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Abstract

Reasoning about the past is of fundamental im-
portance in several applications in computer sci-
ence and artificial intelligence, including reactive
systems and planning. In this paper we propose
efficient temporal knowledge representation algo-
rithms to reason about and implement past time
logical operators in neural-symbolic systems. We
do so by extending models of the Connectionist In-
ductive Learning and Logic Programming System
with past operators. This contributes towards inte-
grated learning and reasoning systems considering
temporal aspects. We validate the effectiveness of
our approach by means of case studies.

1 Introduction

Neural-symbolic systems address the need of bridging the
gap between the symbolic and connectionist paradigms of ar-
tificial intelligence [3]. The ability to reason about and learn
with past information is a relevant aspect of intelligent be-
haviour [5]. In systems as [2] information about the past is
fundamental in the decision making process of reactive sys-
tems. Past time operators have also been shown applicable in
the study of knowledge-based programs [9]. Some connec-
tionist systems effect temporal reasoning and learning based
on past information, e.g. [8; 12].

On the other hand, a systematic neural-symbolic method to
treat non-classical logics has only recently been outlined [4;
5; 6]. The Connectionist Inductive Learning and Logic Pro-
gramming System (CILP) [7] is a neural-symbolic system
based on the translation of logic programs into a connec-
tionist architecture with sound semantics and good perfor-
mance in real world applications. Connectionist Modal Log-
ics (CML) proposed in [5; 6] have combined the strengths
of non-classical logics and neural networks by offering in-
tegrated reasoning and learning within the same computa-
tional model. In CML one is able to compute and learn ex-
pressive non-classical logics, including modal, temporal, and
intuitionistic reasoning [5; 6]. This work follows the same
line of research. In particular, the approach presented in
this paper contributes towards networks’ complexity issues.
We present an algorithm capable of representing and reason-
ing about temporal information without the need of replicat-
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ing the structure of a given network. We introduce Sequen-
tial Connectionist Temporal Logic (SCTL), an approach that
deals with past temporal knowledge in CILP and CML-based
models, proposing improvements to their translation algo-
rithms. Our work builds upon temporal logic programs, us-
ing past operators only, and proposes algorithms to effect the
translation of temporal logic programs into a connectionist
architecture.

Section 2 contains background information on logics; Sec-
tion 3 describes the algorithm that translates temporal pro-
grams into neural networks; Section 4 analyses the behaviour
of the networks when computing a program; Section 5 con-
cludes and points out directions for further research.

2 Preliminaries

In this section we introduce basic definitions of logic pro-
gramming and temporal reasoning used in this paper.

Definition 2.1 An atom A is a propositional variable; a lit-
eral is an atom A or a negation of an atom (~ A). A temporal
atom is recursively defined by the following: (i) Every atom
A is a temporal atom; (ii) if @ and B are temporal atoms, then
®a, M, ¢ and a S B are temporal atoms. We define a tem-
poral literal A as a temporal atom or its negation. A clause
is an implication of the form a «— A1, 4;,....,4, withn > 0,
where a is a temporal atom and A;, for 1 < i < n, are literals.
In the remainder of the paper, we shall refer to the temporal
atoms simply as atoms. A program is a set of clauses.

Definition 2.2 [1] Let By denote the Herbrand base of a tem-
poral logic program P, i.e., the set of temporal atoms oc-
curring in P. A level mapping for a program P is a func-
tion | | : Bp — N of ground atoms to natural numbers.
For a € Bgp,la| is called the level of @ and | ~ a| = |a|.
A sequential temporal logic program P is acceptable w.r.t a
level mapping | | and a model m of P if, for every clause
@ — A, ., inP, and 1 <i <k, the following implication
holds: if m £ Ay A ... A Ai—| then |a| > |A;]. A program P
is acceptable if it acceptable w.r.t. some level mapping and
some model. A propositional program P is acyclic w.r.t a level
mapping | | if, for every clause @ «— Ay, ..., A; in P, la| > |44
for 1 <i < k. A program P is acyclic if it is acyclic w.r.t
some level mapping.

Proposition 2.3 [1] Every acyclic program P is also accept-
able.



The semantics of a logic program can be defined by means of
the fixed point of the immediate consequence operator [10].
For acceptable programs, this operator converges to a unique
fixed point. Since this operator serves as basis for the trans-
lation algorithm, we shall define these notions for sequential
temporal logic programs.

Definition 2.4 The immediate consequence operator Ty, of a
temporal program P at a time t > 1 maps an interpretation I;)
of the temporal atoms of the program to a new interpretation
of these atoms, where Ty, (1,)(a) is true if there is a clause of
the form a «— Ay, ..., A, and I;)(/li) is true forall 1 <i < n.
When ¢ = 1 (the initial point), past information is not consid-
ered, and an atom is considered true iff it is head of a clause
of the form @ « Ai,...,4,. For the other time points, other
semantic rules, considering past information, must be taken
into consideration to compute the 7, operator for z > 1. We
shall define these new rules in the sequel.

2.1 Past time operators

The basic operator that makes reference to the past is the pre-
vious time operator @. It refers to information at the immedi-
ately prior point in the time line. A new semantic rule must
be considered to deal with this operator in the computation of
the immediate consequence operator:

Definition 2.5 The immediate consequence operator of a
program P maps an interpretation I;, at time t to a new in-
terpretation assigning true to a atom of the form @« if « is
true at time t — 1, i.e. Tp,(IL,)(@) = true if ¥ () = true,
where 7—'?{‘1 is the fixed point of program P at t — 1.

The semantics of the remaining past operators may be recur-
sively defined through the use of the previous time operator.
These definitions allow a simple representation of these oper-
ators in a connectionist setting. We also note that we assume a
non-strict definition of past time, i.e. we consider the present
time. The m operator (always in the past) denotes that an
atom is true at every time point in the past. It is recursively
defined as m@ < o A ema. The ¢ operator (sometime in the
past) is the dual of the m operator. It denotes that an atom is
true in some previous time point. It is recursively defined as
¢a < avesa. The S binary operator (since) represents that
an atom « has been true since the last occurrence of another
atom . Itis recursively definedasa S 8 & BV (aAn@(a S B))
Attime fr = 1, ®(a S B) and @4« are assigned false, and @B«
is assigned true. At the remaining points, @« is interpreted
w.r.t. the fixed point of the previous time; i.e. the fixed point
at a time ¢ must be calculated before the execution of the T !
operator. Therefore, the following rules must be considered
in the computation of the fixed point of a program:

Definition 2.6 The immediate consequence operator of a
program P maps an interpretation I;, at time t to a new in-
terpretation assigning true to atoms as follows:
1. T,(I,)(ma) = true if I(@) = true and T;;l(la) = true;
8 L Pk

- Lpllp P ’
4. ToUL) (@ S B) = true if I (e) = true and ¥ (@ S B) =
true; where, by definition, Tﬁ(la) = ftrue, 7’}?(0&) = false
and Tg(a S B) = false.

A program P in which the previous time operator @ is the
only temporal operator is called @-based program.

Definition 2.7 The immediate consequence operator T; (Iy)
of a program P maps any interpretation I;, at a time t to a new
interpretation assigning true to an atom « iff a follows one of
the rules in definitions 2.4, 2.5, 2.6. The restricted operator
®7,(I,) maps Iy, to a new interpretation assigning true to an
atom « iff a is constructed as in definitions 2.4, 2.5.

3 Translation Algorithm

In this section we describe the algorithm that translates a tem-
poral logic program into a recurrent neural network.

3.1 Temporal Conversion

The first step of the algorithm consists in converting a tempo-
ral logic program % into a new @-based program ;. This step
is executed in order to adapt the program to the connection-
ist architecture that shall be used to represent the semantics
of the program, since this architecture allows only the com-
putation of the previous time operator. As described in the
previous section, each temporal operator can be represented
as a recursive function of the fixed point in the previous time.
This can be represented by the insertion of clauses in the sys-
tem, as in Fig. 1. Note that in the new program the temporal
atoms where the operator is different from the previous time
operator are considered as simple atoms, i.e. the semantics of
the remaining operators is not considered.

TempConversion(P)
foreach y € Atoms(P) do
if y = ma then
| AddClause(P,ma «— @ma, a)
end
if y = ¢ then
AddClause(P, ¢a — @¢)
‘ AddClause(P, ¢a «— a)
end
if y = a S S then
AddClause(P,a S < )
‘ AddClause(P,a S B — @(a S B), @)
end

end

return ()
end

Figure 1: First step of the translation

Lemma 3.1 The application of the T,(I,) operator of a tem-
poral program P over an interpretation Iy, and the appli-
cation of the @Ty(I},) operator of a @-based program P =
TempConversion(P) over the same interpretation assigns the
same valuation for all atoms « € Bp.

Proof(sketch): The rules in definitions 2.4 and 2.5 define
both T,(I},) and @T,(I},), so the result of the immediate con-
sequence operator application for atoms that follow these two
definitions is the same. The clauses inserted by the algorithm
and Def. 2.5 are enough to ensure the computation of 77,
according the recursive definition 2.6, without inserting any
false assignment. o



Example 3.2 Suppose the following about the development
of a system: “A program had no errors before the last mod-
ification. Since the last modification, it is producing an un-
desired result. Therefore, the last modification has to be cor-
rected”. Table 1 shows two examples of temporal sequences,
illustrating the assignment of truth values to the atoms. E rep-
resents the existence of an error in the program, L, represents
that the last modification is being made, and Corr, denotes
that a correction must be made over the last modification.

Case a:
Atom t
E
L
Corr
Case b:
Atom =

E F
L F
Corr F

| | |
|| =

w
IS
v
N

| | N

NN
NN

| |~
| |~

F F F

Table 1: Temporal sequences describing the example

Table 2 shows a possible description of this problem as a tem-
poral logic program. Tmp is an atom which is true if the last
modification is made after a time point where the program
has no error. The first two lines show a program representing
this problem, and the remaining lines contain the clauses in-
serted in the program by the function TempConversion. Note
that two temporal atoms in the program have been translated.
Atom E S L is represented by clauses 3 and 4, and Tmp is
represented by clauses 5 and 6.

1| Corr — E,ES L,6Tmp
2| Tmp < L,~ @F

3| ESL«<L

4 | ESL—e@®ESL)E
5| Tmp « Tmp

6

¢Tmp — @4Tmp

Table 2: Example of the first step of the algorithm

3.2 CILP’s Algorithm Application

The main step of the translation consists in the application of
CILP’s algorithm[7]. The process consists in a localist rep-
resentation of the program in a three-layered neural network,
where each atom is represented by neurons in the input and
the output layer and each clause is represented by an hidden
neuron. Every temporal atom will be treated by the transla-
tion as classical atoms are treated in the original algorithm.
CILP’s algorithm is described in Fig. 2.

In Fig 2 maxp(k, 1) is the maximum value among the num-
ber of literals in a clause and the number clauses with the
same head in program %, where k is the number of literals
in the body of a clause, u is the number of clauses with the
same head; A,,;, is the minimum activation value for a neu-
ron to be considered active (or true). Neurons in the input
layer are labelled in,; neurons in the output layer are labelled

ExecuteCILP(P)
maxp(k.u)—1
Define maxp (ku)+1 < A”’i” <1
Define W > — "Wt Amin)=in(=Apin) 2

maxp (kp)(Apmin=D+Amin+1 B
foreach C; € Clauses(P) do
AddHiddenN euron(N\, hy)

foreach a € body(C)) do
if in, ¢ Neurons(\) then
AddInputNeuron(N\, iny)
‘ ActivationFunction(in,) < g(x)
end
AddLink(A, ing, hj, W)
end
foreach ~ a € body(C)) do
if in, & Neurons(\) then
AddInputNeuron(N\, in,)
‘ ActivationFunction(in,) < g(x)
end
AddLink((, ing, hj, —=W)

end
@ « head(C))
if out, ¢ Neurons(2\') then

| AddOutputNeuron(N,, out,)
end
AddLink(N, h;, out,, W)
Threshold(hy) « ud=Dyy

T hreshold(out,) < ww

ActivationFunction(h;) < h(x)

ActivationFunction(out,) < h(x)

end

foreach a € atoms(P) do

if (in, € neurons(\)) A (out, € neurons(\()) then
| AddLink(N, out,,in,, 1)

end

end
return A\

d
en Figure 2: CILP’s Translation Algorithm

out, where « is the atom represented by these neurons. #;
are hidden neurons representing each clause of the program.
AddLink(N,, source, target, W) denotes the insertion of a link
from a neuron source to a neuron farget in a network A/, with
weight W.

Lemma 3.3 ([7])For each classic logic program P, there
exists an artificial 3-layered neural network N =
ExecuteCILP(P) that computes T,

3.3 Adding Recurrent Links

Next, we extend CILP’s architecture for temporal computa-
tion making use of delayed recurrent links between output
and input layers, as in NARX models [12]. This allows the
construction of connectionist models for temporal processing
without the need of copying networks in time. To integrate
these models we insert a recurrent (delayed) link from any
neuron out, in the network’s output (representing an atom @)
to a neuron ing, in the network’s input. This connection al-
lows the network to propagate the truth value of « at time ¢ to
the neuron representing @« at time ¢ + 1. Fig. 3 presents the
algorithm that computes this process.



Lemma 3.4 Consider a network N\, = ExecuteCILP(P),
where P is a ®@-based program. The computation of the .T;,
operator by a network N\i = InsRecLinks(N\)) is correct if
each atom «, such that @« appears in P, is correctly repre-
sented by an output neuron out, in N\..

Proof(sketch): Since the behaviour of the delayed link con-
sists in propagating the output value of a neuron in time ¢ to
an input neuron in time ¢ + 1, the correctness of the CILP
translation algorithm and the semantics of the @ operator are
sufficient to verify this lemma. o

InsRecLinks(N\)
foreach out, € neurons(\) do
if ing, € neurons(A) then
| AddDelayedLink(N\, out,, ingy)
end
end
end

Figure 3: Insertion of recurrent links

Figure 4: Network generated for the example problem

Fig. 4 shows the architecture produced by the application of
the CILP’s translation algorithm and the insertion of delayed
recurrent links over the program of Table 2. Table 3 shows
the fixed point calculated by the network at each time point
of Case a in Table 1. Values shown in the table consist of
the values represented by each output neuron after they con-
verge to a stable state at each time point. This convergence is
described in Section 4.

Case a:
Atom
Corr
Tmp
ESL
¢Tmp

| | w| w1

t=2 t=3 t=4 t=35 t=6

NS TN

F F F T
F T T F
F T T T

F T T T

Table 3: Stable states at each time point

3.4 The missing links issue

Due to their behaviour, associated with the T, operator of
a (propositional) logic program, CILP’s networks define only
the propagation of values to a neuron in the output layer when
it represents an atom that appears as head of a clause in the

program. Therefore, in order to guarantee the precondition
in Lemma 3.4, a mechanism is necessary to ensure that the
activation value of an output neuron out, be correctly asso-
ciated with the interpretation assigned to the atom « that it
represents. This must be achieved even if the activation does
not occur by means of the computation of a clause of the pro-
gram, but through a direct application of a value in an input
neuron in, representing the same atom. Besides the need to
represent the propagation of values inserted from temporal
links, a similar situation can also be noticed in the original
(non-temporal) CILP’s model: the value assigned to an atom
a, represented by the application of a value in the input neu-
ron in, representing it has no effect over the output neuron
representing the same atom. In the same way, in the model
proposed in [11], the output neuron that represents atom «
does exist in the network, but it does not correspond to the in-
terpretation of a as there is no connection between this output
neuron and the input neuron to which the input value is pre-
sented. This is what we call the missing links issue. Table 4
shows the fixed point calculated by the network at each time
point of Case b in Table 1. Here, one can notice a specific
example of the effects of the absence of an output neuron to
represent an atom. Since we have no output neuron repre-
senting atom E, the input neuron representing @F will not
receive any value, therefore the semantics of the atom will
not be correctly represented'. Our solution to solve this is-
sue consists in inserting clauses in the program, in order to
have each necessary atom appearing as head of a clause and
keeping the same semantics of the original program, as in Fig.
5. This algorithm uses three different flags for each atom in
the program. IsHead identifies if the atom is the head of a
clause in the program; IsNeeded identify if the atom is re-
quired in the output; IsInput identifies if the atom receives
input information (external to the clauses of the program).
The later two flags may be defined externally, according the
definitions of the problem, or through the algorithm. In our
example, IsNeeded is true for the atom Corr, as it represents
the output of the system, and /sInput is defined as true for the
two inputs: E and L. After executing the algorithm, one new
clause is added to the program: E « Ex.

Case b:

Atom =1 t=2 =3 r=4 =5 =6 =7
Corr F F T T T T T
Tmp F F T T T F F
ESL F F T T T T T
¢Tmp F F T T T T T

Table 4: Stable states at each time point
Lemma 3.5 Consider a @-based program P, a pro-

gram P, = CorrectProgram(P;) and a network N =
ExecuteCILP(P,). For each atom « that is necessary as
output, or that appears in the form @« in program P, the
network N contains an output neuron out, correctly repre-
senting a.

'In the example we considered that the absence of value should
be represented as a false assignment to the atom.



CorrectProgram(?)
foreach @« € atoms(P) do
IsNeeded(a) < true
‘ IsInput(@a) < true
end
foreach a € atoms(P) do
if (IsNeeded(a) V IsHead(a)) A IsInput(a) then
| AddClause(a « ax)
end

end
return

Figure 5: Insertion of clauses in the program

Proof(sketch): There are 3 cases to consider. If the assign-
ment to « is due to a clause in P, then the translation algo-
rithm guarantees the existence of out,. If the assignment is
due to an external assignment, the clause @ < a* guarantees
the existence of out, and the correct assignment of the exter-
nal value. If no assignment is defined to «, the atom is not
represented on the output layer, and it is assigned false. o

3.5 SCTL’s Algorithm

The transformation described above for the program requires
a slight modification of the last step of the translation algo-
rithm to create correct temporal links to the neuron represent-
ing renamed atoms. This algorithm is represented in Fig. 6.

Fig. 7 shows the network produced by the algorithm for the

S CTL_Translation(P)
P, := TempConversion(P) P, := CorrectProgram(P,)
N := ExecuteCILP(P,) foreach a € atomsP, do
if ing,. € neurons(A\) then
| AddDelayedLink(N\, out,, ineqs)
end
else if ing, € neurons(N\) then
| AddDelayedLink(N\, out,, ineq)
end
end

d
o Figure 6: SCTL Algorithm

example. A new analysis of the stable states achieved by the
network at each time point for cases a and b in Table 1 shows
that the network is computing the expected behaviour of the
program, as seen in Table 5.

-] 1] =]

Figure 7: Network generated by the final algorithm

Proposition 3.6 The network N\ generated by SCTL’s algo-
rithm over a temporal logic program P computes the T;) op-
erator of the program at any time point t, provided that the
7"7’;' operator is correctly calculated.

The proof of this proposition follows directly from the proofs
of lemmas 3.4 and 3.5. Note that one aspect of the translation
still must be ensured: the correct computation of the fixed
point ¥/, operator of the program for each time point . In
the next section we show an analysis of the behaviour of the
network and propose a method to guarantee this correctness.

Case a:
Atom
Corr
Tmp
ESL
¢Tmp

E

Case b:
Atom
Corr
Tmp
ESL
¢Tmp

E

= | | | ||

SICTCTICTRC T
=S8
SNN TS|
I TSI
S| S|~ S

L
L
i
i
!

N Y| S| | |

| | |

S| = =
NN Y
NS ||
N S| |
NN T e

Table 5: Stable states for modified network

4 Analysing the networks’ behaviour

Next, we describe the behaviour of the generated network in
order to provide a method to execute the propagation of val-
ues and treatment of different recurrent links to guarantee the
correct computation w.r.t. semantics. As depicted in the last
lines of CILP’s algorithm (Fig. 2), some recurrent links are
inserted from the output to the input neurons that represent
the same atoms. This is done in order to apply, in the in-
put of the network, the values calculated in the feedforward
propagation, allowing the recursive calculation of T,. These
recurrent links [11] are used in the CILP networks to achieve
a stable state of the network representing the fixed point se-
mantics of the translated program. However, the behaviour
of such recurrences and the stability of the model has been
hardly studied. When a positive assignment is externally de-
fined for an atom «, it must be kept during all recursive ap-
plications of the T, operator (until it reaches the fixed point).
However, when the positive assignment of the atom is due to a
clause of the program, it is a function of a specific calculation
of the T, operator over a specific input interpretation, and
can be changed until the convergence of the system. There-
fore, a mechanism to ensure the convergence of the network is
needed to allow correct computation of the fixed point of the
program by the network, and no practical approaches were
defined to do that. To provide such mechanism we focus on
acyclic programs. We define the number of executions of the
feedforward step of the network that is enough to ensure the
computation of the fixed point of the program as follows.



Lemma 4.1 For each atom « in an acyclic program P, the
number v(a) of executions of Tp(a) that is sufficient to con-
verge to a stable interpretation of this atom is a) v(a) = 0,
if @ does not appear as head of any clause, or b)v(a) =
maxbody(a) + 1, otherwise. maxbody(a) is defined as the
maximum v(B) among all atoms B that appear in the body of
any clause where « is the head.

Proof(sketch): If an atom « does not appear as head of any
clause, its truth value is defined by the external assignment
(or assigned to false due to default negation). So, its value
is already stable, without the need of any computation of 7
operator. Else, if o appear as head of one or more clauses,
the acyclic limitation to the program ensures that the inter-
pretation of the body of the clauses does not change after
“maxbody(a)” executions of the 7y operator. Therefore, only
one more execution of the operator is necessary to compute
the stable value of a. o

For each acyclic program $, we can define a value v(%) that is
the greatest value between the v(@) of all atoms « in . In our
example, the value of v for the atoms that appear as head are
described in Table 6. Since the value of v for the remaining
atoms is 0, the value of vy for the program is 3, the maximum
value in the table.

VIE)=v(Ex)+1=0+1=1

v(Tmp) = max(v(L), v(®E)) + 1 =1

v(¢Tmp) = max(v(Tmp), v(@eTmp)) + 1 =2
v(E' S L) = max(v(L),v(®(E S L)),v(E))+1=2
v(Corr) = max(v(E),v(E S L), v(¢Tmp)) +1 =73

Table 6: Stable states at each time point

Lemma 4.2 The execution of vp feed-forward steps of a net-
work N generated by applying CILP’s algorithm over an
acyclic program P is equivalent to vp recursive computations
of the Tp operator, and therefore it computes the fixed point
of a program P.

SCTL networks make use of the CILP model to compute the
semantics of a logic program, and use delayed recurrent links
in order to realise the propagation of past information through
time. These links differ from CILP links because the aim
of the latter is to allow the recursive computation of the 7,
operator at a single time point, i.e. without temporal mean-
ing. The behaviour of SCTL networks can be described as
follows. At the beginning of the time flow (r = 1), the re-
current links are reset and their value, together with the input
vector, are applied to the input layer of the network. During
the computation of the same time point, v feed forward value
propagations are executed. Between these propagations, the
values in the CILP recurrent links are updated, but the SCTL
links are kept unchanged. At the end of the v propagations 2,
a new input vector is presented to the network, and the activa-
tion values at the output layer are propagated through SCTL’s
recurrent links, starting the computation at a new time point.
Theorem 4.3 follows from lemma 4.2 and proposition 3.6.

2If a training algorithm like backpropagation is applied to the
network, the back propagation of the error should be performed in
this moment.

Theorem 4.3 A neural network N\ generated by SCTL’s
translation algorithm application over an acyclic temporal
logic program P computes the fixed point semantics of P.

5 Conclusions

We have presented a new approach to incorporate past time
operators in neural-symbolic systems. We have analysed sev-
eral aspects concerning the representation of a temporal logic
program in a connectionist system and the behaviour of such
system when computing the program. This work has also
contributed to the missing links issue in logic-connectionist
translation algorithms. This work can be seen as a stepping
stone for the construction of an architecture that integrates
past temporal reasoning and learning in neural-symbolic sys-
tems. As future work we intend to apply the system to real-
life problems so as to verify its adequacy as regards knowl-
edge representation, reasoning and learning in intelligent sys-
tems.
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