
Software Startup Education Around the World:
A Preliminary Analysis?

Rafael Chanin1, Dron Khanna2, Kai-Kristian Kemell3, Wang Xiaofeng2,
Afonso Sales1, Rafael Prikladnicki1, and Pekka Abrahamsson3

1 PUCRS, Porto Alegre, Brazil
{rafael.chanin, afonso.sales, rafaelp}@pucrs.br

2 Free University of Bozen-Bolzano, Bolzano, Italy
{dron.khanna, xiaofeng.wang}@unibz.it

3 University of Jyväskylä, Jyväskylä, Finland
{kai-kristian.o.kemell,pekka.abrahamsson}@jyu.fi

Abstract. New software startups are born everyday around the world.
Nonetheless, failure is the fate of most of them. The community already
knows that several facts, such as market competition or lack of resources,
can impact the destiny of a startup. However, little has been explored in
term of the impact of software startup education on the success of failure
of startups. In this sense, this study presents the initial steps that we
are taking to understand how software startups are taught around the
world. To do so, we design a qualitative survey aimed at software startup
educators at Universities. Our goal is to gather enough information so
we can help the academic community in improving their own courses. So
far, we have gathered 10 responses from lecturers across the globe. This
paper describes these findings.

Keywords: Software Startup Education · Software Startup · Entrepreneur-
ship.

1 Introduction

In the last decade, we have witnessed significant advances in technology, specially
after the popularization of the Internet. Today, any person with software devel-
opment skills is able to create applications that can be reached by millions (and
even billions) of people [11]. Companies such as Google, Netflix, and WhatsApp
are examples of organizations that were born under these conditions.

These technology endeavours, that are developed under high uncertainty, are
called startups [2]. Most startups follow the lean startup methodology [19], which
combines short software development cycles with constant interaction with users.
The goal is to reduce risk by focusing on constant learning [4]. A startup needs
to find a business model as quickly as possible, otherwise it may run out of
resources before turning itself into a company. Therefore, a startup must focus

? This work is partially funded by FAPERGS (17/2551-0001/205-4).

SiBW 2018 219



on understanding what customers need, what they expect, and how much they
are willing to pay for a solution [6].

From an education perspective, several software engineering/computer sci-
ence courses have focused on entrepreneurship in the last years ([8, 12, 15]). In
addition, several technology-related courses are adapting their curriculum in or-
der to include startup/entrepreneurship content [9].

One of the biggest challenges reported on these studies is the lack of a realistic
environment for student to work on their startups [18]. Since the main goal of a
startup is to solve real customers’ problems, faculty must find ways to provide
real challenges to students.

In this sense, the goal of this paper is to understand how software startup is
taught by lecturers/professor across the world. So far, we do not know how
courses are carried out aside from papers describing individual experiences.
Therefore, this study focuses on the following research questions:

– RQ1: Aside from conventional lecture-based courses ending in an
exam, how are software startups taught in universities?

– RQ2: How do these courses deal with the multidisciplinary nature
of a software startup (business, technology, design)?

The remainder of this paper is organized as follows. Section 2 presents the
related work. Section 3 describes the research method used in this research. In
Section 4 we show our preliminary results. Finally, we draw our conclusions in
Section 5.

2 Background

In this Section we define and explain in details what a software startup is. In
addition, we depict how software startup education is being explored by the
academic community.

2.1 Software Startups

Though software startups have recently had a large economic impact across
the globe, no clear consensus on what exactly a software startup is exists [22].
Startups are not simply small, new companies seeking to grow into larger cor-
porations, nor is there a clear point after which a startup has clearly grown into
a mature company. Despite the lack of a consensus on an exact definition, some
shared understanding of characteristics that define startups does exist.

Startups operate under a lack of resources, both in terms of time, manpower,
and finances [17, 21]. They largely rely on external funding especially early on in
their lifecycles, and have little to no prior operating history [1, 21]. Though not
every single startup is a software startup or even focused on technology-based
products, startups by definition are often nonetheless considered to be software
or more generally tech companies, especially by practitioners [1]. Software star-
tups specifically, however, operate in particularly volatile markets, using current

SiBW 2018 220



top-of-the-line technologies to engineer innovative products and services [13].
This, combined with the scarcity of resources, leads to software startups gener-
ally operating under highly uncertain conditions [20].

Perhaps the most important difference between a conventional small busi-
ness and a startup is that startups are characterized by clear intentions for high
growth. While small companies generally wish to grow, and will usually do so if
presented with a clear opportunity, startups are founded with plans for high po-
tential growth from their inception. Indeed, startups typically seek a particularly
highly scalable business model [1]. In the case of software startups in particular,
this is further highlighted by the digital nature of software: digital goods are
easily distributed or sold world-wide.

Another important characteristic of a startup is that startups are temporary:
a startup does not want to keep being a startup. A startup will either fail some-
where along the way or grow into a mature organization. Though it is unclear
when exactly a startup ceases to be a startup, drawing from the definition of
Blank [1], one could argue that a startup ceases to be a startup when it has
found the highly scalable and sustainable business model it sought.

For the purpose of this study, we consider startups to be temporary organi-
zations seeking a highly scalable business model. Software startups, on the other
hand, we consider startups that deliver value primarily through software. For
instance, though Uber is a taxi company, it nonetheless delivers its value to its
customer through the software used to access the service; after all, it does not
actually own a single taxi.

Software startups are typically associated with success stories such as that of
the aforementioned Uber. However, the majority of software startups fail [7], with
some estimates citing numbers as high as 90%. Despite their high rate of failure,
software startups have had a notable impact on the economies of more developed
countries, especially in the last decade [22]. As a result of recent technological
advances, an average supermarket laptop can now be used to develop software
which can then be hosted in the cloud, whereas twenty years ago the cost of
developing and distributing software was much higher. This sharp decrease in
required resources in software development has resulted in an increasing number
of software startups.

As software startups have become more numerous and increasingly impact-
ful at an international economic level [22], they have also become increasingly
relevant from the point of view of education. It is not uncommon for software
engineering students to involve themselves in software startups both during their
studies and after graduation. In fact, software startup practitioners in general
tend to be inexperienced [21, 14]. Just as entrepreneurship in general is taught in
educational institutes across the globe, startups as one of its facets have grown
prominent enough to warrant unique focus. As established in this section, star-
tups differ from conventional small companies, making generic entrepreneurship
education not fully applicable to them.

In terms of business, whereas founding a conventional company would see one
write a detailed business plan for investors and perhaps take out a loan cover ma-

SiBW 2018 221



terial costs as well, startups prefer one-page-long business model canvases over
business plans and are far more focused on acquiring outside funding through
short public talks referred to as pitches. Though startups are not completely
unlike conventional small businesses at their core, startup entrepreneurship has
grown into a sub-culture with its own community and jargon. Startup events
across the globe (for instance, Slush 4) attract famous practitioner speakers
and large, successful startups are motivational success stories for up-and-coming
startup practitioners. Startup incubator organizations and various startup-related
societies support startups during various stages of their lifecycles. As a result,
startup companies use constructs that differ from conventional business vocabu-
lary and have their own practices, for instance, in terms of searching for invest-
ments.

More specifically in relation to software startups, software startups have been
shown to develop software differently from SMEs and large corporations [17].
Software startups often use varying agile methods and practices, or even develop
software purely ad hoc [17]. Similarly, software startups are characterized by
particularly high levels of technical debt. As time-to-market is essential and the
lack of resources forces software startups to develop quickly, software startups
find themselves accumulating technical debt. After all, in the case of failure,
which is the fate of most software startups [22], that technical debt will never
have to be addressed.

Just as organizations such as startup incubators and various startup event
organizations have sprouted to support the high number of emerging software
startups, some scholars have also begun to devise and carry out startup-related
university courses. Whereas business and entrepreneurial education in general
has a long-standing history in the academia, startup and software startup edu-
cation as its subset is still in its infancy. In the following sub-section, we discuss
the current state of practice on software startup-related education based on lit-
erature.

2.2 Software Startup Education

Three of the authors of this papers have worked on a systematic mapping re-
view on software startup education [5]. The goal of this work was to identify
the main academic contributions on software engineering education in the soft-
ware startup context by understanding the state-of-the-art research on software
startup development education, and by collecting best practices and methodolo-
gies used on software startup education. After running the systematic mapping
process, the researchers ended up fully exploring 31 publications. In this section
we summarize the main contributions from this work.

The authors broke down the research into two research questions. The first
one was related to tools, models, methodologies, and frameworks used in a soft-
ware startup education context, whereas the second research question focused
on best practices and lessons learned.

4 https://www.slush.org

SiBW 2018 222



Regarding the first question, the authors found that the main components
used to teach software startups are:

– Business Model Canvas - the Business Model Canvas [16] helps students
understand startups in its entirety. Since technology students tend to focus
more on the product and not on other important aspects of a startup (such
as the market), the Business Model Canvas provides a way open students’
mind in order for them to envision the big picture;

– Customer Development Process - The Customer Development Process, pro-
posed by Blank and Dorf [2], helps students validate their business hypoth-
esis. By telling entrepreneurs to “get out of the building”, Blank and Dorf
are saying that the validation process goes beyond product development; it
is necessary to get closer to real potential customers in order to understand
their needs;

– Design Thinking - The Design Thinking process is mostly used for ideation,
specially when students need to come up with an idea to work on, or when
they need creative solutions to move one with their projects; Agile - When-
ever students need to create a real software project, Agile is the most used
methodology. Since Agile methods, such as Scrum, provides flexibility and
are receptive to project/product changes, it fits well on a software startup
context.

In addition, some studies brought interesting insights for those who involved
in software startup courses. For instance, Génova and González [10] claim that
students must go through three stages in order to achieve a complete software
startup education: (i) instruction, (ii) training, and (iii) mentoring. The first
stage is related to tradicional educational settings, when students are able to
learn content and are assessed by exams. The second stage is when students are
able to choose their own way to solve a problem. Finally, the third stage is when
students are able to self-propose their own goals and objectives.

In another study, Buffardi et al. [3] argue that working with mock-up projects
is not effective, since students do not experience real life challenges. On the other
hand, it is hard to emulate or to work with real world projects in an academic
setting. The proposed solution was to create a multidisciplinary course with both
software engineering and business students. In this situation, business students
act as customers. Even though this is not an ideal scenario, at least provides a
good overview of a software startup development process.

The conclusion regarding this first research question is that there are several
different approaches being used. Since courses have different goals, objetives, and
resources, each one ended up having a different focus. For instance, some courses
just aim at inspiring students to further pursue an entrepreneurial career, while
others focus more on technical aspects of a software startup.

In regards to the second research questions, we can break down the learnings
into four categories:

– Teaching: The journey is more important that the endpoint. In this sense,
lecturers should assess students’ progress. Exams are not a good option since
concepts are easy in theory, but very hard to be applied in practice;

SiBW 2018 223



– Real Projects: Whenever possible, courses should be connected to the mar-
ket. When students work with real projects, their engagement and excite-
ment rises. However, it is not always possible to do so. If that is the case,
faculty should provide means for students to at least mimic a real world
scenario;

– Multidiscipline: Coordinating and combing courses from different colleges
(in this cases, technology and business) is always challenging. However, good
experiences have been reported. Students learn more when dealing with peers
with different backgrounds;

– Environment: The course should not be limited to the classroom. Connecting
with the university ecosystems (such as technology parks) and even with
other stakeholders always enriches the learning experience.

To sum up, several initiatives have been put in place in order to address
software startup education. However, since it is a new topic not only for the
academic community, but also to the industry, there is a lot or room for further
research and development.

3 Research Method

In order to study the current state of practice of software startup education in
universities, we devised a qualitative, largely open-ended survey. The goal of the
survey was to understand in detail how software startups are currently taught
in universities world-wide. In creating the survey, papers discussing software
startup courses in universities, alongside our own teaching experiences in the
same area, were used to ensure that the questions covered all aspects of such
courses, ranging from duration to group size where applicable. Though some
questions were given multiple choice answer options, most of the survey con-
sisted of open-ended questions. Open-ended questions were utilized to gather
data as rich as possible with a survey while still consuming less resources from
the responder than a qualitative interview would have. Similarly, a survey was
selected as the method of data collection over interviews due to the nature of the
phenomenon being studied. Though interviews would no doubt have achieved the
same goal, we considered the resource-intensiveness of interviews to be a problem
when interviewing other scholars. Furthermore, university education as an area
of study and course-based university teaching is a well-understood phenomenon
that can arguably be comprehensively covered with pre-determined questions.

The survey contained questions about both the course and the teacher(s).
Aside from the way software startups are being taught, we were also interested
in understanding which disciplines were concerned with them the most. In ad-
dition to focusing on teaching methods, the questions also covered the basic
course information: course length, course name, which discipline the course is
a part of, whether the course is mandatory or optional and other such generic
university course information. Aside from asking how the course is held, we also

SiBW 2018 224



aimed to find out some of the reasoning behind the choices by asking some why-
based questions. The survey in its entirety can be found in the following link:
https://bepidpoa.typeform.com/to/kuh8bK.

The survey was sent out to individuals involved in teaching software startups
in universities. Aside from contacting such individuals we knew beforehand, we
searched for such courses online and contacted the teachers. However, this survey
is still on-going, and we are in search of more responses from those involved with
teaching software startups, as we will discuss further in the following sections.

4 Preliminary Results

Though the survey is still on-going, and we wish to gather more responses before
presenting further analysis on the subject, in this section we present preliminary
results based on the 10 responses gathered thus far. Perhaps due to the nature
of software startups, all of the responses so far have described courses either
involving a high degree of practical work or focusing entirely on practical project
work on a hypothetical or real software startup. As software startups operate
under a lack of resources, have little to no operating history, and typically consist
of inexperienced (developers or otherwise) individuals [22], it is indeed possible
and even rather simple to replicate or simulate experience in a university course
setting, just as it is possible to have the students attempt to found a real-world
software startup in the process. Indeed, all courses were described to be practice-
oriented courses involving teamwork.

In relation to our second research question (RQ2), software startups are soft-
ware companies operating in terms of academic disciplines, in an area combining
business and information technology. This was also reflected in the responses.
Eight of the ten courses were open to either a combination of IT and business
students, or all students regardless of their major. Furthermore, all of the courses
described in the surveys involved team-based work between students, and largely
encouraged multidisciplinary teams including both business and IT students, as
well as others if applicable. Student team sizes in the courses were varied but
the common consensus was that at least three students would ideally be in a
team as “2 is not a team, it is a pair”, as one of the responses remarked. Con-
versely, five students per team was generally considered to be a soft upper limit,
with multiple responses arguing that more than five students in a team would
be likely to create problems in work distribution among the team.

Whereas all of the courses involved practical work, the nature of it was varied
between responses. Some courses were more focused on software engineering with
a secondary focus on the entrepreneurship aspect, whereas other courses were
more focused on the entrepreneurship and innovation aspect with a secondary,
if any, focus on practical software engineering. In two cases, the student teams
would work on external commissions from real-world customers, although the
trend seemed to be that the students were expected to develop their own ideas.
These ideas, then, were worked on during the courses, and while they were never
required to become real software startups, the students were typically encouraged

SiBW 2018 225



to do so. In some cases, the students had indeed gone on to create successful
real-world startups based on their ideas from the courses.

A clear line between a mock-up startup and a real startup in the courses
described in the responses was not generally drawn. Even though the startups
were not all intended to be real-world startups, or to become ones at a later point
in time, all teams were expected to validate their ideas in some way, verifying
that they would satisfy a real need. This typically meant carrying out surveys
and interviewing potential customers, or even creating actual landing pages and
social media profiles for the course startup. This was also the approach used
for other work on the startups: for instance, in one of the courses everyone
would pitch to real investors at a course end event, even if they had no plans
of actually continuing to work on the idea after the course. In this fashion,
teams that wanted to create a real startup based on the idea were free to do so
without needing to take any actual steps, and the ones that were there purely
for educational purposes nonetheless created a mock-up startup as if they had
been working on a real one. Only one of the courses was described to be purely
educational.

Past these similarities, however, the way the courses were carried out on the
level of smaller details was highly varied. For example, in terms of deliverables
or gradable tasks, some courses would require the students develop a working
piece of software whereas other courses would focus more on honing the idea and
then pitching the idea as the final result of the course. In the cases where soft-
ware development was to be carried out, agile methods, mostly ScrumBut, were
typically followed, but on the other hand programming language and platform
were typically not pre-determined. Seeing as the idea being carried out largely
determines how it could (or should) be done, this is understandable unless the
course is more focused on teaching, for instance, mobile application program-
ming for Android while simultaneously teaching startup entrepreneurship. The
way the students were supervised during the course also highly depended on the
required deliverables of the course.

Though the courses focused on practical work, they featured weekly or oth-
erwise regular lectures. Aside from teaching relevant theories such as the Lean
Startup Methodology [19], the lectures were typically used to support the practi-
cal work more closely as well. Past the lean startup methodology, little consensus
existed on which methods or theories to teach. In fact, the learning goals for the
courses were notably varied, which serves to highlight the differences in the foci
of the courses. Learning goals listed in the responses included:

– Strategies to test out business hypotheses;
– Practical programming skills;
– Project management skills;
– Helping students discover which aspects of entrepreneurship they like the

most personally;
– Innovative business practices;
– Being a startup practitioner;
– Agile software development methods;

SiBW 2018 226



– Team skills;
– Using practitioner tools such as GitHub;
– Entrepreneurship.

Based on the number of responses so far, we have outlined some of the general
trends in the way software startups are taught in universities. However, this
research is still on-going, and based on our current set of data we are as of yet
unable to provide conclusive answers to our research questions. The more general
trends in the way software startups are taught can already be seen in the data
in order to provide a tentative answer to our, but our sample size is still too low
to go into further detail.

5 Final Remarks

To summarize our findings, regarding que first research questions - Aside from
conventional lecture-based courses ending in an exam, how are software startups
taught in universities? - the courses focus on carrying out practical work, either
in the form of software engineering, creating a startup idea and developing it
further, or both. The courses generally involve creating a mock-up startup in
student teams and, at minimum, coming up with an idea and developing it
into a business plan. No clear line is usually drawn between mock-up startups
and real startups in that the student teams are expected to carry out the same
tasks regardless of their own goal with their course startup or startup idea. The
courses often encourage students to create a real startup with their idea but do
not require them to do so.

In regard to the second research question - How do these courses deal with the
multidisciplinary nature of a software startup (business, technology, design)? -
some of the courses focus primarily on one aspect of software startups such
as software engineering and practical programming. These courses are typically
only open to students of that subject such as software engineering. However,
most courses seem to either involve students from different disciplines, typically
from business and IT ones, in order to create multidisciplinary teams. Such
multidisciplinary courses seem to be more common than those focused aimed at
only students of software engineering, for instance.

Another important point is that startup-related concepts are seen as an inte-
gral part of entrepreneurship by now. Notably, the courses were not necessarily
referred to as startup courses of any kind. In fact, only three out of the ten
responses so far had the construct startup in the course title. The course titles
were more associated with innovation, entrepreneurship, and software engineer-
ing practice.

Finally, it is very likely that courses described in academic papers present
non-conventional educational ideas rather than tried-and-true methods for teach-
ing. In our opinion, there is no reason to write a paper about a lecture-based
course on software startups that ends in an exam about a book and the course
content. Thus, in contacting the authors of various papers in relation to our

SiBW 2018 227



survey, the data has become biased in this fashion. It is unlikely that all or even
most courses on software startups would be so focused on practice, even though
it would appear that the amount of practice-focused courses in the area could
be higher than usual.

References

1. Blank, S.: The Four Steps to the Epiphany: Successful Strategies for Products That
Win. K&S Ranch, Incorporated (2013)

2. Blank, S., Dorf, B.: The Startup Owner’s Manual: The Step-by-step Guide for
Building a Great Company. K&S Ranch, Incorporated (2012)

3. Buffardi, K., Robb, C., Rahn, D.: Tech startups: realistic software engineering
projects with interdisciplinary collaboration. Journal of Computing Sciences in
Colleges 32(4), 93–98 (2017)

4. Chanin, R., Sales, A., Santos, A., Pompermaier, L., Prikladnicki, R.: A collabora-
tive approach to teaching software startups: Findings from a study using challenge
based learning. In: Proceedings of the 11th International Workshop on Cooperative
and Human Aspects of Software Engineering. pp. 9–12. CHASE ’18, ACM, New
York, NY, USA (2018)

5. Chanin, R., Sales, A., Pompermaier, L.B., Prikladnicki, R.: A systematic mapping
study on software startups education. In: EASE. pp. 163–168 (2018)

6. Coleman, G.: An empirical study of software process in practice. In: System Sci-
ences, 2005. HICSS’05. Proceedings of the 38th Annual Hawaii International Con-
ference on. pp. 315c–315c. IEEE (2005)

7. Crowne, M.: Why software product startups fail and what to do about
it. Evolution of software product development in startup companies.
IEEE International Engineering Management Conference 1, 338–343 (2002).
https://doi.org/10.1109/IEMC.2002.1038454

8. da Cruz, E.F.Z., Alvaro, A.: Introduction of entrepreneurship and in-
novation subjects in a computer science course in Brazil. In: 2013
IEEE Frontiers in Education Conference (FIE). pp. 1881–1887 (2013).
https://doi.org/10.1109/FIE.2013.6685162

9. Daimi, K., Rayess, N.: The Role of Software Entrepreneurship in Computer Science
Curriculum. In: Proceedings of the 2008 International Conference on Frontiers in
Education: Computer Science & Computer Engineering (FECS 2008). pp. 332–338.
IEEE Computer Society, Las Vegas, NV, USA (July 2008)

10. Génova, G., González, M.: Educational Encounters of the Third Kind. Science and
Engineering Ethics 1, 1–10 (2016)

11. Giardino, C., Paternoster, N., Unterkalmsteiner, M., Gorschek, T., Abrahamsson,
P.: Software Development in Startup Companies: The Greenfield Startup Model.
IEEE Transactions on Software Engineering 42(6), 585–604 (2016)

12. Harms, R.: Self-regulated learning, team learning and project perfor-
mance in entrepreneurship education: Learning in a lean startup envi-
ronment. Technological Forecasting and Social Change 100, 21–28 (2015).
https://doi.org/10.1016/j.techfore.2015.02.007

13. Hilmola, O.P., Helo, P., Ojala, L.: The value of product development lead time in
software startup. System Dynamics Review 19(1), 75–82 (2003)

14. Kon, F., Cukier, D., Melo, C., Hazzan, O., Yuklea, H.: A panorama of the israeli
software startup ecosystem. Available at SSRN 2441157 (2014)

SiBW 2018 228



15. Kontio, J., Ahokas, M., Poyry, P., Warsta, J., Makela, M., Tyrvainen, P.: Soft-
ware Business Education for Software Engineers: Towards an Integrated Curricu-
lum. 19th Conference on Software Engineering Education and Training Workshops
(CSEETW’06) pp. 4–7 (2006). https://doi.org/10.1109/CSEETW.2006.15

16. Osterwalder, A., Pigneur, Y.: Business model generation: a handbook for vision-
aries, game changers, and challengers. John Wiley & Sons (2010)

17. Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., Abrahamsson,
P.: Software Development in Startup Companies: A Systematic Mapping Study.
Information and Software Technology 56(10), 1200–1218 (2014)

18. Porter, J., Morgan, J., Lester, R., Steele, A., Vanegas, J., Hill, R.: A course in
innovative product design: A collaboration between architecture, business, and
engineering. In: 2015 IEEE Frontiers in Education Conference (FIE). pp. 1–5.
IEEE (2015)

19. Ries, E.: The lean startup: How today’s entrepreneurs use continuous innovation
to create radically successful businesses. Crown Business (2011)

20. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innova-
tion to Create Radically Successful Businesses. Crown Business (2011)

21. Sutton, S.M.: The role of process in software start-up. IEEE Software 17(4), 33–39
(Jul 2000). https://doi.org/10.1109/52.854066

22. Unterkalmsteiner, M., Abrahamsson, P., Wang, X., Nguyen-Duc, A., Shah, S., Ba-
jwa, S.S., Baltes, G.H., Conboy, K., Cullina, E., Dennehy, D., et al.: Software
startups–a research agenda. e-Informatica Software Engineering Journal 10(1)
(2016)

SiBW 2018 229


