
Abstract 
Computational cognitive modeling has recently 
emerged as one of the hottest issues in the AI area. 
Both symbolic approaches and connectionist ap-
proaches present their merits and demerits. Al-
though Bayesian method is suggested to incorporate 
advantages of the two kinds of approaches above, 
there is no feasible Bayesian computational model 
concerning the entire cognitive process by now. In 
this paper, we propose a variation of traditional 
Bayesian network, namely Globally Connected and 
Locally Autonomic Bayesian Network (GCLABN), 
to formally describe a plausible cognitive model. 
The model adopts a unique knowledge representa-
tion strategy, which enables it to encode both 
symbolic concepts and their relationships within a 
graphical structure, and to generate cognition via a 
dynamic oscillating process rather than a straight-
forward reasoning process like traditional ap-
proaches.  Then a simple simulation is employed to 
illustrate the properties and dynamic behaviors of 
the model. All these traits of the model are coinci-
dent with the recently discovered properties of the 
human cognitive process. 

1 Introduction 
One of the most fundamental issues in cognitive science is 
knowledge representation. Different strategies lead to dif-
ferent cognitive models. Symbolic approaches, which have 
relative long tradition, adopt the symbolic concept repre-
sentation, and employ the rule-based reasoning to construct 
intelligent systems.  This approach is often referred to as the 
classical view [Russel and Norvig, 1995]. In contrast, con-
nectionist approaches, which emerge relative later, utilize 
neural networks to perform parallel process on the distributed 
knowledge representation. Besides the conceptual and im-
plemental differences, all these models exhibit excellent 
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problem solving capability and provide meaningful insights 
into mechanisms of human intelligence. 

Besides the two categories of models, recently, there 
emerges a novel approach, hybrid neural-symbolic system, 
which concerns the use of problem-specific symbolic 
knowledge within the neurocomputing paradigm [d'Avila 
Garcez et al., 2002]. This new approach shows that both 
modal logics and temporal logics can be effectively repre-
sented in artificial neural networks [d'Avila Garcez and 
Lamb, 2004]. 

Different from the hybrid approach above, we adopt 
Bayesian network [Pearl, 1988] to integrate the merits of 
rule-based systems and neural networks, due to its virtues as 
follows. On the one hand, by encoding concepts as nodes and 
causal relationship between concepts as directed links, BN 
can manipulate symbolic concepts and perform inference, 
reasoning and diagnose; on the other hand, the graphical 
structure enables it to implement neural mechanisms in the 
brain, which is previously the privilege of neural networks. 
Furthermore, the probabilistic architecture endows BN the 
capability of performing reasoning based on incomplete 
information, which is often the case in cognitive tasks. More 
importantly, as Judea Pearl [Pearl, 1997] mentioned, “a 
Bayesian network constitutes a model of the environment 
rather than, as in many other knowledge representation 
schemes (e.g., rule-based systems and neural networks), a 
model of the reasoning process, and it simulates, in fact, the 
mechanisms that operate in the environment, and thus fa-
cilitates diverse models of reasoning, including prediction, 
abduction and control”. This is extremely significant, be-
cause, according to the isomorphism1 of the Gestalt Theory, 
the brain field of human beings should have the similar 
structure with that of the external circumstance, which is 
reflected by the internal cognitive model. Therefore, mod-
eling the environment is a key point towards constructing 
considerable cognitive models. 

                                                 
1  In mathematics an isomorphism between two systems requires a 

one-to-one correspondence between their elements (that is, each element of 
one system corresponds to one and only one element of the other system, and 
conversely), which also preserves structures. In Gestalt psychology, the 
one-to-one correspondence between elements is not required; similarity of 
structures is required [Luchins and Luchins, 1999]. 
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Although many Bayesian cognitive models (see e. g. 
[George and Hawkins, 2005; Lee and Mumford, 2003]) are 
carried out, they all focus on some specific aspects of cogni-
tion. No overall cognitive architecture based on BN has been 
proposed by now, mainly due to the inherent limitations of 
the BN. 

The primary limitation is about incomplete data. An 
overall cognitive model based on BN will involve numerous 
nodes/concepts. Yet, each piece of an observation contains 
only a tiny part of the external world, as well as its reflection 
in the cognitive model. It is absolutely impossible to have a 
completed sample of all the concepts of an overall model 
within just one observation. This means that the task of 
learning Bayesian network will inevitably depend on tech-
niques of learning with incomplete data. Although, in the last 
decade, with the rapid progress in researches on BN, many 
algorithms (see e.g. [Friedman, 1997; Ramoni and Sebastiani, 
2001]) have been developed to deal with the incomplete data 
in the learning of BN, the proportion of missing data in their 
researches is less than 50%. Therefore, in cases that only 
several concepts are observed with millions of concepts 
missing, their methods will definitely become powerless.  

The second problem is about directed links. In a BN, 
edges between nodes are one-way directed. Yet, interrela-
tionships between concepts, which exist in the real world and 
can be reflected in the cognitive model, are sometimes 
bidirectional. In these cases, the original BN is incapable due 
to its inherent limitation. 

The last point comes from the feasibility. The problem of 
learning an exact Bayesian network from data under certain 
broad conditions has been proven worst-case NP-hard 
[Chickering et al., 2003]. Although researchers have proposed 
heuristic polynomial learning algorithms [Brown et al., 2005] 
to alleviate the work, it is still computationally intractable for 
dealing with the problem with millions of nodes in the do-
main.  

Based on the analyses above, we get that it is not wise to 
exploit a huge global BN to construct a cognitive model. 
Consequently, we propose a variation of BN, Globally 
Connected and Locally Autonomic Bayesian Network 
(GCLABN), which is composed of numerous interconnected 
and overlapped tiny Bayesian networks, to model the overall 
cognition.  

The rest of this paper is organized as follows: in Section 2, 
we will introduce the novel cognitive model, GCLABN, in 
detail and discuss some important issues of the model; then 
we employ a simple simulation to illustrate the properties of 
the proposed model in Section 3; finally, we conclude our 
paper in section 4 with a short review of our work and pos-
sible directions in the future. 

2 The GCLABN Model 

2.1 Model Description  
Before we come to the GCLABN model, we firstly introduce 
some necessary definitions. 

Definition 2.1 In a directed acyclic graph G = (V, E), a 
node C ∈ V is called a center node if and only if for any 

node X ∈ V\{C}, the edge <X, C> ∈ E is satisfied2. For 
example, in Fig. 1, node n2 in graph G1 and node n3 in graph 
G2 are all center nodes in their graphs respectively. 

Definition 2.2 A directed acyclic graph is a centered 
graph if and only if it has only one center node, and there is 
no edges ending at non-center nodes. For example, graph G1 
in Fig. 1 is a centered graph, and graph G2 is not due to the 
extra edges between non-center nodes. The center node of a 
centered graph is specified shortly to C(G). So, in Fig. 1, we 
have C(G1) = n2. 
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Fig.1. The Sample Graphs 

Definition 2.3 A centered Bayesian network (CBN) is a 
pair (G, P), where G = (V, E) is a centered graph, and P is a 
set of conditional probabilistic distribution (CPD) of the 
center node of G given its parents. For convenience, we also 
call the center of G, C(G), the center of CBN, shortly for 
C(CBN). 

Definition 2.4 For any two given centered Bayesian net-
work B1 =  (G1, P1) and B2 = (G2, P2), if C(B1) ≠ C(B2), the 
union B = B1∪B2 of CBN B1 and CBN B2 is a pair (G, P), 
where G is the union of G1 and G2, and P is the union of P1 
and P2.  
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Fig.2. The union of two CBNs 

Fig. 2 illustrates a sample union of two CBNs. From this 
figure, we can see that, in the left oval is one CBN B1 =  (G1, 
P1), whose edge is solid arrowed lines, and in the right oval is 
the other CBN B2 = (G2, P2), whose edge is dot arrowed line. 
For G1 = (V1, E1), we have V1 = {n1, n2, n3, n4} and E1 = {n1
→n2, n3→n2, n4→n2}; for G2 =  (V2, E2), we have V2 = {n2, n4, 
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n5, n6} and E2 = {n2→n4, n5→n4, n6→n4}.  The union of B1 
and B2 , B, is also a labeled graph model, whose graph 
structure is G = (V, E), where V = { n1, n2, n3, n4, n5, n6} and 
E = {n1→n2, n3→n2, n4→n2, n2→n4, n5→n4, n6→n4}. The 
CPD set P of B is the union of P1 and P2, which are the CPD 
sets of B1 and B2 respectively. 

Definition 2.5 A globally connected and locally auto-
nomic Bayesian network (GCLABN) is a union, GCLABN 
= B1∪B2∪…∪Bn, where Bi (i = 1, …, n) are centered 
Bayesian networks, and they are subject to the following 
constraints: 
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where Vj is the node set of Bj. The first constraint makes 
every CBN unique. The second constraint makes all the 
CBNs connected in terms of center nodes.  From the defini-
tion, we can see that a GCLABN is composed of many in-
terconnected and overlapped CBNs. To some extent, a 
GCLABN is just like a Cellular Automata (CA). The dif-
ference is that all the cells in a CA are homogeneous, while 
CBNs in a GCLABN are heterogeneous. Besides, the to-
pology of a CA is regular network, while the topology of a 
GCLABN is not. 

According to Definition 2.5, we get that GCLABN can 
represent bidirectional relationship (see Fig. 2 e.g., there are 
links from node n2 to n4 and vice versa.). Hence, GCLABN 
successfully solve the problem in BN that one-way directed 
link cannot represent bidirectional relationship. 

2.2 GCLABN as Cognitive Model 
When a GCLABN is employed as a cognitive model, all its 
nodes, each of which can be viewed as a neuron, or a func-
tional neural column [Gilbert and Wiesel 1989], or the like, 
represent the concepts that can be learnt from the external 
world. Each node takes two states, i.e. ‘1’ for active and ‘0’ 
for inactive. At any time instant, the probability of state ‘1’ 
for any given node indicates its current active strength. The 
directed links, which can be viewed as the connections be-
tween neurons, encode direct causal relationships between 
concepts. 

Before we make further discussions on GCLABN, we di-
vide all the nodes of a GCLABN into two categories, where 
center nodes of CBNs are called internal nodes and the other 
nodes are called external nodes. The external nodes repre-
sent concepts that can be identified by the model directly, or 
without any inference. They serve as the sensory interface of 
the model. While internal nodes encode high-level concepts, 
which can be activated only after inference. They deal with 
information manipulating or some motor tasks.  

2.3 CPDs of GCLABN 
One of the most important issues of GCLABN is about the 
Conditional Probabilistic Distributions (CPDs) of internal 
nodes, for the CPDs of a given node defines the updating rule 
of its active strength and CPDs of all the internal nodes 

formulate how the state of a GCLABN varies given the out-
side inputs. Since each node in GCLABN takes two states, 
the CPDs of an internal node with N parent nodes will con-
tain 2N entries, e.g. 100 parents correspond to about 1030 
entries. It is unimaginable for a neuron to implement such 
mechanism. Fortunately, the human cerebral structure pro-
vides us a hint. As we all know, the entire cerebrum of a 
human is divided into many functional regions. Each region 
specializes in some specific function, and neurons in the 
same functional region carry out similar function. Accord-
ingly, all the nodes of a GCLABN can be clustered into many 
distinct regions based on the functional similarity between 
nodes. Thus, to simplify the CPDs of a node in the GCLABN, 
we import the following two assumptions.  

The first assumption is that all the nodes in a same region 
are mutually exclusive, and they compete to be activated. 
This assumption is referred to as the exclusive competition. 
Under this assumption, for each region R = {x1, …, xnR}, we 
have: 

∑
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Note: for P(R) is not larger than 1, all the P(xk) in the same 
region are normalized. This normalization process can be 
interpreted as lateral inhibitory effects between neurons, or 
neural columns. 

The second assumption is that, for any given node, its 
parent nodes from different regions produce independent 
influences. We refer the second assumption as the regional 
casual independence, which can be formalized as formula 4. 
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where x is the target internal node, and Ri (i = 1, 2, …, n) is 
the region that contains its parent nodes. According to the 
first assumption, P(x|Ri) can be written as: 
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where Ri = {xi1, …, xini} (i = 1, 2, …, n) is the region that 
contains parent nodes of the target node x. Thus, based on 
formula 3, 4 and 6, we can easily calculate the probability, or 
active strength, of any internal node given the status of its 
parent nodes: 

∏∑
= =

=
n

i

n

k
iikikn

k

RPxPxxPRRxP
1 1

1 )()()|(),,|( L (7)

Based on formula 7, we successfully reduce the size of CPDs 
from O(2N) to O(N). 

2.4 Learning a GCLABN 
Since a GCLABN is composed of many interconnected but 
autonomic CBNs, the learning task of the model can be di-
vided into many independent tiny learning tasks. Each task 
just focuses on one local CBN. Compared with ordinary BN, 
learning a CBN is much simpler, because the network 



structure of any CBN is almost fixed (all edges pointing to 
the center node from its parent nodes), and the CPDs of the 
center node can be leant based on Hebb rules. As a result, the 
learning process is not NP hard as the original BN. Besides, 
local learning strategy avoids the missing data problem as 
well. 

2.5 Generating Cognition 
The key issue of a cognitive model is to generate cognition 
according to external inputs. Different from traditional 
symbolic approaches and neural networks, whose reasoning 
process is straightforward, the inference task in GCLABN is 
completed via a dynamic oscillating process. After a 
GCLABN receives external stimuli via its external nodes, at 
each time instant, all the internal nodes modified their active 
strengths according to the states of their parent nodes and 
their own CPDs (see formula 7). As time goes by, the states 
of all the internal nodes vary continually. After a period of 
oscillation, the process will converge to a stationary point, 
which is called as an “attractor” in the dynamical perspective. 
At this time, the champion nodes of all the regions connected 
to the active external nodes in GCLABN together form the 
current cognition. 

As we stated above, in GCLABN, external nodes serve as 
sensors to receive outside inputs. Although there are no 
nodes in GCLABN explicitly in charge of outputting, given 
external inputs and after a period of inference, champion 
nodes in all the regions of GCLABN together represent the 
cognitive result.  

During the dynamic cognition generating process, 
GCLABN demonstrates the capability of both manipulating 
symbolic concepts and implementing neural mechanisms. On 
one hand, from the symbolic perspective, after filtering out 
irrelevant concepts during oscillation, winners represent all 
the concepts involved in the reasoning process, including 
preconditions, intermediary results, and final conclusions. 
Since directed links in GCLABN encode direct causal rela-
tionships, the “outputs” of GCLABN virtually provide the 
symbolic reasoning process as well. On the other hand, from 
the neural perspective, the cognition process is a dynamic 
process, and the champion neuron assembly, other than a 
single neuron alone, represents the cognitive results. This is 
quite coincident with many neurobiological experimental 
results [Beer 2000; Engel et al., 2001]. 

One slight, but very important, difference between 
GCLABN and common dynamical systems is that in 
GCLABN there are some external nodes, whose status is 
neither stochastic nor determined by their parents. They are 
totally affected by the environment. Thus, once statuses of 
external nodes are changed due to the transformation of 
external circumstance, GCLABN will escape from the pre-
vious "attractor" and start a new cognitive process. 

3 Simulation  
In this section, we employ a simple simulation to illustrate 
the properties of a GCLABN.  

When people perform cognition in the real world, infor-
mation gained from sensors is usually incomplete compared 

with the knowledge stored in the brain. For example, the 
knowledge about a concept, e.g. an apple, in the brain may 
involve visual information, aural information, tactual infor-
mation and so forth; yet in a cognition task, only a small 
portion of information is available and cognition will be 
generated based on the incomplete information. Thus, in our 
simulation, we adopt a word/sentence recognition test based 
on incomplete inputs to demonstrate the capability and be-
havior of GCLABN in cognition. 

In the simulation, we firstly mimic Elman’s work [Elman, 
1990] to generate 10000 two-word or three-word sentences 
with a sentence generator program, which utilizes 29 dif-
ferent lexical items and 16 sentence templates 3 . Then a 
sample GCLABN is learnt according to these 10000 sen-
tences. After that, different from Elman’s simulation, where 
the task of predicting the following word is performed, we 
give some incomplete words and sentences to the GCLABN 
for recognition. Finally, we examine the "outputs” of the 
model and its dynamical behavior during the process of 
cognition making. 

3.1 Knowledge Representation  
In this sample GCLABN, different internal nodes represent 
distinct words; external nodes represent the letters that 
compose the words; directed links denote either sequential 
relationships between words in sentences or composition 
relationships between words and letters; the probability of 
each node implies its active strength (0 for completely inac-
tive and 1 for extremely active). Yet, to represent the spatial 
information, which indicates the position of a word in a 
sentence, we import three extra internal nodes to denote 
different positions in a sentence. These position nodes will 
not be activated simultaneously, and all the word nodes, 
which are active with a position node concurrently, will form 
a virtual region and compete to become prominent. For 
simplicity, in this model there is no node representing a 
whole sentence. 

3.2 Learning Process 
In this process, all the sentences are processed one pass se-
quentially. After each sentence is read, related words and 
letters are recorded as new nodes if they are not in the model 
yet; then composition relationships between words and cor-
responding letters and sequential interrelationships between 
words are interpreted as directed links if not existing; at last 
related statistical parameters in the model is either created or 
updated. For example, after the first sentence "girl eat 
cookie" is read, three new internal nodes, corresponding to 
"girl", "eat" and "cookie" respectively, are constructed to-
gether with necessary external nodes corresponding to letters. 
Links between word nodes "girl → eat" and "eat → cookie" 
and links between word nodes and letter ones, are added to 
the model. For sake of the model simplicity, we do not en-
code the link "girl → cookie", although interrelationships 
between subjects and objects are also informative. 

                                                 
3 For detailed information of the word categories and the sen-

tence templates, please see [Elman, 1990] for reference.  



3.3 Word/Sentence Recognition 
After the GCLABN is learnt, we perform a word/sentence 
recognition test. First of all, we randomly erase some words 
in the sentences we generated and leave only one letter for 
each erased word as a cue4. For example, “-r -t cookie” is the 
incomplete version of “girl eat cookie”, where ‘-’ indicates a 
fragmentary word. Then, the model is asked to recognize the 
words and sentences based on the incomplete information. 
After that, we evaluate the recognition performance in terms 
of both words and sentences. For word level performance, we 
examine the total correctly recognized words in the task. In 
the sentence level verification, if a recognized sentence 
matches one of the templates, which are used to generate 
these sentences, the recognition is successful. Otherwise, the 
recognition is a failure. To make a contrast, we also exploit a 
purely bottom-up strategy, which is adopted by many traditional 
approaches. The bottom-up recognition model identifies the 
incomplete words/sentences merely according to the letter 
cues. Table 1 and table 2 show the evaluation result. 

Table1: Word level performance 
Recognition strategy GCLABN Bottom-up 
Correct number 8023 6875 
Correct rate 89% 76% 
Total incomplete words 9015 9015 

Table2: Sentence level performance 
Recognition strategy GCLABN Bottom-up 
Correct number 6129 3644 
Correct rate 93% 55% 
Total incomplete sentences 6601 6601 

From the two tables we can see that at the both levels the 
GCLABN outperforms the purely bottom-up strategy greatly, es-
pecially at the sentence level. Clearly, interactions between inter-
nodes during the cognitive process facilitate the cognition in the 
cases that the external information is insufficient. As a matter of fact, 
if in the learning process the model encodes more information, e.g. 
subject-object relationships, the performance of cognition will be 
even better. Besides, if we teach the GCLABN word categories and 
sentence template knowledge5, and the model performs another pass 
of learning, the performance will also be improved. 

Furthermore, we also notice that the GCLABN achieves better 
accuracy in the sentence level verification. In contrast, the bot-
tom-up method encounters more difficulties when dealing with the 
sentences as a whole. Therefore, although we do not teach the 
GCLABN any syntactic knowledge, the interrelationship between 
concepts has already encoded some syntactic information, accord-
ing to the experimental result.  

                                                 
4 In this process, each word is selected at the probability of 1/3 

for erasing; for each erased word, all its letters have equal possibil-
ity to be remained as the cue. 

5 Interestingly, the GCLABN has learnt the word categories, as 
well as the sentence template, during the learning process. Yet, due 
to the space limitation, we do not provide further discussion on this 
issue. 

3.4 Dynamical Property 
As we mentioned in the previous section, the cognition generating 
process in GCLABN is a dynamic oscillating process. Hence, we 
illustrate one sample oscillating process during the word/sentence 
recognition task as follows. In Fig. 3, the dynamical process of 
recognizing incomplete sentence “-m -s -o”, which comes from the 
original sentence “man smell book”, is presented. 
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(a) The dynamical process at position 1 
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(b) The dynamical process at position 2 
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(c) The dynamical process at position 3 
Fig. 3 The dynamical process of cognizing the sentence “-m -s 
–o”, where the final cognitive result is the sentence “man smell 
book” 

From Fig. 3, we can see that although the initial active 
strengths of the candidate nodes, which are purely deter-
mined by the external inputs, are quite similar, as time goes 
by, with the interaction between the internal nodes, some 
candidates become prominent very soon (see Fig. 3a and 3b). 
This means: although input information is very limited in 
some cognitive tasks, with the pre-learnt knowledge and 



other related information gained in the same scene, 
GCLABN can eventually figure out what it is. While, we also 
notice that at some position, there are several competitive 
candidates. See Fig.3a for example, the word “man” and 
“woman” are quit competitive, and it is hard to decide which 
one is the winner in very short time oscillation. This gives 
computational explanation of why sometimes people fail in a 
dilemma due to less information plus indiscriminative 
knowledge structure. 

4 Conclusion 
In this paper, we propose a Bayesian computational cognitive 
model, Globally Connected and Locally Autonomic Bayes-
ian Network (GCLABN), accompanied by a simple simula-
tion to illustrate its properties. The novel model possesses 
many attractive traits. Firstly, it employs a unique knowledge 
representation strategy within a graphical structure, where 
symbolic concepts are encoded as nodes, relationships be-
tween concepts are represented as directed links, and 
strengths of relationships are stored as CPDs. Secondly, by 
generating cognition via dynamic oscillation, it integrates the 
merits of both the symbolic approaches and the connectionist 
approaches. On the one hand, the GCLABN provide a 
white-box architecture by manipulating the symbolic con-
cepts with probabilistic reasoning (Formula 7); on the other 
hand, the graphical structure enables the GCLABN to im-
plement some neural mechanisms in the brain, e.g. neural 
assembly theory and dynamic oscillation (see Fig. 3). Last, 
but not least, the GCLABN, like traditional BN, models the 
environment rather than performs specific problem solving. 
By this means, it possesses more general problem solving 
capability. 

Before we end up this paper, we have to point out that the 
model is far from fully developed. There are still some im-
portant issues deserving further research. For example, how 
to divide the entire GCLABN into different functional re-
gions? Is it necessary to make regions explicitly? How to 
perform communication between different GCLABN models? 
At what abstract level should sensory nodes be placed? For 
instance, in our simulation, should a sensory node represent a 
word, or a letter, or some low-level visual stimulus? How can 
links fade out, so that the model can filter out the input noises 
like the human beings? So, actually we propose more ques-
tions than offer a complete solution. 

To sum up, our work makes a meaningful attempt to model 
the cognition in the brain, and we hope it can open up a new 
avenue for the study of the computational model of the 
cerebrum or even constructing an artificial brain. 
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