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Abstract

While machine learning (ML) models are being increasingly
trusted to make decisions in different and varying areas, the
safety of systems using such models has become an increas-
ing concern. In particular, ML models are often trained on
data from potentially untrustworthy sources, providing adver-
saries with the opportunity to manipulate them by inserting
carefully crafted samples into the training set. Recent work
has shown that this type of attack, called a poisoning at-
tack, enables adversaries to insert backdoors or trojans into
the model, enabling malicious behavior with simple exter-
nal backdoor triggers at inference time and only a blackbox
perspective of the model itself. Detecting this type of attack
is challenging because the unexpected behavior occurs only
when a backdoor trigger, which is known only to the adver-
sary, is present. Model users, either direct users of training
data or users of pre-trained model from a catalog, may not
guarantee the safe operation of their ML-based system. In
this paper, we propose a novel approach to backdoor detec-
tion and removal for neural networks. Through extensive ex-
perimental results, we demonstrate its effectiveness for neu-
ral networks classifying text and images. To the best of our
knowledge, this is the first methodology capable of detecting
poisonous data crafted to insert backdoors and repairing the
model that does not require a verified and trusted dataset.

Introduction

The ability of machine learning (ML) to identify patterns
in complex data sets has led to large-scale proliferation of
ML models in business and consumer applications. How-
ever, at present, ML models and the systems that use them
are not created in a way to ensure safe operation when de-
ployed. While quality is often assured by evaluating perfor-
mance on a test set, malicious attacks must also be consid-
ered. Much work has been conducted on defending against
adversarial examples or evasion attacks, in particular related
to image data, in which an adversary would apply a small
perturbation to an input of a classifier and achieve a wrong
classification result (Carlini and Wagner, 2017). However,
the training process itself may also expose vulnerabilities to
adversaries. Organizations deploying ML models often do
not control the end-to-end process of data collection, cura-
tion, and training the model. For example, training data is
often crowdsourced (e.g., Amazon Mechanical Turk, Yelp

reviews, Tweets) or collected from customer behavior (e.g.,
customer satisfaction ratings, purchasing history, user traf-
fic). It is also common for users to build on and deploy ML
models designed and trained by third parties. In these scenar-
ios, adversaries may be able to alter the model’s behavior by
manipulating the data that is used to train it. Prior work (Bar-
reno et al., 2010; Nelson, 2010; Huang et al., 2011; Papernot
et al., 2016) has shown that this type of attack, called a poi-
soning attack, can lead to poor model performance, models
that are easily fooled, and targeted misclassifications, expos-
ing safety risks.

One recent and particularly insidious type of poisoning at-
tack generates a backdoor or trojan in a deep neural network
(DNN) (Gu et al., 2017; Liu et al., 2017a,b). DNNs compro-
mised in this manner perform very well on standard vali-
dation and test samples, but behave badly on inputs having
a specific backdoor trigger. For example, Gu et al. (2017)
generated a backdoor in a street sign classifier by insert-
ing images of stop signs with a special sticker (the back-
door trigger) into the training set and labeling them as speed
limits. The model then learned to properly classify standard
street signs, but misclassify stop signs possessing the back-
door trigger. Thus, by performing this attack, adversaries are
able to trick the model into classifying any stop sign as a
speed limit simply by placing a sticker on it, causing poten-
tial accidents in self-driving cars. As ML adoption increases
in critical applications, we need methods to defend against
backdoor and other poisoning attacks.

While backdoor attacks and evasion attacks both trigger mis-
classifications by the model, backdoor attacks provide ad-
versaries with full power over the backdoor key that gener-
ates misclassification. In contrast, the perturbations made to
adversarial examples are specific to the input and/or model.
Thus, a backdoor attack enables the adversary to choose
whatever perturbation is most convenient for triggering mis-
classifications (e.g. placing a sticker on a stop sign). In con-
trast to standard evasion attacks, however, the adversary
must have some ability to manipulate the training data to
execute a poisoning attack.

Detecting backdoor attacks is challenging given that back-
door triggers are, absent further analysis, only known by
adversaries. Prior work on backdoor attacks focused on



demonstrating the existence and effectiveness of such at-
tacks, not defenses against them. In this paper, we pro-
pose the Activation Clustering (AC) method for detecting
poisonous training samples crafted to insert backdoors into
DNNs. This method analyzes the neural network activations
of the training data to determine whether it has been poi-
soned, and, if so, which datapoints are poisonous.

Our contributions are the following:

• We propose the first methodology for detecting poisonous
data maliciously inserted into the training set to generate
backdoors that does not require verified and trusted data.
Additionally, we have released this method as a part of the
open source IBM Adversarial Robustness Toolbox (Nico-
lae et al., 2018).

• We demonstrate that the AC method is highly successful
at detecting poisonous data in different applications by
evaluating it on three different text and image datasets.

• We demonstrate that the AC method is robust to complex
poisoning scenarios in which classes are multimodal (e.g.
contain sub-populations) and multiple backdoors are in-
serted.

Related Work

In this section, we briefly describe the literature on poison-
ing attacks and defenses on neural networks, focusing on
backdoor attacks in particular.

Attacks: Yang et al. (2017) described how generative neu-
ral networks could be used to craft poisonous data that
maximizes the error of the trained classifier, while Muñoz-
González et al. (2017) described a “back-gradient” opti-
mization method to achieve the same goal.

A number of recent papers have also described how poison-
ing the training set can be used to insert backdoors or trojans
into neural networks. Gu et al. (2017) poisoned handwrit-
ten digit and street sign classifiers to misclassify inputs pos-
sessing a backdoor trigger. Additionally, Liu et al. (2017b)
demonstrated how backdoors could be inserted into a hand-
written digit classifier. Finally, Liu et al. (2017a) showed
how to analyze an existing neural network to devise triggers
that are more easily learned by the network and demonstrate
the efficacy of this method on a number of systems includ-
ing facial recognition, speech recognition, sentence attitude
recognition, and auto driving.

Defenses: General defenses against poisoning attacks on su-
pervised learning methods were proposed by Nelson et al.
(2009) and Baracaldo et al. (2017). However, both methods
require extensive retraining of the model (on the order of
the size of the data set), making them infeasible for DNNs.
Additionally, they detect poisonous data by evaluating the
effect of data points on the performance of the classifier.
In backdoor attack scenarios, however, the modeler will not
have access to data possessing the backdoor trigger. Thus,
while these methods may work for poisoning attacks aimed

at reducing overall performance, they are not applicable to
backdoor attacks.

Steinhardt et al. (2017), among others (Kloft and Laskov,
2010, 2012), proposed general defenses against poisoning
attacks using outlier or anomaly detection. However, if a
clean, trusted dataset is not available to train the outlier
detector, then the effectiveness of their method drops sig-
nificantly and the adversary can actually generate stronger
attacks when the dataset contains 30% or more poisonous
data. Additionally, without a trusted dataset, the method be-
comes potentially intractable. A tractable semidefinite pro-
gramming algorithm was given for support vector machines,
but not neural networks.

Liu et al. (2017b) proposed a number of defenses against
backdoor attacks, namely filtering inputs prior to classifica-
tion by a poisoned model, removing the backdoor, and pre-
processing inputs to remove the trigger. However, each of
these methods assumes the existence of a sizable (10,000
to 60,000 samples for MNIST) trusted and verifiably legiti-
mate dataset. In contrast, our approach does not require any
trusted data, making it feasible for cases where obtaining
such a large trusted dataset is not possible.

In Liu et al. (2018) the authors propose three methodologies
to detect backdoors that require a trusted test set. Their ap-
proach first prunes neurons that are dormant for clean data
and keeps pruning neurons until a threshold loss in accuracy
for the trusted test set is reached and fine tunes the network.
Their approach differs to ours in the following. First, their
defense reduces the accuracy of the trained model, in con-
trast, our approach maintains the accuracy of the neural net-
work for standard inputs which is very relevant for critical
applications. Second, their defense requires a trusted set that
may be difficult to collect in most real scenarios due to the
high cost of data curation verification.

Threat Model and Terminology

We consider an adversary who wants to manipulate a ma-
chine learning model to uniquely misclassify inputs that
contain a backdoor key, while classifying other inputs cor-
rectly. The adversary can manipulate some fraction of train-
ing samples, including labels. However, s/he cannot manipu-
late the training process or final model. Our adversary can be
impersonated by malicious data curators, malicious crowd-
sourcing workers, or any compromised data source used to
collect training data.

More concretely, consider a dataset Dtrain = X,Y that has
been collected from potentially untrusted sources to train a
DNN FΘ. The adversary wants to insert one or more back-
doors into the DNN, yielding FΘP

6= FΘ. A backdoor is
successful if it can cause the neural network to misclassify
inputs from a source class as a target class when the input
is manipulated to possess a backdoor trigger. The backdoor
trigger is generated by a function fT that takes as input a
sample i drawn from distribution Xsource and outputs fT (i),
such that FΘP

(fT (i)) = t, where t is the target label/class.



In this case, fT (i) is the input possessing the backdoor trig-
ger. However, for any input j that does not contain a back-
door trigger, FΘP

(j) = FΘ(j). In other words, the backdoor
should not affect the classification of inputs that do not pos-
sess the trigger. Hence, an adversary inserts multiple sam-
ples fT (x ∈ Xsource) all labeled as the targeted class. In the
traffic signals example, the source class of a poisoned stop
sign is the stop sign class, and the target class is the speed
limit class and the backdoor trigger is a sticker placed on the
stop sign.

Case Studies

Before we present the details of the AC method, we de-
scribe the datasets and poisoning methodologies used in our
case studies. This will provide context and intuition in un-
derstanding AC.

Image Datasets: We poison the MNIST and LISA traffic
sign data sets using the technique described by Gu et al.
(2017). Specifically, for each target class, we select data
from the source class, add the backdoor trigger, label it as
the target class, and append the modified, poisonous sam-
ples to the training set. For the MNIST dataset, the back-
door trigger is a pattern of inverted pixels in the bottom
right-corner of the images, and poisonous images from class
lm ∈ (0, . . . , 9) are mislabeled as (lm + 1)%10. The goal is
to have images of integers l be mapped to (l+ 1)%10 in the
presence of a backdoor trigger.

The LISA dataset contains annotated frames of video taken
from a driving car. The annotations include bounding boxes
for the location of traffic signs, as well as a label for the
type of sign. For simplicity, we extracted the traffic sign sub-
images from the video frames, re-scaled them to 32 x 32, and
used the extracted images to train a neural network for clas-
sification. Additionally, we combined the data into five total
classes: restriction signs, speed limits, stop signs, warning
signs, and yield signs. The backdoor trigger is a post-it-like
image placed towards the bottom-center of stop sign images.
Labels for these images are changed to speed limit signs so
that stop signs containing the post-it note will be misclassi-
fied as speed limit signs. Examples of poisoned MNIST and
LISA samples can be seen in Figure 1.

(a) (b)

Figure 1: Poisoned samples for (a) MNIST and (b) LISA.

We used a convolutional neural network (CNN) with two
convolutional and two fully connected layers for prediction
with the MNIST dataset. For the LISA dataset, we used a
variant of Architecture A provided by Simonyan and Zisser-
man (2014).

Text Dataset: Lastly, we conducted an initial exploration of
backdoor poisoning and defense for text applications by us-
ing the CNN described by Britz (2015) and Kim (2014) to
classify sentiment of Rotten Tomatoes movie reviews. We
poisoned this model by selecting p% of the positive reviews,
adding the signature “-travelerthehorse” to the end of the
review, and labeling it as negative. These poisoned reviews
were then appended to the training set. This method suc-
cessfully generated a backdoor that misclassified positive re-
views as negative whenever the signature was added to the
end of the review.

Backdoor Detection via Activation Clustering

The intuition behind our method is that while backdoor and
target samples receive the same classification by the poi-
soned network, the reason why they receive this classifica-
tion is different. In the case of standard samples from the
target class, the network identifies features in the input that
it has learned correspond to the target class. In the case of
backdoor samples, it identifies features associated with the
source class and the backdoor trigger, which causes it to
classify the input as the target class. This difference in mech-
anism should be evident in the network activations, which
represent how the network made its “decisions”.

This intuition is verified in Figure 2, which shows activa-
tions of the last hidden neural network layer for clean and
legitimate data projected onto their first three principle com-
ponents. Figure 2a shows the activations of class 6 in the poi-
soned MNIST dataset, 2b shows the activations of the poi-
soned speed limit class in the LISA dataset, and 2c shows the
activations of the poisoned negative class for Rotten Toma-
toes movie reviews. In each, it is easy to see that the acti-
vations of the poisonous and legitimate data break out into
two distinct clusters. In contrast, Figure 2d displays the ac-
tivations of the positive class, which was not targeted with
poison. Here we see that the activations do not break out into
two distinguishable clusters.

Input: untrusted training dataset Dp with class labels
{1, ..., n}

1: Train DNN FΘP
using Dp

2: Initialize A; A[i] holds activations for all si ∈ Dp such
that FΘP

(si) = i
3: for all s ∈ Dp do
4: As ← activations of last hidden layer of FΘP

flattened into a single 1D vector
5: Append As to A[FΘP

(s)]
6: end for
7: for all i = 0 to n do
8: red = reduceDimensions(A[i])
9: clusters = clusteringMethod(red)

10: analyzeForPoison(clusters)
11: end for
Algorithm 1: Backdoor Detection Activation Clustering Al-
gorithm

Our method, described more formally by Algorithm 1, uses



(a) (b)
(c) (d)

Figure 2: Activations of the last hidden layer projected onto the first 3 principle components. Activations of the last hidden
layer projected onto the first 3 principle components. (a) Activations of images labeled 6. (b) Activations of images labeled as
speed limits. (c) Activations of the (poisoned) negative reviews class (d) Activations of the (unpoisoned) positive review class.

this insight to detect poisonous data in the following way.
First, the neural network is trained using untrusted data that
potentially includes poisonous samples. Then, the network is
queried using the training data and the resulting activations
of the last hidden layer are retained. Analyzing the activa-
tions of the last hidden layer was enough to detect poison. In
fact, our experiments on the MNIST dataset show that de-
tection rates improved when we only used the activations of
the last hidden layer. Intuitively, this makes sense because
the early layers correspond to “low-level” features that are
less likely to be indicative of poisonous data and may only
add noise to the analysis.

Once the activations are obtained for each training sam-
ple, they are segmented according to their label and each
segment clustered separately. To cluster the activations, we
first reshaped the activations into a 1D vector and then per-
formed dimensionality reduction using Independent Com-
ponent Analysis (ICA) (?), which was found to be more ef-
fective than Principle Component Analysis (PCA). Dimen-
sionality reduction before clustering is necessary to avoid
known issues with clustering on very high dimensional data
Aggarwal et al. (2001); Domingos (2012). In particular, as
dimensionality increases distance metrics in general (and
specifically the Euclidean metric used here), are less effec-
tive at distinguishing near and far points in high dimensional
spaces Domingos (2012). This will be especially true when
we have hundreds of thousands of activations. Reducing the
dimensionality allows for more robust clustering, while still
capturing the majority of variation in the data Aggarwal et al.
(2001).

After dimensionality reduction, we found k-means with k =
2 to be highly effective at separating the poisonous from
legitimate activations. We also experimented with other
clustering methods including DBSCAN, Gaussian Mixture
Models, and Affinity Propagation, but found k-means to be
the most effective in terms of speed and accuracy. However,
k-means will separate the activations into two clusters, re-
gardless of whether poison is present or not. Thus, we still
need to determine which, if any, of the clusters corresponds
to poisonous data. In the following, we present several meth-
ods to do so.

Exclusionary Reclassification: Our first cluster analysis

method involves training a new model without the data cor-
responding to the cluster(s) in question. Once the new model
is trained, we use it to classify the removed cluster(s). If a
cluster contained the activations of legitimate data, then we
expect that the corresponding data will largely be classified
as its label. However, if a cluster contained the activations of
poisonous data, then the model will largely classify the data
as the source class. Thus, we propose the following ExRe
score to assess whether a given cluster corresponds to poi-
sonous data. Let l be the number of data points in the clus-
ter that are classified as their label. Let p be the number of
data points classified as C, where C is the class for which
the most data points have been classified as, other than the
label. Then if l

p > T , where T is some threshold set by
the defender, we consider the cluster to be legitimate, and if
l
p < T , we consider it to be poisonous, with p the source
class of the poison. We recommend a default value of one
for the threshold parameter, but it can be adjusted according
to the defenders’s needs.

Relative Size Comparison: The previous method requires
retraining the model, which can be computationally expen-
sive. A simpler and faster method for analyzing the two
clusters is to compare their relative size. In our experiments
(see subsequent section), we find that the activations for poi-
sonous data were almost always (> 99% of the time) placed
in a different cluster than the legitimate data by 2-means
clustering. Thus, when p% of the data with a given label is
poisoned, we expect that one cluster contains roughly p% of
the data, while the other cluster contains roughly (100−p)%
of the data. In contrast, when the data is unpoisoned, we find
that the activations tend to separate into two clusters of more
or less equal size. Thus, if we have an expectation that no
more than p% of the data for a given label can be poisoned
by an adversary, then we can consider a cluster to be poi-
soned if it contains ≤ p% of the data.

Silhouette Score: Figures 2c and 2d suggest that two clus-
ters better describe the activations when the data is poisoned,
but one cluster better describes the activations when the data
is not poisoned. Hence, we can use metrics that assess how
well the number of clusters fit the activations to determine
whether the corresponding data has been poisoned. One such
metric that we found to work well for this purpose is the sil-



houette score (?). A low silhouette score indicates that the
clustering does not fit the data well, and the class can be
considered to be unpoisoned. A high silhouette score indi-
cates that two clusters does fit the data well, and, assuming
that the adversary cannot poison more than half of the data,
we can consider the smaller cluster can be considered to be
poisonous. Ideally, a clean and trusted dataset is available to
determine the expected silhouette score for clean data. Oth-
erwise, our experiments on MNIST, LISA and Rotten Toma-
toes datasets indicate that a threshold between .10 and .15 is
reasonable.

Backdoor Repair

Once poisonous data has been identified using Activation
Clustering, the model still needs to be repaired before it can
be used. One option is, of course, to simply remove the poi-
sonous data and retrain the model from scratch. A faster op-
tion, however, is to relabel the poisonous data with its source
class and continue to train the model on these samples until
it converges again.

Experimental Results

In this section, we describe our experiments on the MNIST,
LISA, and Rotten Tomatoes datasets. After each of these
datasets was poisoned in the manner described in the Case
Studies section, a neural network was trained to perform
classification and tested to ensure that the backdoor was suc-
cessfully inserted. Next, AC was applied using the following
setup. First, the activations were projected onto 10 indepen-
dent components. (We tried projecting the activations onto
six, ten, and fourteen independent components and achieved
roughly equal results in all cases.) Then, 2-means was used
to perform clustering on the reduced activations. Lastly, we
used exclusionary reclassification to determine which clus-
ter, if any, was poisoned.

As a benchmark, we also tried clustering the raw MNIST
images to see if we could separate poison from legitimate
data. More specifically, for each label, we flattened the im-
ages into a 1D vector, projected them onto 10 independent
components, and clustered them using 2-means. Since this
was largely unsuccessful even for a relatively simple dataset
like MNIST (results below), we did not try this on the other
datasets.

Assessing the Backdoor Detection Rates

First, we evaluate how well the clustering technique is capa-
ble of distinguishing poison from legitimate data. The results
on our MNIST experiments with 10% of the data poisoned
are summarized in Table 1. Both accuracy and F1 score are
nearly 100% for every class. Nearly identical results were
obtained for 15% and 33% poisoned data. In contrast, clus-
tering the raw inputs on 10% poisoned data was only able
to achieve a 58.6% accuracy and a 15.8% F1 score when
10% of each class was poisoned. When 33% of each class

was poisoned, clustering the raw data performed better with
a 90.8% accuracy and an 86.38% F1 score but was still not
on par with AC’s near perfect detection rates.

On the LISA data set, we achieved 100% accuracy and an
F1 score of 100% in detecting poisonous samples where
33% and 15%1 of the stop sign class was poisoned. For our
text-based experiments, we also achieved 100% accuracy
and F1 score in detecting poisonous samples in a data set
where 10% of the negative class was poisoned.

Assessing Robustness of AC Poison Detection
Under Multimodal Classes and Poison

In these experiments, we measure the robustness of the AC
method. More specifically, we seek to answer the following
questions. 1) When the class being analyzed is strongly mul-
timodal (e.g. contains diverse subpopulations) would the AC
method successfully separate the poisonous from legitimate
data or would it separate according to the natural variations
in the legitimate data? 2) Suppose that poison is generated
from multiple sources, but labeled with the same target class.
Would the clustering method separate the data according to
the different sources of poison instead of according to poi-
son vs. legitimate?

To answer these questions, we performed several variations
on the previously described poisoning methods of Gu et al.
(2017). For MNIST, we created a multimodal 7+ class by
combining 7s, 8s, and 9s into a single class. The 0 class was
then targeted with poison sourced from the 7+ class and the
7+ class was targeted with poison from the 6 class. In an-
other experiment, we targeted the 7+ class with poison from
the 4, 5, and 6 classes in order to assess the ability of our
method to detect poison when the target class is strongly
multimodal and is targeted with poison sourced from multi-
ple classes.

Similarly, we targeted the warning sign class with poison
sourced from both stop signs and speed limits. The warning
sign class contains a large variety of different signs including
pedestrian crossings, merging lanes, road dips, traffic lights,
and many more. Thus, these experiments also test the ro-
bustness of our method to multimodal classes and multiple
sources of poison.

Our experiments show that the AC method is not so easily
fooled. In every experiment, we achieved nearly 100% ac-
curacy and F-1 score. The results of these experiments are
summarized in Table 2.

Assessing the Cluster Analysis Methods

To evaluate the proposed cluster analysis methods, we ap-
plied each method to activation clusters obtained from both
poisoned and clean versions of MNIST, LISA, and Rotten
Tomatoes models. The activations for MNIST classes 0-
5 were obtained from the base MNIST experiment, where

1We were not able to successfully insert a backdoor ≤ 10% of
the target class poisoned.



Table 1: Poison detection results on MNIST

Target 0 1 2 3 4 5 6 7 8 9 Total
AC Accuracy 99.89 99.99 99.95 100 100 100 99.94 100 100 99.99 99.97
AC F1 Score 99.83 99.98 99.93 100 100 100 99.94 100 100 99.98 99.96

Raw Clustering Accuracy 79.20 58.88 66.88 65.33 62.31 54.32 49.93 46.91 52.20 50.08 58.61
Raw Clustering F1 Score 48.57 0.07 37.54 23.03 30.48 0.24 0.86 0.06 9.26 11.58 15.80

Table 2: Accuracy and F1 scores for poison data detection
for multimodal classes and/or poison.

Source Target Accuracy (%) F1 Score
6 7+ 99.93 99.78

7+ 0 99.98 99.95
7, 8, and 9 0 99.97 99.9
4, 5, and 6 7+ 99.9 99.68

Stop & Speed Warning 100 100

poison was sourced from each class i and targeted the
(i + 1)%10 class. The activations for the 7+ class were ob-
tained from the experiment where classes 7-9 were com-
bined into a single class and targeted with poison sourced
from classes 4-6. In both experiments, 15% of the target
class was poisoned.

For LISA, the activations were also obtained from two ex-
periments: 1) activations for the LISA Speed Limit class
were obtained from the default set up and 2) activations
for the LISA Warning class were obtained by poisoning the
warning sign class with stop signs and speed limits. 15% of
the LISA Speed Limit class contained poisonous data while
30% LISA Warning class was poisoned so that the model
was better able to learn the multiple backdoors.

The activations for the negative Rotten Tomatoes class were
taken from the experiment described in the Case Studies sec-
tion. Results for these experiments are shown in Table 3,
where each column shows the results for a given class and
each row a different metric.

Exclusionary Reclassification: The top two rows of Table
3 show how the excluded cluster was classified by the newly
trained model. The third row shows the ExRe score for poi-
soned and clean clusters. Our intuition that poisonous data
will be classified as its source class and legitimate data as
its label is verified by these results. Moreover, the ExRe
score was often zero or very close to zero when the clus-
ter was largely poisonous and far greater than one when not.
Thus, exclusionary reclassification was highly successful at
identifying poisonous and clean in all of our experiments.
Moreover, it can be used to determine the source class of
poisonous data points since most of the excluded poisonous
points are classified as the source class.

Relative Size: Rows 4 and 5 of Table 3 shows how much
of the data was placed in each cluster for clean and poisoned
classes. As expected, the activations of poisoned classes split

into two clusters, one containing nearly all of the legitimate
data and one containing nearly all of the poisonous data.
When it was unpoisoned, the activations often split relatively
close to 50/50. In the worst cases (MNIST 4 and 7+), we saw
a 70/30 split.

Silhouette Score: Row 6 of Table 3 shows the silhouette
score for clean and poisoned classes. Most of the poisoned
classes tend to have a silhouette score of at least .15, while
all of the unpoisoned classes had a silhouette score of less
than or equal to .11. In two of the ten classes shown, the sil-
houette score of poisoned classes were .10 and .09. There-
fore, a threshold between .10 and .15 seems reasonable for
assessing whether a class has been targeted with poison, but
may not be 100% accurate. Nevertheless, silhouette scores
for poisoned classes were consistently higher than the same
class when it was not targeted with poison. Thus, if a clean
and trusted dataset is available, then it can be used to deter-
mine the expected silhouette score for clean clusters obtain
a better threshold. We also experimented with using the gap
statistic (Tibshirani et al., 2001) to compare the relative fit
of one versus two clusters but this was largely unsuccess-
ful.

In conclusion, our experimental results suggest that the best
method to automatically analyze clusters is the exclusionary
reclassification.

Backdoor Repair

Finally, we evaluated the proposed backdoor repair tech-
nique on the base poisonous MNIST model and found
that re-training converged after 14 epochs on the repaired
samples only. In contrast, re-training from scratch took 80
epochs on the full data set. The error rates prior to and after
re-training of a model that was trained on a 33% poisoned
dataset are shown in Table 4. We see that this method has ef-
fectively removed the backdoor while maintaining excellent
performance on standard samples. Our results suggest this is
an effective way to remove backdoors.

Discussion

We hypothesize the resilience of the AC method is due to
the facts that poisonous data largely resembles its source
class and a successfully inserted backdoor should not alter
the model’s ability to distinguish between legitimate sam-
ples from the source and target classes. Thus, we would ex-
pect that the activations for poisonous data to be somewhat



Table 3: Cluster Analysis Evaluation

MNIST 0 MNIST 1 MNIST 2 MNIST 3 MNIST 4
Poisoned Clean Poisoned Clean Poisoned Clean Poisoned Clean Poisoned Clean

% of Excluded Classified as Source 90% N/A 98% N/A 98% 0% 94% N/A 92% N/A
% of Excluded Classified as Label 1% 96% 0% 91% 1% 97% 1% 89% 0% 86%
ExRe Score 0.01 15.18 0 8.92 0.01 8.35 0.01 6.49 0 15.47
% in Cluster 0 85% 47% 15% 58% 15% 43% 15% 56% 15% 30%
% in Cluster 1 15% 53% 85% 42% 85% 57% 85% 44% 85% 70%
Silhouette Score 0.21 0.08 0.33 0.11 0.1 0.08 0.21 0.08 0.22 0.09

MNIST 5 MNIST 7+ LISA Speed Limit LISA Warning RT Negative
Poisoned Clean Poisoned Clean Poisoned Clean Poisoned Clean Poisoned Clean

% of Excluded Classified as Source 97% N/A 90% N/A 45% N/A 99% N/A 95% N/A
% of Excluded Classified as Label 0% 57% 5% 62% 0% 75% 1% 100% 5% 100%
ExRe Score 0 9.4 0.01 23.74 0.13 3.54 0 5.83 0.01 315.5
% in Cluster 0 85% 37% 15% 30% 85% 63% 29% 45% 9% 56%
% in Cluster 1 15% 63% 85% 70% 15% 37% 71% 55% 91% 44%
Silhouette Score 0.16 0.08 0.15 0.11 0.13 0.11 0.09 0.09 0.3 0.07

Table 4: Test error for different classes across poison and
clean data prior to and after re-training.

Class 0 1 2 3 4
Before (%) 35.19 32.62 33.47 31.96 33.2
After (%) 0.96 0.71 0.6 0 0.21

Class 5 6 7 8 9
Before (%) 32.34 34.68 35.08 33.61 31.29
After (%) 1.6 0 1.36 0.82 0.61

similar to its source class, which by necessity must be dif-
ferent from the activations of legitimate data from the target
class. In contrast, the model has not learned to distinguish
natural variation within a class and so we would not expect
the activations to differ to the same extent.

This hypothesis is supported by Figure 3. Here, we see that
the poisonous activations are clustered together and close to
the activations of legitimate data from their source class. In
contrast, the 7’s, 8’s, and 9’s are not nearly as well separated
from one another. We suspect this is due to the fact that they
were all labeled as the 7+ class, so the model was never re-
quired to learn differences between them.

An adversary may attempt to circumvent our defense. How-
ever, this poses unique challenges. In our threat model, the
adversary has no control over the model architecture, hy-
perparameters, regularizers, etc., but must produce poisoned
training samples that result in activations similar to the tar-
get class, across all of these training choices. Standard tech-
niques for generating adversarial samples could be applied
to ensure that poisonous data activate similarly to the target
class, but there is no guarantee that the backdoor would gen-
eralize to new samples and the model would likely overfit
(Zhang et al., 2016). Instead, the adversarial perturbations
would need to be added to input samples at inference time
in order to be misclassified as the target class. However, this
would lose the advantage of a convenient and practical back-
door key such as a post-it note in the LISA dataset to trigger
misclassification, not requiring any sophisticated model ac-

Figure 3: Activations of the 7+ class, which has been poi-
soned with data sourced from the 4, 5, and 6 classes, shown
together with activations of legitimate data from the 4, 5,
and 6 classes projected onto the first 3 principle compo-
nents. True positives are shown in red, true negatives in blue,
false positives in yellow, and legitimate data from the poison
source classes in purple.

cess at inference time. Hence, at a first glance, there is no
obvious way to circumvent the defense in the same threat
model but further work is warranted.

Conclusion

Vulnerabilities of machine learning models pose a signifi-
cant safety risk. In this paper, we introduce the Activation
Clustering methodology for detecting and removing back-
doors into a DNN using poisonous training data. To the best
of our knowledge, this is the first approach for detecting poi-



sonous data of this type that does not require any trusted
data. Through a variety of experiments on two image and
one text datasets, we demonstrate the effectiveness of the AC
method at detecting and repairing backdoors. Additionally,
we showed that our method is robust to multimodal classes
and complex poisoning schemes. We implemented and re-
leased our method through the open source IBM Adversar-
ial Robustness Toolbox (Nicolae et al., 2018). Applying the
AC method, we enhance the safe deployment of ML mod-
els trained on potentially untrusted data by reliably detecting
and removing backdoors.
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