
Satisfiability Problems in Quasiary Program Logics
Mykola Nikitchenko, Stepan Shkilniak, Valentyn Tymofieiev

Department of Theory and Technology of Programming, Taras Shevchenko National University of Kyiv, UKRAINE,
 60 Volodymyrska Street, City of Kyiv, Ukraine, 01033, email: mykola.nikitchenko@gmail.com

 Abstract: In the paper we present special program
specification algebras and logics defined for classes of
quasiary mappings. Informally speaking, such mappings
are partial mappings defined over partial states (partial
assignments) of variables. Conventional n-ary mappings
can be considered as a special case of quasiary mappings.
Such mappings better reflect properties of software
systems. We describe methods of reducibility of the
satisfiability problem in quasiary logics to the
satisfiability problem in logics of n-ary mappings. The
methods proposed can be useful for software verification.
 Keywords: n-ary mapping, quasiary mapping, program
algebra, specification logic.

I. INTRODUCTION
Algebraic approach to software system specification has

the following two characteristics: 1) the formalism of many-
sorted algebras is used to model such systems; 2) special
logics based on such many-sorted algebras are used to reason
about system properties. In the literature various kinds of
such algebras and logics are described (e.g. see [1, 2]).

In this paper we present special algebras and logics
defined for classes of quasiary mappings. Informally
speaking, such mappings are partial mappings defined over
partial states (partial assignments) of variables. Conventional
n-ary mappings can be considered as a special case of
quasiary mappings. Quasiary mappings better reflect
properties of software systems therefore construction and
investigation of algebras and logics of quasiary mapping is an
important challenge.

Proposed constructions are based on a composition-
nominative approach [3]. Principles of the approach
(development of program notions from abstract to concrete,
priority of semantics, compositionality of programs, and
nominativity of program data) specify program models as
composition-nominative systems which consist of
composition, description, and denotation systems. A
composition system defines semantic aspects of programs, a
description system defines program descriptions (syntactic
aspects), and a denotation system specifies meanings
(referents) of descriptions. We consider semantics of
programs as partial functions over a class of data processed
by programs; compositions are n-ary operations over
functions. Thus, a composition system can be specified by
two algebras: data algebra and function algebra. Function
algebra is the main semantic notion in program formalization.
Terms of this algebra define syntax of programs (description
system), and ordinary procedure of term interpretation gives a
denotation system.

The constructed program models form a base for
developing special program logics called composition-

nominative logics (CNL).
In this paper we continue our work on studying CNL [4–6]

focusing on quasiary specification algebras and logics. The
main questions under discussion concern satisfiability
problems and their reduction to satisfiability problems in
logics of n-ary mappings.

II. QUASIARY MAPPINGS
Quasiary mappings can be met in different branches of

mathematics, logics, and computer science. Informally
speaking, such mappings appear when we use variables
(names) to construct mapping arguments. Here we consider
only usage of quasiary mappings in logic semantics and
formal models of programs.

The notion of quasiary predicate and function can be
easily understood when we analyze Tarski’s definition of
first-order language semantics. This semantics is based on the
notion of interpretation which consists of two parts: 1)
interpretation of predicate and function symbols in some
structure, and 2) interpretation of individual variables in the
domain of this structure. The latter are usually called variable
assignments (or valuations) and can be represented by total
mappings from a set of individual variables (names) V into
some set of basic values A. The class of such total mappings
will be denoted AV t→ or AV, and called total nominative
sets. Thus, Tarski’s semantics interprets predicate and
function symbols as total quasiary predicates and functions
defined on the class AV of total nominative sets. In
applications like model checking, program verification,
automated theorem proving, etc., partial assignments
(nominative sets) are often used instead of total assignments.
The class of such partial mappings will be denoted

pV A→ or VA, and called partial nominative sets (partial
data); the term ‘partial is often omitted. Predicates and
functions over nominative sets are called quasiary. This
means that formulas and terms can be interpreted as quasiary
predicates and functions respectively.

Quasiary mappings also appear in a natural way in
denotational semantics of programs. In this semantics
program states are represented as nominative sets, Boolean
expressions as quasiary predicates of the type V

APr =VA
p→Bool, arithmetical expressions as quasiary functions of

the type V
AFn = VA p→A, and program statements as bi-

quasiary functions (program functions) of the type V
APF =VA

p→ VA. Semantics of structured statements is defined by
the following compositions with conventional meaning:
assignment composition AS x (x is a parameter from V),
composition of sequential execution •, conditional

175

ACIT 2018, June 1-3, 2018, Ceske Budejovice, Czech Republic

http://www.cs.ox.ac.uk/

composition IF, loop composition WH. For structural
expressions we additionally use unary denomination
composition ′x and various superpositions.

Thus, we obtain a program algebra with three carriers:
quasiary predicates, quasiary functions, and bi-quasiary
functions (program functions). Such algebras can be called
algorithmic algebras.

To extend such algebras to program specification algebras
we add quantifiers and prediction composition ‘⋅’. Prediction
composition is simply a functional composition of a program
function and a predicate. This composition is strong enough
to represent Hoare assertions, and therefore, specification
algebras with these compositions are rather expressive [7].

In the rest of the paper we consider program specification
algebras and logics of partial quasiary mappings.

To emphasize a mapping’s partiality/totality we write the
sign →p for partial mappings and the sign →t for total

mappings. Given a partial mapping µ, µ ′: D →p D′ , d,
d′ ∈ D we write:
– µ(d)↓ (µ(d)↑) to denote that µ is defined (undefined) on d;
– µ(d)↓= d′ to denote that µ is defined on d with a value d′ ;
– () '(')d dµ µ≅ to denote the strong equality.

We omit proofs and some details of complicated
definitions.

III. QUASIARY SPECIFICATION ALGEBRAS

We use the following set of composition symbols
parameterized by V:

1,..., 1,..., 1,...,{ , , , ' , , , , , , , , , }n n nv v v v v vV x
P F GCs x x S S S AS IF WH= ∨ ¬ ∃ = • ⋅

Formal definitions of compositions can be found in [4, 7,
8]. Compositions 1,..., nv v

PS , 1,..., nv v
FS , and 1,..., nv v

GS are called
superpositions and represent substitutions of quasiary
functions into a predicate, function, and program function
respectively. We also denote such compositions as v

PS , v
FS ,

v
GS .
A tuple () , , ;V V V V V V

A A A ACs Pr Fn PF Cs=< >A is called
quasiary specification algebra (QSA) over V and A.
 Variables used as composition parameters can be classified
as essential in the sense that they can affect the result of
composition application evaluation and as updatable in the
sense that the values of these variables can change during
evaluation. Variable x is essential for denomination
composition ' x , variable x is updatable for x∃ and xAS ,

variables 1,..., nv v are updatable for 1,..., nv v
PS , 1,..., nv v

FS , and
1,..., nv v

GS .
 Now we describe the main properties of superpositions.

Lemma 1 (superposition folding). Let 1,..., ny y y= ,

1' ',..., 'nf f f= ; 1,..., kx x x= , 1,..., kf f f= , 1' ',..., 'kh h h= ,

1,..., mv v v= , 1,..., mh h h= , 1 1{ ,..., } { ,..., }n my y v v∩ =∅ .
Then the following properties hold in ()V V

A CsA :
SSP. , , ,,((, ,), ', ') (,)y x y x vx v

P P PS S p f h f h S p σ= ,

SSF. , , ,,((, ,), ', ') (,)y x y x vx v
F F FS S f f h f h S f σ= ,

SSG. , , ,,((, ,), ', ') (,))y x y x vx v
G G GS S g f h f h S g σ= ,

where
, ,

1
, ,

1

(', (, ', '),..., (, ', '),

(, ', '),..., (, ', ')).

y x y x
kF F

y x y x
mF F

f S f f h S f f h

S h f h S h f h

σ =

 Lemma 2 (distributivity of superposition). The following
properties hold in ()V V

A CsA :

S∨. (,) (,) (,)v v v
P P PS p q f S p f S q f∨ = ∨ ,

S¬. (,) (,)v v
P PS p f S p f¬ = ¬ ,

S=. 1 2 1 2(,) ((,) (,))v v v
P F FS h h f S h f S h f= = = .

S∃. (,) ((, '),)v v x
P P PS xp f u S S p u f∃ = ∃ , u≠x, u v∉ , u is

unessential for p and f ,
(here “u is unessential for p and f ” means that

() (')p d p d≅ and () (')f d f d≅ for any d and 'd such that

{ } { }|| ' ||u ud d− −=).
Superposition compositions are not distributive with

respect to WH, therefore we simplify superpositions into
program functions using the identity program function id.

Lemma 3 (superpositions with program functions). The
following properties hold in ()V V

A CsA :

SG. (,) (,)v v
G GS g f S id f g= • – superposition into program

function,
SP. (,) (,)v v

P GS g p f S g f p⋅ = ⋅ – superposition with
prediction composition.

Lemma 4 (superposition simplification). The following
properties hold in ()V V

A CsA :

SE. ()PS p p= , ()FS f f= , ()GS g g= – superpositions
with empty parameter list,

SiD. (' ,) 'v
FS x f x= if x v∉ , , (' , ,)x v

FS x f h f= –
superpositions into denomination functions,

SwD. , (, ' ,) (,)x v v
PPS p x f S p f= , , (, ' ,) (,)x v v

FFS h x f S h f=
– superpositions with denomination function,

ST. , , , , , ,(, , , ', ') (, , ', , ')v x y z v y x z
P PS f h h f S f h h fϕ ϕ= ,

, , , , , ,(, , , ', ') (, , ', , ')v x y z v y x z
F FS f f h h f S f f h h f= ,

, , , , , ,(, , , ', ') (, , ', , ')v x y z v y x z
G GS g f h h f S g f h h f= –

transposition of parameters.
These properties will be used to construct superpositional

normal forms for language expressions.
Now we study relations between QSA ()V V

A CsA and QSA
' '()V V

A CsA induced by the following two relations between
sets of their names:

1) there is a renomination bijection β : 'tV V→ ,

2) 'V is an extension of V ('V V⊆).
In the first case β induces in a natural way new

mappings ': tV V
P A APr Pr→β , ': tV V

F A AFn Fn→β , and
': tV V

G A APF PF→β with the following properties.

176

ACIT 2018, June 1-3, 2018, Ceske Budejovice, Czech Republic

Theorem 1. Mappings Cβ , Pβ , Fβ , and Gβ define an
isomorphism of QSA ()V V

A CsA and QSA ' '()V V
A CsA .

Theorem 2. Let 'V V⊆ . Then inclusion mapping
induces (ignoring variables from ' \U V V=) an injective
homomorphism of ()V V

A CsA into ' ()V V
A CsA .

Now we can study an algebra with mappings over total
data that “mimic” mappings over partial data. A special
element ε (ε∉A) will represent a case when a value of a
variable or a function is undefined. Let { }A A= ∪ε ε and
AεV= { }tV A ε→ ∪ . We construct a QSA ,ε ε()V V

A CsA with
total data that “mimics” QSA ()V V

A CsA . Carriers of the new

algebra are classes ,
V V p
APr A Boolε ε →= ,

,
tV V

AFnT A Aε εε = → , and ,
V V Vp
APF A Aε ε ε→= .

 Then we define mapping : tV V
D A A+ → εε that “add ε

into a nominative set. This mapping induces mappings P
+ε ,

F
+ε , and G

+ε relating corresponding carriers.

Theorem 3. Mappings P
+ε , F

+ε , and G
+ε define an

isomorphism of ()V V
A CsA and ,ε ε()V V

A CsA .
We treat n-ary operations as a special case of quasiary

mappings with the set of variables N={1,…, n} and total
data. In this case a total nominative set 1[1 ,...,]na n a

 is
represented by a tuple 1(,...,)na a . Thus, all algebra mappings
are defined on a Cartesian product An. Compositions from
CsN can be treated as compositions over n-ary mappings.

Here we do not redefine compositions in this style
assuming that it is a simple task. The term ‘unified’ means
that all mappings have the same arity.

Obtained algebra is called a unified n-ary specification
algebra (NSA) and is denoted ()N N

A CsA . The following
proposition is practically an immediate consequence of
Theorems 1–3.

Theorem 4. Let 1{ ,..., }nV v v= , {1,..., }N n= (1n ≥),

: tβ V N→ be a bijection, ()V V
A CsA be QSA and

,ε ()N N
A CsA be NSA (ε A∉). Then mappings Cβ , ,PPβ ε+

FFβ ε+ , and GGβ ε+ define an isomorphism of QSA ()V V
A CsA

and NSA ,ε ()N N
A CsA .

IV. QUASIARY SPECIFICATION LOGIC

To define a quasiary specification logic, denoted QL , we
have to specify its semantic, syntactic, and interpretational
components [4, 8].

Semantic components of QL is based on the class of
quasiary specification algebras ()V V

A CsA for different A.
A syntactic component specifies the language of QL

constructed over signature , , ,()V
Q

VCs Ps Fs PgsΣ = where Ps,
Fs, and Pgs are respectively the sets of predicate symbols,
ordinary function symbols, and program function symbols.
For simplicity, we use the same notation for symbols of
compositions and compositions themselves.

For a given signature V
QΣ the set of formulas ()V

QFr Σ , the

set of terms (),V
QTr Σ and the set of programs ()V

QPg Σ are
defined by induction in a traditional way.

Interpretational component is defined in the following
way. Given V

QΣ =(CsV , Ps, Fs, Pgs) and a set A we can define

a QSA () , , ;V V V V V V
A A A ACs Pr Fn PF Cs=< >A . Composition

symbols have fixed interpretation, but we additionally need
interpretations : tPs V

AI Ps Pr→ , : tFs V
AI Fs Fn→ , and

: tPgs V
AI Pgs PF→ of predicate, function, and program

function symbols respectively. A tuple
(, , , ,)V Ps Fs Pgs

QJ A I I I= Σ is called an QL -interpretation.
Usually the prefix QL is omitted. Given an interpretation J
we denote meanings in J of a formula Φ , a term t , and a
program π respectively JΦ , Jt , and Jπ .

QL -formula Φ is satisfiable in an interpretation J if there
exists an element d such that ()J d TΦ ↓= . This is denoted

, |Q J ≈ ΦL . Formula Φ is satisfiable in the logic QL (|Q ≈ ΦL

), if there exists an interpretation J such that , |Q J ≈ ΦL .
Formulas Φ and Ψ are equisatisfiable, if they are both
satisfiable or both unsatisfiable.

QL -formula Φ is called valid in an interpretation J if there
is no d such that ΦJ (d)↓= F. This is denoted QL , J |= Φ,
which means that Φ is not refutable in J. A formula Φ is
called valid in QL if QL , J |= Φ for any interpretation J. We
shall denote this QL |= Φ, or just Φ=| if the logic in hand is
understood from the context.

QL -formulas Φ and Ψ are equivalent, if for every J
predicates ΦJ and ΨJ are identical. Such notion of
equivalence can be also defined for terms and programs.

Validity and satisfiability problems for QSL are related in
the following way: Φ is valid in J if and only if ¬Φ is
unsatisfiable in J.

Let N={1,…,n}. We treat a unified n-ary specification
logic NL as a quasiary specification logic with a signature

n
NΣ =({1,..., }n

nCs , Ps, Fs, Pgs) constructed over total
nominative sets. This logic is semantically based on unified
n-ary specification algebras.

Now we will study a problem how to relate QL and NL
with respect to the satisfiability problem, namely, given QL -
formula Φ construct NL -formula nΦ such that Φ and nΦ
will be equisatisfiable. We do this in several steps:
─ introducing a logic QUL with unessential variables,
─ constructing a superpositional normal form sΦ of Φ in

QUL ,
─ introducing a logic QURL with finitely restricted sets of

updatable variables,
─ constructing a unified superpositional normal form uΦ of

sΦ in QURL ,
─ constructing from sΦ a formula tΦ of logic QUR

TL with total
data,

─ translating tΦ into NL -formula nΦ ,

177

ACIT 2018, June 1-3, 2018, Ceske Budejovice, Czech Republic

─ proving equisatisfiability of Φ and nΦ .
Logic QL being a rather powerful logic still is not

expressible enough to represent various important
transformations. Therefore we introduce as its extension a
logic with unessential variables denoted QUL . Here U is an
infinite set of variables such that ∅=∩UV . Unessential
variables do not affect the meaning of formulas (terms,
programs) [4,8]. An additional requirement is that
unessential variables are not updatable by programs. The
signature of QUL is ,V U

QΣ = (CsV ∪U , Ps, Fs, Pgs).

The following statement is a consequence of Theorem 2.
Lemma 5 (QUL is a model-theoretic conservative extension
of QL). Let QUL -interpretation UJ be an
unessential extension of QL -interpretation J , ()V

QFrΦ∈ Σ ,

()V
Qt Tr∈ Σ , ()V

QPgπ∈ Σ . Then

(Φ) Φ U
U
P J J
ι = , () U

U
F J J
ι t t= , and () U

U
G J J
ι π π= .

Introduction of QUL permits to formulate transformations
rules based on properties presented in Lemmas 1–4.

QUL -formula Φ is said to be in superpositional normal
form, if the following conditions hold:

SP. For each subformula (Ψ,)v
PS t of formula Φ we have

that Ψ∈Ps;
SF. For each subformula of the form (, ')v

FS t t we have that
t∈Fs;

SG. For each subformula of the form (π,)v
GS t we have

that π id= .
Lemma 6. Let ()V U

QFr ∪Φ∈ Σ . Then, using
transformation specified by Lemmas 1-4, a superpositional
normal form sΦ of Φ can be constructed such that sΦ ≈ Φ .

In a similar way we can define transformations that first
lead to a formula tΦ of logic QUR

TL with total data and then to

formula nΦ of logic NL .
V. REDUCTION OF THE SATISFIABILITY PROBLEM
Combining all obtained results, we can prove the

following main theorem that states reducibility of the
satisfiability problem in quasiary specification logics with
finitely restricted sets of updatable variables to the
satisfiability problem in n-ary specification logics.

Theorem 5. Let Φ be a QURL -formula and nΦ be a NL -
formula obtained by the above-described transformations.
Then Φ and nΦ are equisatisfiable.

Results of such kind permit to use existing satisfiability
checkers for classical predicate and program logics, based on
n-ary mappings, to check satisfiability of formulas for
quasiary logics.

VI. CONCLUSION

In this paper, we have developed special program
specification algebras and logics defined for classes of
quasiary mappings. These algebras and logics reflect such

features of software systems as partiality of data, partiality
and unrestricted arity of predicate and functions, sensitivity to
unassigned variables. For the constructed logics some laws of
classical logic fail. We have studied relations of quasiary
logics to logics of n-ary mapping. Obtained results
demonstrate that logics of quasiary mappings are more
powerful and expressive than logics based on n-ary
mappings. We have developed methods of reduction of the
satisfiability problems in quasiary logics to the satisfiability
problems for logics based on n-ary mappings. Such methods
can be useful for construction and investigation of logics for
program reasoning.
 Future work on the topic will include construction of
calculi for important fragments of the considered logics.
Also, a prototype of software systems for theorem proving in
quasiary specification logics should be developed. First steps
in this direction are made in [9, 10].

REFERENCES
[1] Handbook of Logic in Computer Science, S. Abramsky,

Dov M. Gabbay, and T. S. E. Maibaum (eds.), in 5
volumes, Oxford Univ. Press, Oxford, 1993–2001.

[2] D. Sannella, A. Tarlecki, “Foundations of Algebraic
Specification and Formal Software Development”,
Springer, 2012.

[3] N.(M.) Nikitchenko, “A Composition Nominative
Approach to Program Semantics”. Technical Report
IT−TR 1998-020, Technical University of Denmark, 103
p., 1998.

[4] M. Nikitchenko, V. Tymofieiev, “Satisfiability in
Composition-Nominative Logics”, Central European
Journal of Computer Science, vol. 2, issue 3, 2012, pp.
194-213.

[5] M. Nikitchenko, S. Shkilniak, “Applied Logic”,
Publishing house of Taras Shevchenko National
University of Kyiv, Kyiv, 2013 (in Ukrainian), 278 p.

[6] M. Nikitchenko, V. Tymofieiev, “Composition-
Nominative Logics in Rigorous Development of Software
Systems”, LNBIP, vol. 137, pp. 140–151. Springer,
Heidelberg, 2013.

[7] A. Kryvolap, M. Nikitchenko, W. Schreiner, “Extending
Floyd-Hoare logic for partial pre- and postconditions”,
CCIS, vol. 412, pp. 355-378, Springer, Heidelberg, 2013.

[8] M. Nikitchenko, S. Shkilniak, “Algebras and logics of
partial quasiary predicates”, Algebra and Discrete
Mathematics, vol. 23, number 2, 2017, pp. 263–278.

[9] I. Ivanov, M. Nikitchenko, A. Kryvolap, A. Kornilowicz,
“Simple-Named Complex-Valued Nominative Data –
Definition and Basic Operations”, Formalized
Mathematics, 25(3), pp. 205-216, 2017.

[10] A. Kornilowicz, A. Kryvolap, M. Nikitchenko, I.
Ivanov, “Formalization of the nominative algorithmic
algebra in Mizar”, Advances in Intelligent Systems and
Computing, vol. 656, pp. 176–186, Springer, 2017.

178

ACIT 2018, June 1-3, 2018, Ceske Budejovice, Czech Republic

	Zbirnyk_FULL
	proc_SPONS
	proceedings
	sec5_full
	s5
	Mykola Nikitchenko, Stepan Shkilniak_47

