscount (c) = CF (c) × 1

loд(P )
where P is the number of occurrences of the property in the KG
from which the concept c ∈ C is obtained.

PageRank (PR): PageRank is a well-known node ranking algo-
rithm. We use the PageRank version for directed weighted graphs
(i.e. it considers the edge weights). Therefore, the results obtained
with this centrality measure depends on the resulting link structure
in the semantic graph and the associated edge weight.

6 EXPERIMENTAL SETUP
Our main goal is to analyze the influence of the different weighting
strategies in the context of scholarly paper recommendation. We
compare the quality achieved by the same recommendation algo-
rithmwhen inputting semantic representations for user profiles and
documents using the different weighting strategies. In this regard,
we embrace the content-based algorithm described in Definition 2.

Definition 2. Recommendation Algorithm: given a user profile u
and a set of candidate scholarly papers SP = {p1, ...,pn }, which are
represented using the graph-based representation in Definition 1,
the recommendation algorithm ranks the candidate items according

to their Graph Similarity (GS) to the user profile. For GS we employ
the edit distance implemented in [5] and defined in Equation 2.

GS(Gi ,G j ) =
GSnodes (Gi ,G j ) +GSedдes (Gi ,G j )

2
(2)

GSnodes (Gi ,G j ) = 1 −
αnodes +

∑
c ∈Ni∩Nj |wi (c) −w j (c)|

αnodes +
∑
c ∈Ni∩Nj max(wi (c),w j (c))

GSedдes (Gi ,G j ) = 1 −
αedдes +

∑
e ∈Ei∩Ej |wi (e) −w j (e)|

αedдes +
∑
e ∈Ei∩Ej max(wi (e),w j (e))

where αnodes and αedдes are defined as:

αnodes =
∑
c ∈Ni

wi (c) +
∑
c ∈Nj

w j (c) −
∑

c ∈Ni∩Nj

wi (c) −
∑

c ∈Ni∩Nj

w j (c)

αedдes =
∑
e ∈Ei

wi (e) +
∑
e ∈Ej

w j (e) −
∑

e ∈Ei∩Ej

wi (e) −
∑

e ∈Ei∩Ej

w j (e)

GS evaluates the similarity between two graphs in terms of the
weights differences of the common nodes/edges compared to the
total weight of the nodes/edges in the two graphs. Therefore, two
graphs are similar not only if their nodes/edges coincide but also if
their weights are close in magnitude.

6.1 Dataset
We employ the dataset proposed in [6] that contains the user profiles
of 11 professors in the area of computer science. The user profiles
were built using the full text of the most recent publications found
on their Google Scholar web pages. At least a minimum of twelve
of each professor’s most recent publications were used as input for
the semantic representation process. The candidate set is a subset of
Core and Arxiv open corpora that contains 5710 different academic
documents (i.e. papers, tech reports, thesis, etc.). The ground truth
of papers is a subset of the candidate set in which users express
an explicit interest via a web-based search system. In the data
set, for each user there are at least 10 relevant documents. As for
the user profile, the full text was used to construct the semantic
representation of each document in the candidate set.

For the construction of the semantic representation we use: (i)
DBpedia as KG, (ii) DBpedia Spotlight as annotation service, (iii) a
maximum path length of 2 for filtering and edge conformation as
well as for the τ parameter, (iv) a minimum degree value α = 1, (v)
categories extracted through dct:subject to calculate HS.

7 RESULTS
The performance of the recommender system was evaluated by
typical metrics for the evaluation of Top-N recommender tasks:
MRR (Mean Reciprocal Rank), MAP@10 (Mean Average Precision),
and NDCG@10 (Normalized Discounted Cumulative Gain). We
select N=10 as the recommendation objective since it is a common
rank and it fits with the minimum number of relevant documents
per user in the dataset.

Table 1 presents the results obtained by the different combina-
tions of the weighting strategies. We use a classical content-based
recommendation algorithm baseline that ranks candidate items
according to their cosine similarity with the user profile. In this
case, profiles and documents use a standard bag-of-words Vector
Space Model (VSM) representation. According to Beel et al. VSM
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Table 1: Performance of scholarly paper recommendation
using different weighting strategies for nodes and edges. (*)
indicates the improvement over baselines is statistically sig-
nificant (p < 0.05).

Edge Weight Node Weight MRR MAP NDCG
NP CF 0.503 0.5* 0.661
NP PR 0.523* 0.401 0.482
SCS CF 0.482 0.523* 0.716*
SCS PR 0.574* 0.502* 0.672
HS CF 0.421 0.395 0.495
HS PR 0.442 0.342 0.434
Cosine Baseline 0.401 0.345 0.423
VEO Baseline 0.442 0.427 0.601

with TF-IDF is the most frequent profiling and weighting scheme in
research paper recommender systems [1]. As a baseline, we also use
VEO (Vertex Edge Overlap [5]). VEO uses an unweighted version
of the semantic representation (Definition 1). The candidate items,
in this case, are ranked based on the number of common nodes and
edges they have with the user’s profile. VEO was chosen to evaluate
whether the consideration of weights in the representation has a
positive impact on the recommendation.

We can see that the combination of SCS-CF outperforms other
weighting strategies and the baselines in terms of MAP and NDCG.
In terms of MRR, the best weighting strategy is SCS-PR. Although
SCS and NP consider the number of existing paths, the results show
a better performance for SCS. This can be attributed to the fact
that in addition to the number of paths, SCS also penalizes the
path length through a damping factor. Further experimentation is
required to evaluate the effect of the β damping factor. HS presents
the worst results among the weighting strategies and only slightly
better than the cosine baseline.

Regarding the node weighting strategies, results show that CF
is more appropriate. CF is superior to PR in terms of MAP and
NDCG. On the other hand, according to the MRR, in average PR
ranks higher the first relevant result. The comparison with VEO
also shows that the consideration of weights for nodes and edges
improves the semantic representation proposed for the task of
recommending scholarly papers.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we explored different node and edge weighting strate-
gies for a graph-based semantic model for representing user profiles
and papers in the context of the scholarly paper recommendation
task. The combination of SCS and CF as weighting strategies for
edges and nodes respectively presented the best results. SCS con-
siders the number of existing paths in the KG between the concepts
considered, while CF considers the frequency of the concept in
the document/profile. In the near future, we plan to explore other
measures of centrality for nodes weighting (e.g., betweenness, close-
ness). We also want to explore the effect of path lengths greater than
2 for the calculation of SCS/NP. Finally, according to our recommen-
dation algorithm and graph similarity measure (Equation 2), the
contribution of edges and nodes are considered equivalent.Wewant

to test this assumption by favoring/disfavoring the contribution of
nodes and edges.
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