
Ontology, rule and DSL-based software
re-engineering: a case study

Nuno Silva1, Paulo Maio1, Alexandre Gouveia1, Evaristo Figueiredo1, and Rui
Lopes2

1 School of Engineering, Polytechnic of Porto, 4249-015 Porto, Portugal
{nps,pam,aas,evmfe}@isep.ipp.pt

2 DigitalWind, Lda., 3810-498 Aveiro, Portugal
rlopes@digitalwind.pt

Abstract. uebe.Q is a managing software for solid referential informa-
tion systems, such as ISO 9000 (for quality) and ISO 1400 (for environ-
ment). This is a long-term developed software, encompassing extensive
and solid business logic with a long and successful record of deploy-
ments. A recent business model change imposed that the evolution and
configuration of the software, shifts from the company (and especially
the development team) to consultants and other business partners. The
so far acceptable rigidity, fragility, immobility and opacity of the soft-
ware became a problem. This paper describes the approach adopted in
re-engineering the software by using (i) ontologies for the specification
of business concepts, (ii) closed-world assumption (CWA) rules for the
specification of the dynamics of the system and (iii) DSL for the config-
uration of the system by domain/business experts.

Keywords: Software re-engineering · Ontology · Rules · Semantic WS.

1 Introduction

uebe.Q3 is an information managing software for solid referential information
systems, such as ISO 9000 (for quality) and ISO 1400 (for environment). This is
a long-term developed software, encompassing extensive and solid business logic
with a long and successful record of deployments in different business areas and
countries. Currently and for the last decade, when uebe.Q software is deployed
for/on a customer, an extensive and specific configuration process takes places
involving the customer’s business experts and the DigitalWind’s software devel-
opment and operation teams. So, typically, DigitalWind is the developer, the
seller and the business consultant altogether.

A recent business model change determined that the configuration and adap-
tation tasks of the software shifts from the DigitalWind’s development and op-
eration teams to third-party consulting and other business partners.

However, uebe.Q configuration and deployment requires strong business and
technological expertise, thus constraining the adoption of the new business model.

3 http://www.uebeq.com



2 F. Author et al.

In addition, because configuration often requires specific refinement of the soft-
ware, its rigidity, fragility, opacity and immobility [1] is emphasized, hence com-
pelling its re-engineering.

Consequently, the goal of the project is to facilitate the software configuration
by business experts and consultants while improving the configurability and
adpatability of the software. For that, it is prescribed an approach combining:

– ontologies, that allows the configuration of the business concept according
to the enterprise’s business, department or individual employee;

– rules, that allows the specification of business rules/constraints upon the
ontological concepts, which goes beyond the expressivity of the ontological
constraints.

– DSL (Domain-Specific Language), developed with the purpose to facilitate
the business experts/consultants to configure the system with minimal or no
technical skills.

2 Proposal

The legacy software (left-hand side of Fig. 1) adopts a client-server architec-
tural style, whose backend (i.e. the server part) evolved into a large monolithic
, developed in a myriad of frameworks (e.g. ASP, ASP.Net) and programming
languages (e.g. C#, VB.Net). The backend is responsible for the data access
(from/to relational database), business logic and server-side generation of the
Rich Internet Application client-side UI pages (in HTML and JS).

Fig. 1. Component-based diagram of the new uebe.Q and configurator.



Ontology, rule and DSL-based software re-engineering: a case study 3

While the business logic captured by the backend is a relevant asset, it suffers
from rigidity, fragility, opacity and immobility [1], frustrating a conservative and
traditional evolution. In that sense, the system has been re-engineered, exploit-
ing the functionalities (i.e. business logic) of the legacy system while allowing
the creation of new ones and their definition at configuration time. The added
components (at the right-hand side of Fig. 1) include the dySMS Core, the SPA
frontend and the DSL-based configurator.

The dySMS Core component reads data directly from the legacy database,
but the original business logic might be needed to update, delete or create data.

The DSL-based Configurator allows the business consultant to define the
domain-specific ontology (model) and respective (business) rules. The DSL has
been developed in the JetBrains Meta Programming System 4 which provides
a projectional editor that drives the configurator tasks according to the DSL-
captured structure and semantics (Fig. 3).

The semantics defined through the ontology and rules follows a hierarchical
policy, in which the semantics defined at a hierarchy level binds to the semantics
defined in top hierarchy levels, promoting organizational reasoning consistency.

Fig. 2. Detailed component-based diagram of the new uebe.Q.

Fig. 2 depicts the inner architecture of the backend, including the identifica-
tion of the parts/responsibilities and the details of the configuration interfaces.
The system has the following components:

– Model, is the set of classes and respective instances that are managed by
the system. The classes, associations and constraints corresponds to the on-
tology(ies) defined by the consultant using the DSL-based Configurator (cf.
Fig. 3). A reflection-based approach generates on-the-fly the configuration-
time-defined classes, allowing the system to operate with whatever classes
structure is required.

4 https://www.jetbrains.com/mps/



4 F. Author et al.

– ORM, which is responsible for the data access of the relational database and
the instantiation of the classes. The mapping between the ontology and the
database schema is defined by the business consultant using the DSL-based
configurator (cf. Fig. 3) complemented by an ontology mapping information
integration decision support system (cf. [2]).

– Drools (https://www.drools.org) is a closed world assumption rule engine
that reasons upon the model/ontology using a Closed World Assumption
(CWA).

– Render is responsible for the projection and serialization of the data accord-
ing to the authorization, projection and serialization rules, also configured.

– Services is the set of semantic REST web services that are responsible for
the availability of the new functionalities. The component delegates the re-
sponsibilities in the other components as suggested in the diagram.

Fig. 3. Screen shots of the DSL-based configurator application.

3 Summary

The combination of ontology, rules and the CWA reasoning provided by Drools
allows adopting the same configuration/specification approach to different di-
mensions of the system, such as business rules, ORM, authorization and render-
ing. Running efforts are focused in adopting the approach in further customers
and its adoption to other software.

References

1. Martin, R. C.: Designing Object Oriented Applications using UML. 2d. edn. Prentice
Hall (2000)

2. Gouveia, A., Silva, N., Martins, P.: A Rule-Based DSS for Transforming
Automatically-Generated Alignments into Information Integration Alignments. In:
19th Int. Conf. on Inf. Integration and Web-Based Applications & Services, pp.
181–87. Salzburg, Austria (2017)


