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Abstract 

Training data is an important aspect of approaches that use 
Machine Learning techniques. More precisely, we assert 
that training data captures the requirements that should be 
satisfied by the trained algorithm. Hence, for safety applica-
tions, any argument relating to behavioural correctness has 
to consider how those requirements are embodied within the 
training data. To support this, based on approaches for re-
quirements assurance in traditional safety-related software, 
we develop nine specific areas where confidence is required 
in training data. These are illustrated using a fictional exam-
ple. 

Introduction   

This paper outlines the challenges associated with the as-

surance of requirements in safety-related Machine Learn-

ing (ML) systems.  

All software operates within the context of the system in 

which it is executed. In traditional safety-related systems 

the behavioural requirements are first established at the 

system level and then decomposed and refined until such a 

time where the developer is able to unambiguously transfer 

the associated requirement into code. In ML-based systems 

the software behaviour is not dictated by requirements that 

have been decomposed to that level (Ashmore and Lennon, 

2017). Instead, those requirements are implicitly provided 

via the training data. 

This paper briefly looks at the way requirements are 

treated in existing safety standards. It goes on to discuss 

the concept of requirements in developments based on ML 

techniques. Building from existing approaches, a series of 

assurance considerations for ML requirements are devel-

oped and illustrated using a fictional, indicative example.  
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Treatment of Requirements in Established 

Software Standards 

There are a number of software standards that may be ap-

plied to safety-related applications. These all seek to avoid 

the introduction of errors and foster their rigorous removal. 

Whilst they are often domain specific, all of these stand-

ards have common characteristics, that were distilled into 

the ‘4+1’ principles of software safety engineering (Haw-

kins et. al, 2013). To achieve all of these principles, soft-

ware safety assurance must: 

 P1. Identify safety requirements at the system level; 

 P2. Maintain the intent of these requirements throughout 
decomposition; 

 P3. Demonstrably satisfy safety-related requirements in 
the implementation; 

 P4. Identify hazardous behaviours introduced by the 
software and mitigate them; and 

 P4+1. Provide a level of confidence in software behav-
iour that is commensurate with its contribution to sys-
tem-level risk.  

In safety-related applications these principles usually drive 

the software requirement decomposition to two distinct 

levels. High-Level Requirements (HLR) detail ‘what is 

required’ in the design. These are then systematically de-

composed into Low-Level Requirements (LLR), which 

provide coders with information on ‘how to implement’ 

that design. To minimize ambiguity LLR often include 

pseudo-code or mathematical formulae.  

Requirements Definition in an ML Context 

In ML applications, the requirements for the software can 

be considered from two parallel, but related, perspectives. 

There are, firstly, the requirements for the construction of 

the learning algorithm and, secondly, the general require-

ments for behaviour. We use the term ‘general’ purposeful-

ly here. If it is possible to detail the exact behaviours ex-

pected from the software then ML approaches are arguably 
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inappropriate for safety-related applications (Salay and 

Czarnecki, 2018).  

For construction of the learning algorithm (e.g. back-

propagation) it is possible (and desirable) to develop HLR 

and to further decompose these into LLR and onto imple-

mentation, verification and validation. This aspect of ML 

software is therefore not considered further in this paper, 

although we note that work is being conducted in this area, 

for example (Srisakaokul et. al, 2018). 

Moving on to the more challenging area of the behaviour 

of the trained algorithm, in an ML-based approach this is 

dictated by the training data, which may be real and/or 

synthetically generated (e.g. Ekbatani, et. al, 2017, for co-

puter vision problems), combined with the learning algo-

rithm and the structure (e.g. number of neurons and layers 

in an artificial neural network) to which it is applied. 

From this short discussion and returning to the ‘4+1’ 

principles, it is apparent that in the case of ML, principles 

1 and 4+1 are arguably the only ones that can, based on 

current practices, be adequately satisfied. Principles P2, P3 

and P4 all suffer to a greater or lesser degree because: the 

exact behaviour cannot be detailed in LLR (P2); assured 

through verification (P3); or sufficiently predicted to per-

mit potential hazard identification (P4). We note that some 

of these may be resolved through behavioural containment 

(e.g. the use of monitors and alternative control structures 

within the wider system architecture) but to do so could 

also negate the benefits of adopting ML in the design. 

Due to the challenges of addressing each of these princi-

ples individually, we suggest a holistic perspective may be 

more beneficial. Whilst all of the principles relate to assur-

ance of requirements and their implementation, discussing 

all of them would be a significant endeavor, which would 

be too broad for this position paper. Consequently, we fo-

cus on the decomposition of the HLR into LLR (i.e. assur-

ance of the requirements rather than their initial derivation 

or final implementation).  

Since it determines the algorithm’s behaviour, we can 

consider the training data to be an abstract form of the 

LLR. Hence, assurance of training data is paramount to 

gaining confidence. Using RTCA DO-178C (RTCA, 2011) 

as an example
1
, traditional requirements verification seeks 

to ensure LLR are: 

 R1. Compliant with HLR; 

 R2. Accurate and consistent; 

 R3. Compatible with target computer
2
; 

 R4. Verifiable; 

 R5. Conforming to standards; 
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 R6. Traceable; and 

 R7. Algorithmically correct. 

Whilst all of these considerations arguably apply to ML-

based applications some do not easily translate. To achieve 

the same intent through the training data we need to have 

confidence that the data: 

 D1. Relates to the intent of the HLR; 

 D2. Does not contain bias; 

 D3. Is sufficient; 

 D4. Is syntactically and semantically correct;  

 D5. Addresses normal and robustness behaviours;  

 D6. Is self-consistent; 

 D7. Conforms to standards;  

 D8. Is compatible with target computer; and 

 D9. Is verifiable. 

For ease of reference, Table 1 summarises the relationship 

between requirements traditionally placed on LLR (R1 to 

R7) and areas where confidence is needed in the training 

data (D1 to D9). 

Table 1: Relationship between traditional requirements and areas 

of confidence in training data 

 R1 R2 R3 R4 R5 R6 R7 

D1      X X 

D2       X 

D3 X       

D4  X     X 

D5 X       

D6  X      

D7     X   

D8   X     

D9    X    

 

It is readily apparent that each of the traditional LLR re-

quirements is covered by at least one area of training data 

confidence. This suggests the identified areas are neces-

sary. It does not mean they are sufficient (or complete). 

For example, there are also several ‘meta-

considerations’ (i.e. those not directly concerned with per-

formance but contribute to design confidence). These in-

clude, inter alia: the data source; its control; forensic au-

ditability; extent of pre-processing required; etc.   

To provide confidence that these areas are suitably ad-

dressed, there are a number of processes, reviews, analyses 

and tests that can be applied, the results of which should 

support a safety argument. Some of these approaches will 

now be discussed in the context of an indicative example. 

Indicative Example 

To colour our discussion we adopt a fictional landing sys-

tem that detects whether a medium size Unmanned Air 



Vehicle (UAV) has landed on an unprepared surface. The 

associated system requirement might be: 

 SYS-01: Detect landing on unprepared strip. 

This would then be decomposed into software and hard-

ware requirements. Given the environmental constraint of 

the unprepared strip the conventional ‘Weight-On-Wheels’ 

switch
3
 approach would not be technically feasible. There-

fore a design decision is made to use a combination of 

hardware sensor systems (e.g. horizontal and vertical ac-

celerometers, altimeters, air data etc.) as inputs to an Arti-

ficial Neural Network (ANN) that will classify the landing 

status into one of the following categories: in-air; on ap-

proach; landing; landed.  

The hardware requirements are not considered further, 

but the high-level software requirement (HLR) might be: 

 SW-HLR-01: Classify landing status: {In_Air; 
On_Approach; Landing; Landed} based on data from: 
Inertial Navigation System {Vert_Acc; Horz_Acc}; La-
ser Altimeter {Height}; Air Data Computer {Airspeed}.  

The actual behaviour (LLR) of the ANN would be deter-

mined by the training data (and the learning algorithm and 

the structure to which it is applied). For the purposes of 

this discussion we assume data has been collected from a 

suitable light aircraft making a number of landings on a 

variety of surfaces in a range of environmental conditions. 

For synthetic data, it too must be verified and validated to 

ensure that its form (syntax) and intent apropos HLR (se-

mantics) matches the expectation of real data. Approaches 

to this are not expected to differ from those discussed here-

in to ensure data correctness.  

In our example, the number of operationally-generated 

samples is likely to be limited, partly through cost and 

partly through practicality (e.g. it is unlikely that there 

would be many, if any, landings performed with systems 

deliberately set in failure modes, even if this were possi-

ble). Consequently, the recorded (operationally-generated) 

data is applied to a generative data modelling tool that pro-

vides a larger data set which is used to train the ANN.  

To determine whether the nine areas of training data 

confidence have been addressed a series of reviews, anal-

yses and tests are required. The following paragraphs dis-

cuss the most significant of these; space limitations prevent 

a complete analysis of all nine areas. 

For operationally-generated samples, traceability in the 

intent of data (D1) is straightforward, although unusual, 

outlier examples may need close examination to assure 

validity. For synthetically generated data, ensuring the in-

tent of the data would rely on detailed knowledge of the 

behaviour of both the UAV and the data-generating tool. 

Additionally, most safety-related systems also feature ro-
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bustness requirements, which would need to be imple-

mented through the inclusion of sufficient examples in the 

data (robustness is also considered in the discussion of D5, 

below).  

The diversity of potential environmental conditions 

compared to those that might be available during training 

data collection would be a prime breeding ground for unin-

tentional bias (D2). When this limited dataset is then intro-

duced into the generative model the potential becomes am-

plified. Detecting bias in data is difficult, but there are a 

number of ways it could be detected in the trained algo-

rithm (Tan, 2017). 

Whilst clearly there is a numerical aspect to the suffi-

ciency of training data (D3), we are also concerned with 

the diversity of input data. Identifying areas of sparsity is a 

notable concern. In our indicative example, there may be 

limitations on the environmental conditions in which data 

can be collected. Understanding this may lead to re-

strictions being placed on operational use of the UAV until 

further data can be collected.  

If a formally-structured process is used to record opera-

tional data and strong configuration control is applied then 

data taken from real systems should be syntactically and 

semantically correct (D4). However, since our example 

includes synthetic data, care needs to be applied to ensure 

that data distributions match real world expectations. Syn-

tactic aspects relate to the structure and ranges of data, 

which can be tested using simple data analysis tools. The 

semantic aspects are more challenging and should include 

tests for data poisoning
4
 and unintentional examples where 

small shifts in inputs cause large changes in output. Guid-

ance for the management of safety-related data has been 

produced by several organisations, e.g. (DSIWG, 2018), 

and can be looked to for assistance in minimizing the po-

tential for data poisoning. However, the developing body 

of knowledge in this area indicates that a stronger argu-

ment may be possible through the application of data poi-

soning detection tools (Steinhardt et. al, 2017).  

A safety-related system that only contains requirements 

to address normal range behaviour has the potential to be-

come unsafe under abnormal conditions. Traditional sys-

tem requirements software design should consider all rea-

sonable failure conditions.  In our indicative example ro-

bustness cases (D5) would include sensors providing inac-

curate readings as well as total failures (which may mean 

no reading is available). Inaccurate readings include credi-

ble but incorrect, as well as incredible data. As with tradi-

tional designs, a conscious decision needs to be made 

about the extent to which the system can be expected to 

deal with failure conditions. Our indicative landing system 

takes four inputs; it might be reasonable to expect that one 

input could fail at any given time so data that represents 
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landings where Height = 100ft but all other sensors are 

indicative of a landing would be a reasonable robustness 

case. However, simultaneous failure of three inputs would 

be unreasonable. Synthetic data is expected to be invalua-

ble in generating sufficient data for training systems to 

behave robustly, since real data may be dangerous to col-

lect. 

Self-consistency (D6) can be more challenging than it 

might first appear. The large number of landings in multi-

ple environments means that some results might be seem-

ingly contradictory; equivalently, based on the available 

data the landing classes may not be separable. For exam-

ple, a really smooth landing in wet conditions may lead to 

input signals similar to In-Air (e.g. laser altimeter might 

read high altitude due to spurious reflections and accel-

erometers read low Vert_Acc and Horz_Acc) but with a 

label of Landing. If that is the case, the underlying features 

of the contradictions may need to be explored and the sys-

tem may need to be redesigned (e.g. to provide additional 

sensor inputs to introduce new variables) for greater ro-

bustness. Fortunately, statistical analysis of the data may 

help. Data that is distributionally dissimilar but has the 

same classification may be inconsistent. In many ways this 

can be seen as the inverse problem to detecting adversarial 

examples, where the distribution is similar but the classifi-

cation is erroneously different. 

The final three considerations (D7, D8 and D9) are re-

garded as unchanged from traditional safety-related soft-

ware and are not discussed further. However, we note that 

the concept of verifiability is potentially different for ML-

based systems in that training data seeks to implement 

general behaviours and direct verification may not be pos-

sible.   

Summary and Conclusion 

This short position paper has established the concept that 

training data provides the functional requirements for a 

safety-related system developed using ML-based ap-

proaches.  

It has shown that it may be possible to make claims that 

the intent of HLR, passed down from system level re-

quirements, have been correctly maintained and imple-

mented through the training data. Using traditional assur-

ance concepts as a basis we have developed a series of 

training data considerations that we argue could form the 

basis of an assurance activity.  

These considerations can be addressed by a combination 

of sound data management and a collection of reviews, 

tests and analyses. Some of these are currently under de-

velopment but further work is required to develop a com-

prehensive toolset that may be used across a wide range of 

data sets.  

In conclusion, we assert that any assurance claims re-

garding the requirements aspects of an ML-based safety-

related system would, as a bare minimum, need to address 

the nine areas developed in this paper. We also encourage 

the safety-related ML community to test these areas, de-

veloping them further as required.   
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