

Requirements Assurance in Machine Learning

Alec Banks and Rob Ashmore

Defence Science and Technology Laboratory, Salisbury, United Kingdom
abanks@dstl.gov.uk, rdashmore@dstl.gov.uk

Abstract

Training data is an important aspect of approaches that use
Machine Learning techniques. More precisely, we assert
that training data captures the requirements that should be
satisfied by the trained algorithm. Hence, for safety applica-
tions, any argument relating to behavioural correctness has
to consider how those requirements are embodied within the
training data. To support this, based on approaches for re-
quirements assurance in traditional safety-related software,
we develop nine specific areas where confidence is required
in training data. These are illustrated using a fictional exam-
ple.

Introduction

This paper outlines the challenges associated with the as-

surance of requirements in safety-related Machine Learn-

ing (ML) systems.

All software operates within the context of the system in

which it is executed. In traditional safety-related systems

the behavioural requirements are first established at the

system level and then decomposed and refined until such a

time where the developer is able to unambiguously transfer

the associated requirement into code. In ML-based systems

the software behaviour is not dictated by requirements that

have been decomposed to that level (Ashmore and Lennon,

2017). Instead, those requirements are implicitly provided

via the training data.

This paper briefly looks at the way requirements are

treated in existing safety standards. It goes on to discuss

the concept of requirements in developments based on ML

techniques. Building from existing approaches, a series of

assurance considerations for ML requirements are devel-

oped and illustrated using a fictional, indicative example.

© Crown copyright (2019), Dstl. This material is licensed under the terms
of the Open Government Licence except where other-wise stated. To view
this licence, visit http://www.nationalarchives.gov.uk/doc/open-
government-licence/version/3 or write to the Information Policy Team,
The National Archives, Kew, London TW9 4DU, or email:
psi@nationalarchives.gsi.gov.uk.

Treatment of Requirements in Established

Software Standards

There are a number of software standards that may be ap-

plied to safety-related applications. These all seek to avoid

the introduction of errors and foster their rigorous removal.

Whilst they are often domain specific, all of these stand-

ards have common characteristics, that were distilled into

the ‘4+1’ principles of software safety engineering (Haw-

kins et. al, 2013). To achieve all of these principles, soft-

ware safety assurance must:

 P1. Identify safety requirements at the system level;

 P2. Maintain the intent of these requirements throughout
decomposition;

 P3. Demonstrably satisfy safety-related requirements in
the implementation;

 P4. Identify hazardous behaviours introduced by the
software and mitigate them; and

 P4+1. Provide a level of confidence in software behav-
iour that is commensurate with its contribution to sys-
tem-level risk.

In safety-related applications these principles usually drive

the software requirement decomposition to two distinct

levels. High-Level Requirements (HLR) detail ‘what is

required’ in the design. These are then systematically de-

composed into Low-Level Requirements (LLR), which

provide coders with information on ‘how to implement’

that design. To minimize ambiguity LLR often include

pseudo-code or mathematical formulae.

Requirements Definition in an ML Context

In ML applications, the requirements for the software can

be considered from two parallel, but related, perspectives.

There are, firstly, the requirements for the construction of

the learning algorithm and, secondly, the general require-

ments for behaviour. We use the term ‘general’ purposeful-

ly here. If it is possible to detail the exact behaviours ex-

pected from the software then ML approaches are arguably

mailto:abanks@dstl.gov.uk
mailto:rdashmore@dstl.gov.uk

inappropriate for safety-related applications (Salay and

Czarnecki, 2018).

For construction of the learning algorithm (e.g. back-

propagation) it is possible (and desirable) to develop HLR

and to further decompose these into LLR and onto imple-

mentation, verification and validation. This aspect of ML

software is therefore not considered further in this paper,

although we note that work is being conducted in this area,

for example (Srisakaokul et. al, 2018).

Moving on to the more challenging area of the behaviour

of the trained algorithm, in an ML-based approach this is

dictated by the training data, which may be real and/or

synthetically generated (e.g. Ekbatani, et. al, 2017, for co-

puter vision problems), combined with the learning algo-

rithm and the structure (e.g. number of neurons and layers

in an artificial neural network) to which it is applied.

From this short discussion and returning to the ‘4+1’

principles, it is apparent that in the case of ML, principles

1 and 4+1 are arguably the only ones that can, based on

current practices, be adequately satisfied. Principles P2, P3

and P4 all suffer to a greater or lesser degree because: the

exact behaviour cannot be detailed in LLR (P2); assured

through verification (P3); or sufficiently predicted to per-

mit potential hazard identification (P4). We note that some

of these may be resolved through behavioural containment

(e.g. the use of monitors and alternative control structures

within the wider system architecture) but to do so could

also negate the benefits of adopting ML in the design.

Due to the challenges of addressing each of these princi-

ples individually, we suggest a holistic perspective may be

more beneficial. Whilst all of the principles relate to assur-

ance of requirements and their implementation, discussing

all of them would be a significant endeavor, which would

be too broad for this position paper. Consequently, we fo-

cus on the decomposition of the HLR into LLR (i.e. assur-

ance of the requirements rather than their initial derivation

or final implementation).

Since it determines the algorithm’s behaviour, we can

consider the training data to be an abstract form of the

LLR. Hence, assurance of training data is paramount to

gaining confidence. Using RTCA DO-178C (RTCA, 2011)

as an example
1
, traditional requirements verification seeks

to ensure LLR are:

 R1. Compliant with HLR;

 R2. Accurate and consistent;

 R3. Compatible with target computer
2
;

 R4. Verifiable;

 R5. Conforming to standards;

1 DO-178C is a key software safety document for aircraft. It is sufficiently
general to apply to most developments of safety-related software.
2 The target computer is the one on which the algorithm will run during
operational use. This is often different from the host computer, which is
the one used to develop the algorithm.

 R6. Traceable; and

 R7. Algorithmically correct.

Whilst all of these considerations arguably apply to ML-

based applications some do not easily translate. To achieve

the same intent through the training data we need to have

confidence that the data:

 D1. Relates to the intent of the HLR;

 D2. Does not contain bias;

 D3. Is sufficient;

 D4. Is syntactically and semantically correct;

 D5. Addresses normal and robustness behaviours;

 D6. Is self-consistent;

 D7. Conforms to standards;

 D8. Is compatible with target computer; and

 D9. Is verifiable.

For ease of reference, Table 1 summarises the relationship

between requirements traditionally placed on LLR (R1 to

R7) and areas where confidence is needed in the training

data (D1 to D9).

Table 1: Relationship between traditional requirements and areas

of confidence in training data

 R1 R2 R3 R4 R5 R6 R7

D1 X X

D2 X

D3 X

D4 X X

D5 X

D6 X

D7 X

D8 X

D9 X

It is readily apparent that each of the traditional LLR re-

quirements is covered by at least one area of training data

confidence. This suggests the identified areas are neces-

sary. It does not mean they are sufficient (or complete).

For example, there are also several ‘meta-

considerations’ (i.e. those not directly concerned with per-

formance but contribute to design confidence). These in-

clude, inter alia: the data source; its control; forensic au-

ditability; extent of pre-processing required; etc.

To provide confidence that these areas are suitably ad-

dressed, there are a number of processes, reviews, analyses

and tests that can be applied, the results of which should

support a safety argument. Some of these approaches will

now be discussed in the context of an indicative example.

Indicative Example

To colour our discussion we adopt a fictional landing sys-

tem that detects whether a medium size Unmanned Air

Vehicle (UAV) has landed on an unprepared surface. The

associated system requirement might be:

 SYS-01: Detect landing on unprepared strip.

This would then be decomposed into software and hard-

ware requirements. Given the environmental constraint of

the unprepared strip the conventional ‘Weight-On-Wheels’

switch
3
 approach would not be technically feasible. There-

fore a design decision is made to use a combination of

hardware sensor systems (e.g. horizontal and vertical ac-

celerometers, altimeters, air data etc.) as inputs to an Arti-

ficial Neural Network (ANN) that will classify the landing

status into one of the following categories: in-air; on ap-

proach; landing; landed.

The hardware requirements are not considered further,

but the high-level software requirement (HLR) might be:

 SW-HLR-01: Classify landing status: {In_Air;
On_Approach; Landing; Landed} based on data from:
Inertial Navigation System {Vert_Acc; Horz_Acc}; La-
ser Altimeter {Height}; Air Data Computer {Airspeed}.

The actual behaviour (LLR) of the ANN would be deter-

mined by the training data (and the learning algorithm and

the structure to which it is applied). For the purposes of

this discussion we assume data has been collected from a

suitable light aircraft making a number of landings on a

variety of surfaces in a range of environmental conditions.

For synthetic data, it too must be verified and validated to

ensure that its form (syntax) and intent apropos HLR (se-

mantics) matches the expectation of real data. Approaches

to this are not expected to differ from those discussed here-

in to ensure data correctness.

In our example, the number of operationally-generated

samples is likely to be limited, partly through cost and

partly through practicality (e.g. it is unlikely that there

would be many, if any, landings performed with systems

deliberately set in failure modes, even if this were possi-

ble). Consequently, the recorded (operationally-generated)

data is applied to a generative data modelling tool that pro-

vides a larger data set which is used to train the ANN.

To determine whether the nine areas of training data

confidence have been addressed a series of reviews, anal-

yses and tests are required. The following paragraphs dis-

cuss the most significant of these; space limitations prevent

a complete analysis of all nine areas.

For operationally-generated samples, traceability in the

intent of data (D1) is straightforward, although unusual,

outlier examples may need close examination to assure

validity. For synthetically generated data, ensuring the in-

tent of the data would rely on detailed knowledge of the

behaviour of both the UAV and the data-generating tool.

Additionally, most safety-related systems also feature ro-

3 Usually consisting of a proximity switch located on the undercarriage,
which uses movement induced when weight is applied to the wheel to
make an electrical circuit.

bustness requirements, which would need to be imple-

mented through the inclusion of sufficient examples in the

data (robustness is also considered in the discussion of D5,

below).

The diversity of potential environmental conditions

compared to those that might be available during training

data collection would be a prime breeding ground for unin-

tentional bias (D2). When this limited dataset is then intro-

duced into the generative model the potential becomes am-

plified. Detecting bias in data is difficult, but there are a

number of ways it could be detected in the trained algo-

rithm (Tan, 2017).

Whilst clearly there is a numerical aspect to the suffi-

ciency of training data (D3), we are also concerned with

the diversity of input data. Identifying areas of sparsity is a

notable concern. In our indicative example, there may be

limitations on the environmental conditions in which data

can be collected. Understanding this may lead to re-

strictions being placed on operational use of the UAV until

further data can be collected.

If a formally-structured process is used to record opera-

tional data and strong configuration control is applied then

data taken from real systems should be syntactically and

semantically correct (D4). However, since our example

includes synthetic data, care needs to be applied to ensure

that data distributions match real world expectations. Syn-

tactic aspects relate to the structure and ranges of data,

which can be tested using simple data analysis tools. The

semantic aspects are more challenging and should include

tests for data poisoning
4
 and unintentional examples where

small shifts in inputs cause large changes in output. Guid-

ance for the management of safety-related data has been

produced by several organisations, e.g. (DSIWG, 2018),

and can be looked to for assistance in minimizing the po-

tential for data poisoning. However, the developing body

of knowledge in this area indicates that a stronger argu-

ment may be possible through the application of data poi-

soning detection tools (Steinhardt et. al, 2017).

A safety-related system that only contains requirements

to address normal range behaviour has the potential to be-

come unsafe under abnormal conditions. Traditional sys-

tem requirements software design should consider all rea-

sonable failure conditions. In our indicative example ro-

bustness cases (D5) would include sensors providing inac-

curate readings as well as total failures (which may mean

no reading is available). Inaccurate readings include credi-

ble but incorrect, as well as incredible data. As with tradi-

tional designs, a conscious decision needs to be made

about the extent to which the system can be expected to

deal with failure conditions. Our indicative landing system

takes four inputs; it might be reasonable to expect that one

input could fail at any given time so data that represents

4 Where an attacker can alter a small fraction of the training data.

landings where Height = 100ft but all other sensors are

indicative of a landing would be a reasonable robustness

case. However, simultaneous failure of three inputs would

be unreasonable. Synthetic data is expected to be invalua-

ble in generating sufficient data for training systems to

behave robustly, since real data may be dangerous to col-

lect.

Self-consistency (D6) can be more challenging than it

might first appear. The large number of landings in multi-

ple environments means that some results might be seem-

ingly contradictory; equivalently, based on the available

data the landing classes may not be separable. For exam-

ple, a really smooth landing in wet conditions may lead to

input signals similar to In-Air (e.g. laser altimeter might

read high altitude due to spurious reflections and accel-

erometers read low Vert_Acc and Horz_Acc) but with a

label of Landing. If that is the case, the underlying features

of the contradictions may need to be explored and the sys-

tem may need to be redesigned (e.g. to provide additional

sensor inputs to introduce new variables) for greater ro-

bustness. Fortunately, statistical analysis of the data may

help. Data that is distributionally dissimilar but has the

same classification may be inconsistent. In many ways this

can be seen as the inverse problem to detecting adversarial

examples, where the distribution is similar but the classifi-

cation is erroneously different.

The final three considerations (D7, D8 and D9) are re-

garded as unchanged from traditional safety-related soft-

ware and are not discussed further. However, we note that

the concept of verifiability is potentially different for ML-

based systems in that training data seeks to implement

general behaviours and direct verification may not be pos-

sible.

Summary and Conclusion

This short position paper has established the concept that

training data provides the functional requirements for a

safety-related system developed using ML-based ap-

proaches.

It has shown that it may be possible to make claims that

the intent of HLR, passed down from system level re-

quirements, have been correctly maintained and imple-

mented through the training data. Using traditional assur-

ance concepts as a basis we have developed a series of

training data considerations that we argue could form the

basis of an assurance activity.

These considerations can be addressed by a combination

of sound data management and a collection of reviews,

tests and analyses. Some of these are currently under de-

velopment but further work is required to develop a com-

prehensive toolset that may be used across a wide range of

data sets.

In conclusion, we assert that any assurance claims re-

garding the requirements aspects of an ML-based safety-

related system would, as a bare minimum, need to address

the nine areas developed in this paper. We also encourage

the safety-related ML community to test these areas, de-

veloping them further as required.

References

Ashmore, R. and Lennon, E. 2017. Progress Towards the Assur-
ance of Non-Traditional Software. In Developments in System
Safety Engineering, Proceedings of the Twenty-fifth Safety-
Critical Systems Symposium. Bristol, UK.

Certification Authorities Software Team (CAST). 2003. Merging
High-Level and Low-Level Requirements. Position Paper
CAST-15, completed February 2003.

Data Safety Initiative Working Group (DSIWG). 2018. Data
Safety Guidance, SCSC-127B, ISBN 978-1540887481.

Ekbatani, H.K., Pujol, O. and Segui, S. 2017. Synthetic Data
Generation for Deep Learning in Counting Pedestrians. In 6th
International Conference on Pattern Recognition Applications
and Methods. SCITEPRESS - Science and Technology Publica-
tions.

Hawkins, R., Habli, I., and Kelly, T. 2013. The Principles of
Software Safety Assurance. 31st International System Safety Con-
ference. Boston, Massachusetts USA, 2013.

RTCA. 2011. Software Considerations in Airborne Systems and
Equipment Certification. DO-178C.

Salay, R., and Czarnecki, K. 2018. Using Machine Learning Safe-
ly in Automotive Software: An Assessment and Adaption of
Software Process Requirements in ISO 26262. arXiv preprint
arXiv:1808.01614.

Srisakaokul, S., Wu, Z., Astorga, A., Alebiosu, O., and Xie, T.
2018. Multiple-Implementation Testing of Supervised Learning
Software. In Proc. AAAI-18 Workshop on Engineering Dependa-
ble and Secure Machine Learning Systems (EDSMLS).

Steinhardt, J., Koh, P. W. W., and Liang, P. S. 2017. Certified
Defenses for Data Poisoning Attacks. In Advances in Neural In-
formation Processing Systems (pp. 3517-3529).

Tan, S., Caruana, R., Hooker, G., and Lou, Y. 2017. Detecting
Bias in Black-Box Models using Transparent Model Distillation.
arXiv preprint arXiv:1710.06169.

Disclaimer

This article is an overview of UK MOD sponsored re-

search and is released for informational purposes only. The

contents of this article should not be interpreted as repre-

senting the views of the UK MOD, nor should it be as-

sumed that they reflect any current or future UK MOD

policy. The information contained in this article cannot

supersede any statutory or contractual requirements or lia-

bilities and is offered without prejudice or commitment.

