
Knowledge-aware Recommender System for Software
Development

Phuong T. Nguyen, Juri Di Rocco, Davide Di Ruscio
Università degli studi dell’Aquila
Via Vetoio 2 – 67100 L’Aquila, Italy

{phuong.nguyen,juri.dirocco,davide.diruscio}@univaq.it

ABSTRACT
Open source software (OSS) forges contain rich data sources that
are useful for the development process. We promote techniques
and tools for providing open source developers with innovative
features aiming at obtaining improvements in terms of develop-
ment effort, cost savings, developer productivity. Our work is a
coherent paradigm that facilitates multiple recommendations to
assist software developers in different phases of the development
process. In the scope of this paper, we introduce a graph-based rep-
resentation to encode in a homogeneous manner different aspects
of the OSS ecosystem. Furthermore, we develop a knowledge-aware
recommender system for providing developers with suitable API
function calls. An initial evaluation on real datasets shows that the
system is able to produce relevant API calls.

1 INTRODUCTION
Open source software (OSS) is computer software available in
source code being provided under a license that allows users to
study, change, and improve the code free of charge. There are sev-
eral high-quality and mature projects which deliver stable and well-
documented products. Most OSS forges (e.g., GitHub, BitBucket,
and SourceForge) typically sustain vibrant expert and user com-
munities which in turn provide decent levels of support both with
respect to answering user questions as well as to repairing reported
software bugs. In this sense, developing a new software system by
making use of existing open source components reduces develop-
ment effort and thus being beneficial to the whole software life
cycle.

However, properly exploiting such foundations poses several
challenges including the miscellaneousness of resources and the
huge information space that impedes effective mining. Develop-
ers need to deal with data coming from different sources, such as
Source code, Q&A systems, bug reports, API documentation, tuto-
rials, just to mention a few [12]. The mining of the different data
sources necessitates at least the following activities: searching for
candidate components that can be suitably reused, evaluating and
comparing them, and adapting the selected components to fit the
specific requirements of the new system being developed. Given the
circumstances, it is impossible to exploit the underlying knowledge
without suitable machinery.

Knowledge-aware and Conversational Recommender Systems (KaRS) Workshop 2018
(co-located with RecSys 2018), October 7, 2018, Vancouver, Canada.
2018. ACM ISBNCopyright for the individual papers remains with the authors. Copying
permitted for private and academic purposes. This volume is published and copyrighted
by its editors..

Within the EU H2020 CROSSMINER1 project, we aim at building
a thorough framework for supporting OSS developers. In particular,
we design and implement tools that automatically curate data from
largeOSS forges in order to feed dedicated recommendation engines.
The augmented tools are provided in the form of an advanced
Eclipse-based IDE, which instantly monitors developers’ activities
and triggers alerts as well as produces intelligent recommendations.
To this end, our proposed framework consists of the following main
functionalities [12]:
• recommending sets of similar projects with regards to various
requirements, such as external dependencies, application
domain, or API usage by employing various similarity algo-
rithms. The similar projects help developers learn how to
implement the given project at an early stage;
• suggesting artifacts that have been incorporated in similar
projects, e.g. a list of external libraries [12] or code snippets
[10]. These artifacts can then be directly embedded into the
current project;
• prompting code snippets that demonstrate how an API is uti-
lized in practice. The recommended snippets help developers
gain a deeper insight into the usage of the API;
• suggesting external information sources, e.g. technical docu-
ments, tutorials, discussions, etc., related to the code being
developed. For example, given an API, it is necessary to find
external posts to understand how other developers use the
API [14];
• External libraries evolve over the course of time, which im-
pose change on the depending projects. Thus, it is necessary
to notify developers and suggest possible amendments to pre-
serve program compatibility.

In order to mine the external and explicit knowledge sources to
feed the recommendation engines, the key point is to find a suitable
model to represent the intrinsic relationships among several OSS
artifacts. Furthermore, as input data comes from various sources, a
conventional recommender system that deals with a fixed type of
data cannot be applicable to the context of mining OSS reposito-
ries. We come across with the graph model to encode the semantic
among artifacts and we employ a knowledge-aware recommender
system to exploit cutting-edge recommendation technologies for
mining software repositories. Since a knowledge-aware recom-
mender system incorporates the underlying knowledge available
at OSS repositories, it is expected that it can produce recommenda-
tions that fit well to developers’ need.

This paper presents an approach to support software develop-
ment by means of a knowledge-aware recommender system. We

1https://www.crossminer.org/

https://www.crossminer.org/

model the OSS ecosystem using a Knowledge Graph to enable the
computation of similarities and giving recommendations [12]. As a
proof of concept, we present a concrete use case by exploiting the
Knowledge Graph to provide an important functionality: API func-
tion calls recommendation. To validate the proposed approach, we
perform an evaluation on two datasets of Java projects curated from
the Maven repository. The remainder of the paper is organized as
follows. Section 2 presents the Knowledge Graph and recommenda-
tion techniques. The use case for recommending API function calls
is introduced in Section 3. We recall some related work in Section 4.
The paper discusses future work and concludes in Section 5.

2 THE PROPOSED RECOMMENDER SYSTEM
This section introduces the recommender system we are defining in
the context of the CROSSMINER project for supporting developers
that have to develop new systems by reusing existing open source
components. Section 2.1 presents a graph-based representation of
different artifacts that are involved when developing open source
software. Section 2.2 presents the conceived recommendation tech-
niques that rely on the proposed representation model.

2.1 A Knowledge Graph for the OSS ecosystem
We propose a representation model to capture the intrinsic implica-
tions among various artifacts of the OSS ecosystem [13]. By means
of a Knowledge Graph [2], we incorporate both human (such as
developers, users) and non-human factors (such as source code,
and libraries) into a homogeneous representation. In such graph, a
node represents either a person, or an artifact, such as a library, an
API function call, and a directed edge represents the relationship
between them. Table 1 explains all the relationships that we define
in our current implementation [13]. The vocabularies can also be
augmented upon additional features of input data, even though our
definition seems to cover the most prevailing relationships.

For explanatory purpose, we introduce a Knowledge Graph in
Figure 1. The graph encodes several relationships and interactions
among various OSS artifacts. For instance, with develops and
commits, we are able to represent the fact that two developers dev1
and dev2 take part in the development of source code belonging to
two projects project1 and project2. Similarly, the edge extends
dictates that two classes iClass1.java and iClass2.java are an
instance of AbstractClass.java, they both extend a same ab-
stract class and thus sharing common functionalities. The graph
structure facilitates similarity computation, which is a building
block for several recommendation algorithms [4, 6]. For example,
the similarity between iClass1.java and iClass2.java can be
inferred by considering two edges namely extends and invokes.
The two nodes are indirectly connected through other nodes API1
and AbstractClass.java and their similarity can be computed by
means of several graph algorithms [12, 13].

The Knowledge Graph also sustains other types of mining to sup-
port OSS developers. Take as an example, in Figure 1 the StackOver-
flow2 post Post1 mentions code snippets containing two function
calls API1 and API2 from external libraries via the edge contains.
In practice, this a communication between users discussing the
usage of API1 and API2. In this sense, it might be worthwhile to

2https://stackoverflow.com/

recommend Post1 to the developer of iClass2.java, i.e. dev2 as
this class invokes both API function calls. Such recommendation
is helpful for developers when they work on the related function
calls, since it provides a deeper insight into the corresponding APIs.
Since the related knowledge is already encoded in the graph, we are
able to compute the similarity between Post1 and iClass2.java.
Eventually, the recommendation engine can present to the devel-
oper a list of StackOverflow posts that are relevant to the source
code being developed.

In this sense, we see that the adoption of a Knowledge Graph
paves the way for the deployment of recommender systems which
can address the underlying knowledge contained in OSS forges.
It is possible to transform the relationships among humans and
non-human artifacts into a mathematically computable format,
which then facilitates various types of calculations. The definition
of a proper representation model is a preparatory phase to other
developments, including several types of recommendations. It is
worth noting that the creation of a knowledge graph for OSS forges
is not trivial as we need to properly analyze both source code
and metadata to mine the encoded relationships and eventually
represent them in a homogeneous scheme. In the following section,
we discuss the possibility of exploiting the Knowledge Graph for
supporting OSS developers.

2.2 Recommendation techniques
We investigate recommendation techniques that are applicable
to the context of mining software repositories. A collaborative-
filtering recommender system exploits a two-dimensional matrix to
represent the relationships between users and items and computes
missing ratings [16]. A user’s preference towards a prospective
item is predicted by means of preferences from similar users [1].
The collaborative-filtering technique is applicable to mining OSS
repositories, as long as suitable interpretation can be conceived.
For instance, if we consider projects as customers, and libraries as
products, then it is possible to exploit the collaborative-filtering tech-
nique to recommend third-party libraries. Following this scheme,
we successfully developed a system for recommending third-party
libraries which obtains a superior performance compared to a well-
established baseline [12].

The conventional collaborative-filtering technique is not applica-
ble to the situation when additional features are present. Given that
the preference of a user changes depending on the context where
the decision is made, the rating matrix is extended to three dimen-
sions, i.e user, item, and context. Incorporating context into the
computation process brings in a new level of recommender systems,
so called context-aware recommender systems [1]. Considering a cus-
tomer who needs recommendations on what additional products
should be put into the shopping cart, the intuition is to collabo-
ratively deduce the presence of prospective items from those that
have been purchased by similar customers in comparable contexts [3].
In mining OSS repositories, a context-aware collaborative-filtering
technique can be used if we find suitable interpretation of contexts.

A possible interpretation is as follows: if we use the follow-
ing mappings projects–contexts, developers–customers, StackOver-
flow posts–products, we can apply the context-aware collaborative-
filtering technique to suggest StackOverflow posts that may be

https://stackoverflow.com/

Relationship Space Description
commits Developer × Project This relationship represents the projects or libraries that a user contributes to the devel-

opment
contains File × API A source file or a communication post with code snippets containing an API function

from a third-party library
develops Developer × Project A developer contributes to source code development for a given project
extends Class × Class A class inherits an abstract class. Two classes extend a same abtract class have a bond

since they share a certain number of common functionalities
hasSourceCode Project × File An OSS project contains a source file
includes Library × Project A project includes a third-party library to make use of its functionalities
invokes Class × API This is the case when a class calls an API function from a third-party library. API calls

can be extracted from source files using suitable code parsers
stars User × Project It represents projects that a given user has starred. This relationship is only applicable to

GitHub
Table 1: Relationships in the Knowledge Graph

iClass1.java iClass2.java

project1

hasSourceCode

project2

ha
sS
ou
rc
eC
od
e

lib1

in
clu

de
s

dev1

de
ve
lo
ps

com
m
its

dev2

develops

sta
rs

AbstractClass.java

ex
ten

ds extends

API1
invokes invokes

API2

inv
ok
es

Post1

co
nt
ain

s

contains

Figure 1: Knowledge Graph for the OSS ecosystem

helpful for a developer. The relationship among projects, develop-
ers, and posts is represented in a 3-D matrix, where each slice is a
project, each row is a developer and each column is a post. A cell is
set to 1 if the developer consults the post when she develops the
project, otherwise it is set to 0. The context-aware collaborative-
filtering technique is then exploited to perform computation on the
3-D matrix to find missing items. Eventually, the recommendation
engine returns a list of posts that the developer may find useful.

By exploiting the proposed approach, we succeeded in develop-
ing two recommender engines for supporting OSS developers. In
[13], CrossSim has been implemented to present to developers a
list of similar projects given a project being developed. Similarly,
CrossRec is a system for recommending third-party libraries by
employing a dedicated OSS graph [12]. In the following section, we
present another application of a Knowledge Graph to suggest API
function calls to be embedded to source code, taking into consider-
ation the current development context.

3 A USE CASE: RECOMMENDING API
FUNCTION CALLS

Embedding well-established components developed by third parties
into source code is beneficial to the development process. Rather
than working from scratch, developers normally look for external
libraries that implement the desired functionalities and integrate
them into their existing projects [12]. For such libraries, API func-
tion calls are the entry point which allows one to invoke the offered
functionalities. However, in order to exploit a library to implement

the required feature, developers need to consult various sources, e.g.
API documentation to see how a specific API instance is utilized in
practice [14]. Generally, from these external sources, there are texts
providing generic syntax or simple usage of the API, which may
be less relevant to the current development context as a whole. In
this sense, concrete examples of source code snippets that indicate
how specific API function calls are deployed in actual usage, would
come in handy [11].

Clustering has been considered as the de facto mechanism for
finding similar source code snippets, aiming to remove redundant
items [8, 18]. Nevertheless, a substantial amount of redundancy is
still witnessed by approaches that rely on clustering [5]. In this
section, we introduce a solution to recommend API function calls by
exploiting the Knowledge Graph presented in Section 2.1. We aim
at providing developers with highly relevant API function calls by
carefully taking into account their development context. By means
of the Knowledge Graph, we are able to compute similarity and
eventually to feed the recommendation engine. First, we introduce
the following definitions:

• Method invocation (or invocation): a function call from an
external API;
• Method declaration (or declaration): a single source code unit,
i.e. a function/procedure, that contains various invocations
from different APIs;
• Software project (or project): a complete, standalone source
code unit that consists of a set of declarations to perform a
particular job.

Figure 2 presents the source code of a real function written in
Java. According to the above notations, there are a declaration
named clone() and some invocations, such as entrySet() and
getValue(). These artifacts can be extracted from source using a
suitable parser and they are used as input for the recommendation
process.

private static MultivaluedMap<String, Object> clone(MultivaluedMap<String, Object> md) {

MultivaluedMap<String, Object> clone = new OutBoundHeaders();

for (Map.Entry<String, List<Object>> e : md.entrySet()) {

clone.put(e.getKey(), new ArrayList<Object>(e.getValue()));

}

return clone;

}

Figure 2: A real Java code snippet

3.1 Predicting API function calls
To predict additional API function calls to be integrated, we de-
rive a collaborative-filtering technique from the engine designed
for product recommendation [3]. Instead of recommending prod-
ucts to customers with regards to context, we recommend invoca-
tions to declarations, taking into consideration the given project.
In other words, by using the following mappings: projects–contexts,
declarations–customers, invocations–products, we are able to trans-
form the recommendation model applied for e-commerce systems
into mining API function calls. A tensor τ is utilized to capture the
intrinsic relationships among projects, declarations, and invoca-
tions and eventually to produce recommendation.

In tensor τ , each slice corresponds to a project, each row is a
declaration and each column is an invocation. τ is in the form
of τ ∈ Γn×m×k , where n, m, and k are the number of projects,
of declarations, and of invocations, respectively. Given a slice, a
cell is set to 1 if the declaration in corresponding row consists the
invocation in corresponding column, otherwise it is set to 0. Given
a project that needs recommendation on what items should be
integrated, the cells for missing invocations are set to −1.

Figure 3 depicts the tensor representing a set of five OSS projects
P = (p1,p2,p3,p4,p5), with four declarations D = (d1,d2,d3,d4)
and seven invocations I = (i1, i2, i3, i4, i5, i6, i7) in total. In the ten-
sor, slices correspond to projects, rows are declarations and columns
correspond to invocations. For the sake of clarity, we only depict
a part of projects p1 and p3. In p3, there is no invocation i4 in dec-
laration d2, so the corresponding cell is set to 0. Meanwhile, by
declaration d3, invocation i3 is found, therefore the corresponding
cell is set to 1. Respectively p1 and d1 are the active project and
active declaration, i.e. the ones being developed. At the time of con-
sideration, it is not clear if d1 of p1 should include i2 and i3, thus
the corresponding cells are −1.

There are a number of techniques available for computing miss-
ing ratings, i.e. cells filled with −1, such as by using tensor factor-
ization as proposed in [7]. There, the original tensor is decomposed
into three sub-matrices and a central tensor, and the computation
of missing ratings is done by minimizing a loss function. In the
scope of this paper, we exploit the mechanism presented in [3] to
predict the ratings since it allows for the exploitation of similarity
scores computed by means of the Knowledge Graph presented in
Section 1. A collaborative-filtering technique is then applied to per-
form computation on the tensor to find missing items. We refrain
from recalling the technique due to space limitation and interested

p1

p2

p3

p4

p5

d1

d2

d3

d4

i1 i2 i3 i4 i5 i6 i7

1 ∗
0 ∗

−1∗ −1∗

declaration

invocation

project

Figure 3: A tensor for representing the project-declaration-
invocation relationship

readers are referred to [3] for greater detail. Eventually, the recom-
mendation engine returns a list of invocations that can be embedded
into the active declaration. In the following section, we present an
evaluation on Maven datasets to validate the performance of our
proposed approach.

3.2 Evaluation Settings and Metrics
A set of 3, 600 jar files from the Maven repository3 has been ran-
domly collected and named as Dataset#1. From Dataset#1, for
projects with same prefix but different version numbers, we ran-
domly selected only one among them and discarded the others. The
removal resulted in a dataset consisting of 1, 600 and we named
it Dataset#2. Evaluation was performed on both datasets to see
how well the system recommends API invocations with respect to
different input data. By the evaluation, a dataset is split into two
independent parts, namely a training set and a testing set. In prac-
tice, the items in the training data correspond to the OSS projects
that have been collected a priori. They are available at developers’
disposal, ready to be exploited for any mining purpose. Whereas,
each item in the testing data represents the project being devel-
oped, or the active project. In this sense, an evaluation attempts
to mimic a real situation: the recommender system should produce
recommendations for a project based on the data available from a set
of existing projects. We opt for ten-fold cross validation [9] as it has
been popularly chosen for evaluating a model in Machine Learning.
By this method, the dataset is divided into 10 equal parts, so-called
folds. For each validation round, one fold is used as testing data and
the remaining 9 folds are used as training data.

We simulate different stages of a development process to study
if our proposed system is applicable to a real deployment, by con-
sidering a programmer who is developing a software project p. By
the evaluation, each item in the testing set is assumed to be p. To
this end, some parts of p are removed to mimic an actual devel-
opment. Given an original project p, the total number of method
declarations it contains is called ∆. However for the testing, only
δ declarations (δ < ∆) are used as input for recommendation and
the rest is discarded. In practice, this corresponds to the situation
when the developer already finished δ declarations, and she is now
working on the active declaration da . For da , the developer has just
3https://mvnrepository.com/

https://mvnrepository.com/

written π invocations. In practice, δ is low at an early stage and
increases over the course of time. Similarly, π is small when the
developer just starts working on da . The two parameters δ , π are
used to stimulate different development phases. In particular, we
consider the following configurations.

Configuration C#1: δ = ∆/2 − 1, π = 1. Almost a half of
the declarations are used as testing data and the other half are
removed, one declaration is selected as testing. For the testing
declaration, only one invocation is provided as query, and the rest is
used as ground-truth data which is called GT(p). This configuration
mimics a scenario when the developer is at an early stage of the
development process and therefore, only limited context data is
available for feeding the recommendation engine.

Configuration C#2: δ = ∆ − 1, π = 1. One method declaration
is selected as testing data, all the remaining declarations are used
as training data. Similar to C#1, by the testing declaration only
one invocation is kept and all the others are taken out to use as
ground-truth data, i.e. GT(p). This represents the stage when the
developer almost finishes implementing the project.

For a testing projectp, the outcome of a recommendation process
is a ranked list of invocations, i.e. REC(p). It is expected that the
proposed system recommends items that eventually match with
those stored as ground-truth data GT(p). Normally, a developer
pays attention only to the top-N items, we use success rate and
accuracy as the evaluation metrics, considering N as the cut-off
value.

Success rate. Given a set of P testing projects, this metric mea-
sures the rate at which the recommendation engine can return at
least a match among top-N recommended items for every project
p ∈ P . The metric is formally defined as follows [12]:

success rate@N =
countp∈P (

���GT (p)
⋂
(∪Nr=1RECr (p))

��� > 0)
|P |

(1)

where the function count() counts the number of times that the
boolean expression specified in its parameter is true.

Accuracy. Precision and recall are employed to measure accu-
racy [4]. Precision@N is the ratio of the top-N recommended items
belonging to the ground-truth dataset:

precision@N =

∑N
r=1

��GT (p)
⋂
RECr (p)��

N
(2)

and recall@N is the ratio of the ground-truth items appearing in
the top-N items:

recall@N =

∑N
r=1

��GT (p)
⋂
RECr (p)��

��GT (p)��
(3)

3.3 Result Analysis
Fig. 4(a) and Fig. 4(b) depict the success rate obtained for different
cut-off values, i.e. N = {1, 5, 10, 15, 20} for both configurations C#1
and C#2. We investigate the outcome by each dataset, i.e. Dataset#1
and Dataset#2 separately. Interestingly, there are no big differences
in success rate between two configurations for all values of N by
both Dataset#1 and Dataset#2. Considering that by C#1 only a
half of the declarations are used as input for recommendation. This
demonstrates that the recommender system is able to generate

relevant recommendations also when only limited background data
is available, i.e. the developer doesn’t write much. By comparing the
Fig. 4(a) and Fig. 4(b) we see that the system produces bettermatches
given that more similar projects are available, as in Dataset#1
there exist similar projects with different version numbers. This
implies that the system can efficiently exploit background data for
recommendation.

For a small cut-off value N , i.e. N = 1, that means when the
developer expects a very brief list of recommendations, the system
is still able to generate matches. For example, with Dataset#1, the
success rates of C#1 and C#2 are 72.30% and 72.80%, respectively.
Meanwhile, the outcome by Dataset#2 is much lower for both con-
figurations with N = 1, the success rates of C#1 and C#2 are 49.40%
and 50.10%, respectively. This implies that the performance of the
system improves substantially, given that more similar projects are
available.

Next, we investigate the accuracy of both configurations by
varying the cut-off value N from 1 to 30 to get Precision@N and
Recall@N and sketching the Precision-Recall curves as shown in
Figure 5(a) and Figure 5(b). Since a curve being close to the up-
per right corner represents better accuracy [4], we see that by
Dataset#1, a superior performance is obtained by configuration
C#2, i.e. when more background data is available for recommen-
dation in comparison to C#1. For Dataset#2, we witness the same
trend as by success rate, there are no distinctions between two
configurations C#1 and C#2. Considering both Figure 5(a) and Fig-
ure 5(b), it can be seen that the overall accuracy for Dataset#1
is much better than that of Dataset#2. The maximum precision
and recall for Dataset#1 are 0.75 and 0.62, respectively. Whereas
the maximum precision and recall for Dataset#2 are 0.52 and 0.36,
respectively. This further confirms the fact that with more similar
projects, the system can provide better recommendations.

We come to the conclusion that the proposed system is able
to provide relevant invocations with respect to different amount
of input data. Furthermore, it works effectively given that more
similar projects are available for recommendation. In practice, that
means it is expected that we can find as much complete projects
as possible since the more relevant background data we have, the
higher is the possibility we are able to mine relevant invocations.
We confirm the importance of the ability to search for similar OSS
projects [13].

4 RELATEDWORK
In [12], we presented a framework for supporting software devel-
opers. The work introduces a preliminary version of a Knowledge
Graph to build a recommender system to provide third-party li-
braries recommendation. Furthermore, it also proposes a set of
quality metrics for evaluating recommendation outcomes. Similarly,
in [13] a graph structure has been devised to compute similarity
among OSS projects. The authors in [2] exploit a knowledge graph
to build connections among several cells in a neural network. They
investigate how to extract and weight semantic features from the
knowledge graph to mitigate the cold user problem and eventually
to build a recommender system.

Several studies have been conducted to solve the problem of
API function calls recommendation. MAPO was among the first
approaches that mine API usage patterns from client code projects

1 5 10 15 20
40.00

50.00

60.00

70.00

80.00

90.00

100.00

72.30

82.80
86.40

88.10 89.20

72.80

82.70
86.40

87.90 89.00

of items (N)

P
er
ce
n
ta
ge

(%
)

C#1 C#2

(a) Success rate for Dataset#1

1 5 10 15 20
40.00

50.00

60.00

70.00

80.00

90.00

100.00

49.40

64.60

69.30
71.60

73.30

50.10

65.40

70.10
72.20

74.30

of items (N)

P
er
ce
n
ta
ge

(%
)

C#1 C#2

(b) Success rate for Dataset#2

Figure 4: Success rate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C#1 C#2

Recall

P
re

c
is

io
n

(a) Precision and recall for Dataset#1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

C#1 C#2

Recall

P
re

c
is

io
n

(b) Precision and recall for Dataset#2

Figure 5: Accuracy

[18]. The system analyzes source files to collect API usage informa-
tion and groups the API methods into clusters. Afterwards, it mines
API usage patterns from the clusters, ranks them according to the
similarity with developer context, and eventually recommends com-
plete API code snippets to developers. MUSE is a practical way to
recommend code examples related to a specific function [11]. MUSE
parses source code to extract method usage, it simplifies examples
and detects clones to group similar code snippets. Furthermore,
it is able to rank recommendation outcomes according to various
characteristics, i.e. reusability, understandability and popularity.
Wang et al. proposed UP-Miner, aiming at reducing redundancy as
well as covering a wide range of API usage patterns from source
code [17]. From an input API method, the technique automatically
finds all usage patterns and returns related code snippets. Both
clustering steps adopt the complete linkage technique and they rely
on sequence similarity functions. The experimental results show
that UP-Miner outperforms some baselines with respect to different
quality metrics.

MLUP [15] is an approach for mining multi-level API usage
patterns, which are clusters of methods that co-exist in a method
performing a specific functionality. This technique analyses the
frequency and consistency of co-usage relations among APIs from
different source code projects. MLUP is able to identify usage pat-
terns regardless of the variability of features and usage scenarios.
As input, the technique takes the source code and extracts the rel-
evant methods of the considered API. Each API public method is

characterized by a vector, where each entry corresponds to a client
method. The DBSCAN (Density-Based Spatial Clustering of Appli-
cations with Noise) clustering technique is then used to group API
methods that are usually used together by projects.

Most tools mentioned in this section use clustering as the only
way to identify relevant API function calls, with the aim of removing
redundant items [8, 18]. However, as shown in [5], there is still a
substantial amount of redundancy by those approaches that rely
on clustering. Our proposed approach is novel since it attempts to
exploit the underlying semantic in source code and directly mines
API calls from similar projects and thus obtaining a promising
outcome as demonstrated in Section 3.

5 CONCLUSIONS
Aiming to assist developers in their development activities by min-
ing open source software repositories, we exploit a Knowledge
Graph to encode the relationships among several OSS artifacts
and build a knowledge-aware recommender system for providing
API function calls. An evaluation on two datasets curated from
the Maven repository shows that the proposed approach obtains
a good performance with respect to two quality indicators. We
believe that the deployment of a knowledge-aware recommender
system is beneficial to the context of software development. For
future work, we are going to thoroughly evaluate our proposed
approach by using other similar techniques as baseline, with the
consideration of more data.

ACKNOWLEDGMENTS
The research described in this paper has been carried out as part of
the CROSSMINER Project, EU Horizon 2020 Research and Innova-
tion Programme, grant agreement No. 732223.

REFERENCES
[1] Gediminas Adomavicius and Alexander Tuzhilin. 2008. Context-aware Recom-

mender Systems. In Proceedings of the 2008 ACM Conference on Recommender
Systems (RecSys ’08). ACM, New York, NY, USA, 335–336. https://doi.org/10.1145/
1454008.1454068

[2] Vito Bellini, Vito Walter Anelli, Tommaso Di Noia, and Eugenio Di Sciascio.
2017. Auto-Encoding User Ratings via Knowledge Graphs in Recommendation
Scenarios. In Proceedings of the 2Nd Workshop on Deep Learning for Recommender
Systems (DLRS 2017). ACM, New York, NY, USA, 60–66. https://doi.org/10.1145/
3125486.3125496

[3] Annie Chen. 2005. Context-Aware Collaborative Filtering System: Predicting the
User’s Preference in the Ubiquitous Computing Environment. In Proceedings of
LoCA’05. Springer-Verlag, Berlin, Heidelberg, 244–253. https://doi.org/10.1007/
11426646_23

[4] Tommaso Di Noia, Roberto Mirizzi, Vito Claudio Ostuni, Davide Romito, and
Markus Zanker. 2012. Linked Open Data to Support Content-based Recommender
Systems. In Proceedings of the 8th International Conference on Semantic Systems
(I-SEMANTICS ’12). ACM, 1–8. https://doi.org/10.1145/2362499.2362501

[5] Jaroslav Fowkes and Charles Sutton. 2016. Parameter-free Probabilistic API
Mining Across GitHub. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE 2016). ACM, New York,
NY, USA, 254–265. https://doi.org/10.1145/2950290.2950319

[6] Guibing Guo, Jie Zhang, and Neil Yorke-Smith. 2013. A Novel Bayesian Simi-
larity Measure for Recommender Systems. In Proceedings of the Twenty-Third
International Joint Conference on Artificial Intelligence (IJCAI ’13). AAAI Press,
2619–2625. http://dl.acm.org/citation.cfm?id=2540128.2540506

[7] Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, and Nuria Oliver.
2010. Multiverse Recommendation: N-dimensional Tensor Factorization for
Context-aware Collaborative Filtering. In Proceedings of the Fourth ACM Con-
ference on Recommender Systems (RecSys ’10). ACM, New York, NY, USA, 79–86.
https://doi.org/10.1145/1864708.1864727

[8] Nikolaos Katirtzis, Themistoklis Diamantopoulos, and Charles Sutton. 2018. Sum-
marizing Software API Usage Examples Using Clustering Techniques. In Funda-
mental Approaches to Software Engineering, Alessandra Russo and Andy Schürr

(Eds.). Springer International Publishing, Cham, 189–206.
[9] Ron Kohavi. 1995. A Study of Cross-validation and Bootstrap for Accuracy

Estimation and Model Selection. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence - Volume 2 (IJCAI’95). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1137–1143. http://dl.acm.org/citation.
cfm?id=1643031.1643047

[10] Collin McMillan, Denys Poshyvanyk, and Mark Grechanik. 2010. Recommending
Source Code Examples via API Call Usages and Documentation. In Proceedings
of RSSE’10. ACM, 21–25. https://doi.org/10.1145/1808920.1808925

[11] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Andrian Marcus. 2015. How Can I Use This Method?. In Proceedings of the 37th
International Conference on Software Engineering - Volume 1 (ICSE ’15). IEEE Press,
880–890. http://dl.acm.org/citation.cfm?id=2818754.2818860

[12] Phuong T. Nguyen, Juri Di Rocco, and Davide Di Ruscio. 2018. Mining Software
Repositories to Support OSS Developers: A Recommender Systems Approach. In
Proceedings of the 9th Italian Information Retrieval Workshop, Rome, Italy, May,
28-30, 2018. http://ceur-ws.org/Vol-2140/paper9.pdf

[13] Phuong T. Nguyen, Juri Di Rocco, Riccardo Rubei, and Davide Di Ruscio. 2018.
CrossSim: Exploiting Mutual Relationships to Detect Similar OSS Projects. In 2018
44th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA). 388–395. https://doi.org/10.1109/SEAA.2018.00069

[14] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Michele Lanza. 2014. Mining StackOverflow to Turn the IDE into a Self-confident
Programming Prompter. In Proceedings of MSR 2014. ACM, 102–111. https://doi.
org/10.1145/2597073.2597077

[15] M. A. Saied, O. Benomar, H. Abdeen, and H. Sahraoui. 2015. Mining Multi-
level API Usage Patterns. In 2015 IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering (SANER). 23–32. https://doi.org/10.1109/
SANER.2015.7081812

[16] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based
Collaborative Filtering Recommendation Algorithms. In Proceedings of WWW
’01. ACM, 285–295. https://doi.org/10.1145/371920.372071

[17] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang. 2013. Mining succinct
and high-coverage API usage patterns from source code. In 2013 10th Working
Conference on Mining Software Repositories (MSR). 319–328. https://doi.org/10.
1109/MSR.2013.6624045

[18] Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei. 2009. MAPO: Min-
ing and Recommending API Usage Patterns. In ECOOP 2009 – Object-Oriented
Programming, Sophia Drossopoulou (Ed.). Springer Berlin Heidelberg, 318–343.

https://doi.org/10.1145/1454008.1454068
https://doi.org/10.1145/1454008.1454068
https://doi.org/10.1145/3125486.3125496
https://doi.org/10.1145/3125486.3125496
https://doi.org/10.1007/11426646_23
https://doi.org/10.1007/11426646_23
https://doi.org/10.1145/2362499.2362501
https://doi.org/10.1145/2950290.2950319
http://dl.acm.org/citation.cfm?id=2540128.2540506
https://doi.org/10.1145/1864708.1864727
http://dl.acm.org/citation.cfm?id=1643031.1643047
http://dl.acm.org/citation.cfm?id=1643031.1643047
https://doi.org/10.1145/1808920.1808925
http://dl.acm.org/citation.cfm?id=2818754.2818860
http://ceur-ws.org/Vol-2140/paper9.pdf
https://doi.org/10.1109/SEAA.2018.00069
https://doi.org/10.1145/2597073.2597077
https://doi.org/10.1145/2597073.2597077
https://doi.org/10.1109/SANER.2015.7081812
https://doi.org/10.1109/SANER.2015.7081812
https://doi.org/10.1145/371920.372071
https://doi.org/10.1109/MSR.2013.6624045
https://doi.org/10.1109/MSR.2013.6624045

	Abstract
	1 Introduction
	2 The proposed Recommender System
	2.1 A Knowledge Graph for the OSS ecosystem
	2.2 Recommendation techniques

	3 A use case: Recommending API function calls
	3.1 Predicting API function calls
	3.2 Evaluation Settings and Metrics
	3.3 Result Analysis

	4 Related Work
	5 Conclusions
	References

