
Using Runtime Monitoring
to Enhance Offline Analysis

Sebastian Schirmer
Institute of Flight Systems, dept. Unmanned Aircraft

German Aerospace Center (DLR)
Braunschweig, Germany
sebastian.schirmer@dlr.de

Sebastian Benders
Institute of Flight Systems, dept. Unmanned Aircraft

German Aerospace Center (DLR)
Braunschweig, Germany
sebastian.benders@dlr.de

Abstract—Offline log file analysis of unmanned aircraft systems
is a challenging experts task. Due to more automation, the
amount and complexity of logged data increases. Experts need
support, for instance by automatically generating additional sta-
tistical information or by correlating data. Runtime Monitoring is
a formal method for analyzing system executions. It allows users
to express temporal properties in a formal language which then
can be used for the generation of a corresponding monitor. In
this paper, we propose to integrate Runtime Monitoring into our
offline analysis process. We show how the results of the monitor
can be used to enhance the log file analysis and, therefore, support
the expert. Specifically, we use the stream-based specification
language LOLA and apply it to the log files of an unmanned
cargo aircraft.

Index Terms—Aerospace, Runtime Monitoring, LOLA, Offline
Analysis, Log File Analysis, Unmanned Aircraft Systems

I. INTRODUCTION

Safety is one of the biggest concerns in aviation. During
development and operation, the state of the aircraft needs to
be captured and degradation of the system has to be detected
to take suitable counter-measures, e.g. to replace damaged or
worn parts. Therefore, relevant data is stored and analyzed
subsequently. Offline analysis is a challenging task and even
more complicated due to the higher degree of automation
induced by unmanned aircraft. The amount and complexity of
relevant data has increased. One established way for analysis
is to generate plots from the log files for visual inspection
by an expert. There, the correlation of data is a challenging,
tedious, and repeating task. In short, it is error-prone.

In this paper, we propose to integrate Runtime Monitoring
(RM) into our offline analysis process. We further show how
to use the monitor results to enhance the offline analysis sup-
porting the expert. RM allows to express temporal properties
in a formal and descriptive way which can be automatically
translated into a corresponding correct monitor. Another ben-
efit is the separation of the analysis code and the specified
log file properties which improves the understanding and the
maintenance. The work is motivated by the in-house DLR
(German Aerospace Center) project ALAADy (Automated
Low-Altitude Air Delivery). This prototype aircraft is based
on a manned ultralight gyrocopter which was converted to
an unmanned cargo aircraft with a payload of 200 kg. For
this purpose avionics such as flight control computers, actu-

ators [1], and sensors were installed [2]. During operation of
the unmanned aircraft the subsystem which is responsible for
controlling the core avionics of the aircraft, e.g. the actuators
and the engine control, generates more than 370 logged system
states and sensor signals in 16 log files [2]. Additionally, flight
state sensors as well as the automatic flight control system are
generating log files. A pure manual inspection of the log files
is inefficient. The proposed approach automates simple checks
and supports the analysis by adding statistical information to
the visualization pointing towards potential errors identified by
the monitors. Therefore, the approach reduces the workload of
the operating crew and delivers quick evaluation results right
in the field during flight-testing.

II. RELATED WORK

Work in the field of RM mostly focuses on the online use-
case, i.e. while operating the system. Among others, RM has
been used for unmanned aircraft systems [3], smart homes [4],
cars [5], and ground rovers [6]. In [7], RM was used in an
offline fashion to support testing of spacecraft flight software
for the NASA 2011 Mars mission MSL (Mars Science Labra-
tory). Instead of a stream-based specification language, the
rule-based specification language of the tool LOGSCOPE
was applied. Here, we focus more on the integration of RM
into the current offline analysis workflow for a single log file,
i.e. how to enhance the analysis by RM. In [8], the problem
of synchronizing different log files is considered. There, the
system is distributed and concurrent and, therefore, the locally
observed, time stamped, and logged data might not be in order.

One established way for data analysis is to use libraries like
the python data analysis library PANDAS [9]. It is open-source,
easy-to-use, and expressive. Data queries can be easily stated,
e.g. data[data.a>data.b] returns the data where a>b.
However, since it is based on python, it is more imperative
and it does not natively allow temporal queries, whose imple-
mentations are prone to errors.

III. APPROACH

In order to support the offline log file analysis, we propose
to integrate RM into the analysis workflow. RM is a formal
method for analyzing system executions. The correct behavior
and statistical measurements of the systems are declared in

83AvioSE 2019: 1st Workshop on Avionics Systems and Software Engineering @ SE19, Stuttgart, Germany



a specification file. Based on the specification, a monitor is
generated which checks whether the specification is fulfilled
during system execution. Due to this profiling of the system,
the confidence in the system is improved. The events and
signal data are either received due to system instrumentation
during operation or read from log files afterwards. The former
is referred to as online monitoring and the latter is referred
to as offline monitoring. In both cases, the monitor outputs
a verdict as a result which represents the adherence of the
execution to the specification. Online and offline monitoring
are depicted in Figure 1. As specification language, we chose
LOLA which is presented in Section III-A

Currently, log files are inspected manually to find unex-
pected system behavior. The major analysis is done by review-
ing generated signal graphs. Based on these plots, an expert
has to decide whether the system did operate nominally or
not. The approach, described in Section III-B, allows experts to
explicitly state assumptions on the system behavior in a formal
and unambiguous way and to automatically incorporate the
analysis results into the normal workflow. We show examples
of the enhanced offline analysis using RM in Section III-C.

A. Formal Specification Language LOLA

LOLA is a stream-based formal specification language for
system online and offline monitoring. Originally, LOLA was
designed for synchronous systems including circuits and em-
bedded systems [10] and, lately, extended for network mon-
itoring [11]. More recently, RTLOLA [12] was introduced,
which extends previous versions by sliding windows over real-
time intervals with aggregation functions. The corresponding
LOLA tool [13] is actively developed at Saarland University.
Here, we remain within the more basic LOLA fragment
described in [14]. In a previous work, LOLA was used in an
online monitoring setting [15] which indicates its applicability.
There, an observation was that the development of specifi-
cations for the online usage can be significantly supported
by testing them offline based on column-oriented log files.
As a side-effect, the understanding of the system was greatly
improved which motivated this approach.

Offline

Log File

Events

Online

Instrumentation

System

Feedback

MonitorSpecification Verdict

Fig. 1: Based on a specification, a monitor is generated
which checks the adherence to a specified system behavior.
In offline monitoring, the system execution has finished and
the log file is completely available. In online monitoring, the
execution is still ongoing and therefore the sequence of events
is continuously extended.

const <type> <name> := <value> //constants
...
input <type> <name> //input streams
...
output <type> <name> := <expression> //output streams
...

Listing 1: Basic LOLA specification structure

A LOLA specification consists of a set of independent input
streams and a set of dependent output streams. The basic
structure of a LOLA specification is depicted in Listing 1.
Output streams can be used to represent an error, diagno-
sis reports, or quantitative statistics. Input streams represent
signals of the system under scrutiny. All streams are evalu-
ated at the pace of a synchronous clock. For asynchronous
systems, synchronization techniques like sample and hold
can be applied. Note that since LOLA basically describes a
system of equations, the order of input and output declarations
is irrelevant for the underlying evaluation algorithm which
improves the usage and the maintainability. Values of output
streams are defined by their respective stream expression. A
stream expression can refer to previous, present, or possible
future values of streams (both, input and output streams).
Further, the streams are typed (e.g binary, integer, double)
and incrementally computable statistics can be specified. The
so called dependency graph [10] is used to capture the
dependencies between the streams, to identify whether a
given specification is efficiently monitorable. Intuitively, this
syntactic analysis states that the specification does not contain
unbounded future stream accesses, i.e. the time until the
output stream is evaluated is bounded. This allows to make
statements about the memory consumption, e.g. only constant
memory is required. The key features of LOLA, which lead
to its usage, compared to other temporal formal languages
(e.g. linear-time temporal logic), are: its descriptive nature,
its structurability, and the resemblance of expressions with
writing actual programs instead of abstract logical formulas.
Further, especially temporal properties expressed in LOLA are
easier to understand and to maintain compared to handwritten
code. Additionally, when operating several aircraft, such a
generic solution is highly desirable. Listing 2 shows a simple
LOLA specification to compute the average velocity. The
example uses one input stream vel for the current velocity
of a vehicle and two output streams. The output vel_sum
is an auxiliary stream which incrementally computes the sum
over the seen velocities by accessing the previous value of
vel_sum and the current velocity. The offset operator s[x,y]
handles the access to previous (i.e. x < 0), present (i.e. x = 0),
or future (i.e. x > 0) stream values of the stream s. The

input double vel
output double vel_sum := vel_sum[-1, 0.0] + vel
output double vel_avg := vel_sum / double(position+1)

Listing 2: Computation of the average velocity.

84AvioSE 2019: 1st Workshop on Avionics Systems and Software Engineering @ SE19, Stuttgart, Germany



ace_basic -> actuator_left, actuator_nose_wheel,
actuator_right, actuator_rudder

ace_left_specific -> actuator_left

Listing 3: Specification-to-logfile mapping. The LOLA specifi-
cation ace_basic is applied to all four actuators whereas
ace_left_specific is only used for the left actuator.

default value y is used for accesses past the end or before the
beginning of a stream. In Listing 2, -1 indicates the access
to the previous value and 0.0 is used as a default value
at the first position. Finally, using the keyword position,
representing the current step of the evaluation (starting from
zero), the average velocity is computed in vel_avg.

B. Enhancing Offline Analysis

The presented approach supports the analysis of log files,
see Figure 2. During system tests, log files are generated
which need to be reviewed. To support the manual inspection
of each log file, we want to capture common erroneous
and desired behaviors within a formal LOLA specification.
Based on these specifications monitors will be generated which
analyze the files. Specifications can be named and mapped to
specific log files. An example mapping is shown in Listing 3.

This is especially interesting for recurring specifications
which can be declared in separate specification files and
reused, e.g. timing properties. An example LOLA specification
concerning timing is shown in Listing 4. Typically, time
is captured via timestamps in log files. Interesting timing
properties are the average, minimal, and maximal time jumps
(t_jmp). Maximal and minimal values indicate frozen and
rapid system states, respectively. Also, time jumps larger than
the given threshold t_safe can be detected and reported.
Note that a LOLA specification can be easily extended by
an user due to the irrelevance of the stream declaration
ordering. For instance, by adding an additional output stream,
the number of violations can be counted. The properties are

input double time_s, time_us
output double time := time_s + time_us / 1000000.0
output double t_jmp := time - time[-1,0.0]
//User notification if t_jmp > t_safe
const double t_safe := 0.05
trigger t_jmp > t_safe with "VIOLATION: time jump!"
//Statistical information
output double t_sum := t_sum[-1, 0.0] + t_jmp
output double t_avg := t_sum / (double(position+1))
output double t_max := max(t_jmp,t_max[-1,double_min])
output double t_min := min(t_jmp,t_min[-1,double_max])

Listing 4: Given the current timestamp (time_s,time_us),
the elapsed time t_jmp is computed. Based on the com-
parison with the constant t_safe a trigger notification is
raised representing a too large time jump. Further, t_sum
aggregates t_jmp which can be used to compute the average
time jumps t_avg. The output streams t_max and t_min
compute the maximal and the minimal time jump, respectively.

Fig. 2: Illustration of the proposed offline analysis approach
using RM. Meta-information is inferred to enhance log files.
The extended log file is visualized and the meta-information
is used to point out erroneous regions to the user.

then automatically checked on the mapped log files by the
generated monitors. After the analysis due to the monitors,
the verdicts, e.g. the mentioned maximal values or raised
notification, can be used to enhance the used visualization.
Colors indicate whether the values for the respective plots
were involved in a notified violation, i.e. a violation of an
explicitly stated assumption. In Figure 2, the first two plots
are healthy but some notifications where raised for plot p. In
both cases, the users preferred visualization tool-chain can be
enhanced by statistical information. For the erroneous case,
the monitor result can guide the expert’s attention towards
interesting regions.

Considering the visualization of plot p shown in Figure 2,
assuming the actuator position over time is depicted and timing
notifications (see Listing 4) were evaluated, an expert can
see that each time a time jump occurred, the position of the
actuator changed.

C. Example Properties

Actually, the presented identification of time jumps, i.e. tem-
poral system loss, was motivated by a real problem. Experts
rely on different types of visualization to identify errors.
Detecting time jumps using line plots is error-prone compared
to using scatter plots. Also, humans tend to extend their
tolerance limit over time, e.g. due to optimism, self-serving
bias, or anchoring [16]. Hard thresholds explicitly stated in a
specification do not only allow to reduce the reliance on gut-
feeling but also allow to identify anomalies across different
log files. Using this approach, we cannot only automatically
check whether jumps exist in the current log files, we can also

85AvioSE 2019: 1st Workshop on Avionics Systems and Software Engineering @ SE19, Stuttgart, Germany



make new assumptions, e.g. decrease t_safe, and re-evaluate
the specification on the current and the historical log files. In
the following, we show other simple but helpful properties of
ace_basic and ace_left_specific (see Listing 3):

• Each actuator implements a state machine. State changes
are logged as device status. In the end, the sequence of
device states represent a valid execution.

• Bounds on the demanded actuator position differ for each
actuator and should never be exceeded to avoid defects.

• The mechanical loads of the actuators and therefore their
consumption of current differ.

• Statistical information on the average, maximal, and min-
imal values for current consumption, timing, velocity, and
voltage are useful to get more insights into the system.

• The relation between consumption of current and position
demands can be analyzed to differentiate between internal
and external errors.

• Estimation of the time difference between the position
demand and the time when the target position was
reached.

Note that these are just examples for a single actuator log
file. Figure 3 shows a visualization example utilizing the
monitoring results. The orange and the green line indicate
the specified upper and lower bound on the consumption
of current, respectively. The red regions show where trigger
notifications were raised by a monitor. Here, red regions
indicate an increased current consumption despite no actuator
position demand was commanded previously. In fact, consid-
ering the first red region, the increased current consumption
is related to the initialization procedure of the actuator. With
the specification violations in mind, i.e. the second red region
around 400 s and the upper bound violation around 850 s, the
expert can now examine the log files in detail to determine
the root cause.

0 200 400 600 800 1000
time [s]

15

10

5

0

5

10

15

cu
rre

nt
 [A

]

Monitor notification
Current

Current upper bound
Current lower bound

Fig. 3: Current consumption of an actuator with specified
lower and upper bounds. Red regions indicate a notification
due to a comparison between current consumption and actu-
ator position demand.

IV. CONCLUSION

We have presented RM and the specification language
LOLA. Further, we motivated why and showed how RM can
be used for offline log file analysis. Specifically, we illustrated
how manual inspection due to visualization can be enhanced
due to the outputs of the formally specified monitors. We plan
to fully implement the integration of runtime monitors into our
offline analysis tool-chain. Also, the reasoning across different
log files is very helpful and will be central since future
systems tend to be highly distributed. Currently, LOLA is able
to read column-oriented .csv and .dat files. Accepting other
data formats, e.g. CDF, NetCDF, HDF, would improve the
general applicability. In future, we will investigate how offline
monitoring enhances online monitoring of future sessions and,
vice versa, how online monitoring helps to provide targets to
detailed offline monitoring of the same session. Further, the
benefits of the proposed approach in regards of cost savings,
usability, and quality improvements compared to a manual
inspection will be investigated.

REFERENCES

[1] A. Bierig, S. Lorenz, M. Rahm, P. Gallun, “Design considerations and
test of the flight control actuators for a demonstrator for an unmanned
freight transportation aircraft”, Recent Advances in Aerospace Actuation
Systems and Components, 2018

[2] S. Benders, L. Goormann, S. Lorenz, J.C. Dauer, “Softwarearchitek-
tur für einen unbemannten Luftfrachttransportdemonstrator”, Deutscher
Luft- und Raumfahrtkongress, 2018

[3] T. Reinbacher, K.Y. Rozier, J. Schumann, “Temporal-Logic Based
Runtime Observer Pairs for System Health Management of Real-Time
Systems”, Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), 2014

[4] A. El-Hokayem, Y. Falcone, “Bringing Runtime Verification Home”,
Runtime Verification - 18th International Conference (RV), 2018

[5] J.V. Deshmukh, A. Donzé, S. Gosh, X. Jin, G. Juniwal, S.A. Seshia,
“Robust Online Monitoring of Signal Temporal Logic”, Runtime Veri-
fication - 15th International Conference (RV), 2015

[6] D. Phan, J. Yang, M. Clark, R. Grosu, J. Schierman, S. Smolka, S.
Stoller, “A Component-Based Simplex Architecture for High-Assurance
Cyber-Physical Systems”, 17th International conference on application
of concurrency to system design (ACSD), 2017

[7] H. Barringer, K. Havelund, D. Rydeheard, A. Groce, “Rule Systems for
Runtime Verification: A Short Tutorial”, Runtime Verification Lecture
Notes in Computer Science, 2009

[8] D. Basin, M. Harvan, F. Klaedtke, E. Zalinescu, “Monitoring Data Usage
in Distributed Systems”, IEEE Transactions on Software Engineering,
2013

[9] Python Data Analysis Library - pandas, https://pandas.pydata.org/, last
visited: 05.01.2019

[10] B. D’Angelo, S. Sankaranarayanan, C. Sánchez, W. Robinson, B.
Finkbeiner, H. B. Sipma, S. Mehrotra, Z. Manna, “Lola: Runtime
Monitoring of Synchronous Systems”, 12th International Symposium
on Temporal Representation and Reasoning (TIME’05), 2005

[11] P. Faymonville, B. Finkbeiner, S. Schirmer, H. Torfah, “A Stream-Based
Specification Language for Network Monitoring”, Runtime Verification
- 16th International Conference (RV), 2016

[12] P. Faymonville, B. Finkbeiner, M. Schwenger, H. Tor-
fah, “Real-time Stream-based Monitoring”, Available on
https://arxiv.org/abs/1711.03829

[13] Lola - Stream-based Runtime Monitoring, https://www.react.uni-
saarland.de/tools/lola/, last visited: 07.01.2019

[14] S. Schirmer, “Runtime Monitoring with Lola”, Master’s Thesis, 2016
[15] F-M. Adolf, P. Faymonville, B. Finkbeiner, S. Schirmer, C. Torens,

“Stream Runtime Monitoring on UAS”, Runtime Verification - 17th
International Conference (RV), 2017

[16] R. Collins, B. Leathley, “The Psychology of Errors in the Engineering
Process”, Safety and Reliability, 1995

86AvioSE 2019: 1st Workshop on Avionics Systems and Software Engineering @ SE19, Stuttgart, Germany


