
A Socio-Technical Framework for Face-to-Face
Teaching in Large Software Development Courses

Marlo Haering
Department of Informatics

University of Hamburg

Hamburg, Germany
haering@informatik.uni-hamburg.de

Walid Maalej
Department of Informatics

University of Hamburg

Hamburg, Germany
maalej@informatik.uni-hamburg.de

Abstract—In face-to-face teaching, students work in pairs on

programming exercises and present their solutions to tutors.

This setting fosters social skills. Students benefit from immediate

feedback loops and personalized explanations. However, with

an increasing number of students, it becomes challenging to

scale this approach to very large courses due to the logistic

and organizational effort. In this paper, we first report on

significant challenges that we identified while conducting face-to-

face teaching in a software development course with more than

600 students and 50 tutors. Second, we introduce a preliminary

socio-technical framework for face-to-face teaching to facilitate

logistical aspects, monitor the students exercise progress, and

improve the students’ learning experience.

Index Terms—face-to-face exercises, software development ed-

ucation, learning analysis

I. INTRODUCTION

Our Applied Software Technology group at the Univer-
sity of Hamburg hosts the introductory programming course
Software Development 1 (SE1). SE1 consists of two parts: a
weekly 90-minute lecture and a weekly 3-hour face-to-face
exercise session. The course is compulsory for all computer
science majors. Students with other majors are also eligible to
register for SE1 including mathematics, pedagogy, physics, or
psychology. SE1 is an entry-level course in programming and
requires no prior knowledge. We host SE1 annually in winter
terms.

The exercises are structured thematically in accordance with
the lecture. At first, we introduce new concepts with examples
in the lecture. In the subsequent practice week, the students
work in pairs on an exercise sheet in the laboratory rooms as
shown in Figure 1. The programming exercises are inspired
by Barnes and Kölling [1] and typically require the students
to complete a well-defined implementation task in a prepared
project.

During this session, tutors (teaching assistants and student
tutors) are present for two main purposes. On the one hand,
they support the students in case of questions or uncertainties
and on the other hand they approve the solutions of the
students. After the students completed a subtask, they have
to present their solutions to a tutor. The tutor either accepts or
declines the solution. A tutor accepts the solution if it (1)
solves the task, (2) the students present and explain their
solution with their own words, and (3) answer subsequent

Fig. 1. Laboratory room with pair programming students (yellow frame) and
student tutors (red frame). The tutors check the solutions of the students.

Fig. 2. Part of a student’s evaluation sheet: student details (top), attendance
table (top right), and one table per exercise sheet, each with four subtasks.

questions. Tutors check off each passed subtask by signing
the student’s evaluation sheet, which is shown in the tables in
Figure 2. The tutor declines the solution if the presentation or
the solution is insufficient. In this case, the students have to
improve the shortcomings and present their corrected solution.
Students have to have all exercises accepted to pass SE1.
Course instructors prepare the teaching material, monitor the
students’ progress, and manage the logistic aspects. The course
evaluation showed that students appreciate this format.

Face-to-face exercises encourage the students to reproduce
their just learned knowledge by explaining it with their own
words to a tutor. Thereby, tutors identify and correct mis-
understandings early and provide immediate feedback with
personalized explanations. Students have to program in pairs
as previous research has shown an improved code quality and

3ISEE 2019: 2nd Workshop on Innovative Software Engineering Education @ SE19, Stuttgart, Germany



better student grades [2], [3]. Furthermore, this fosters commu-
nication and presentation skills as well as social interactions
among students and with their tutors as we consider these im-
portant skills for prospective software developers. In contrast
to a solely technical based framework that checks students’
task automatically, we retain the social interaction between
students and tutors. Therefore, we label our framework “socio-
technical” to highlight that the operational face-to-face tutoring
stays an essential part in our framework [4].

In recent years, the number of students has risen steadily
and has now reached more than 600, which are mostly first
semester students. Applying this approach to large software
development classes is challenging because it does not scale
easily. We summarize the main challenges that we identified in
Section II. In Section III, we introduce our preliminary socio-
technical framework to facilitate the logistical workload, to
enable learning analysis for course instructors, and to keep
the face-to-face component in the exercise sessions.

II. CHALLENGES

In this section, we describe the challenges that we identified
during our previous SE1 courses and partly outline how we
currently cope with them.

A. Scalability and Logistics

In recent years, the number of students in our SE1 course
has steadily increased (~300 students in 2007-09, ~400 stu-
dents in 2010-12, ~500 students in 2012 and ~600 students
in 2016). Additionally, computer science is becoming more
and more important across various disciplines. In particular,
SE1 is also eligible for non-computer scientists. We expect
that the number of students will increase to maybe more
than 800 students in the next 2-3 years. A higher number
of students will make it challenging to keep conducting face-
to-face exercises in SE1 as it requires more laboratory rooms
and more tutors.

The logistics of the SE1 exercises comprise various parts
about tutor management, teaching material, and student com-
munication. For the preparation of the SE1 exercises, we
recruit student tutors in addition to teaching assistants. The
number of required tutors scales directly with the number of
students. We contact students via different channels including
other courses, mailing lists, or face-to-face. The students apply
via an online form for a tutor position. We mainly select
students based on their tutoring experience, recommendations
by previous tutors, and prior grades.

Students register for one of eight different time slots during
the week for the face-to-face exercises. The preferences of
the students differ each semester. The course instructors try to
assign a sufficient number of tutors to each exercise session,
depending on the availability of tutors and the number of regis-
tered students. Furthermore, a teaching assistant is assigned for
each exercise session for supervision and answering questions
of the tutors.

Most of the exercise sessions require multiple rooms, for
instance, one of our sessions with more than 120 students

spreads across seven rooms. Tutors change rooms to check
the occupancy in other rooms. Based on our experiences, we
found that a ratio of one tutor to seven students is sufficient.
For tutoring, we usually require ~40 student tutors and ten
teaching assistants. Most of the tutors apply for more than
one exercise session.

The programming experience among the tutors is hetero-
geneous. We observed that experienced tutors have higher
demands on the solutions of the students. However, it is
challenging to maintain consistent acceptance criteria across
all tutors for the evaluation. Therefore, we set up a two-hour
introductory meeting with all tutors before the semester starts.
Additionally, we provide a briefing session each week for the
tutors to collect feedback about the previous exercise week,
walk through the upcoming exercise sheet, and discuss the
acceptance criteria.

B. Alternating Teaching Staff

The general aim is to maintain knowledge about the lo-
gistics independently of an individual course instructor so
that different employees can take over course management
activities at any time. This is particularly important as the
logistics contain fine-grained tasks with crucial deadlines and
the staff is typically rotating after two years. Therefore, we
explicitly document single steps and their deadlines for each
part. Always two course instructors take responsibility for the
SE1 exercises to ensure reliability. Furthermore, the fluctuation
among the tutors is high with ~60% new tutors each semester.
Experienced tutors are beneficial to support new tutors and
teaching assistants in many aspects of the practice. To mitigate
the knowledge loss, we require student tutors to follow along
with other tutors during the semester for three hours in total
to enable a knowledge transfer between experienced and new
tutors.

C. Short-term Replacement and Rush Management

The occupancy of each exercise session is inconsistent as
students visit other time slots when they could not finish the
exercises in time. Also, tutors are regularly absent due to ill-
ness. Due to these unexpected factors, single exercise sessions
exceed a proportional ratio between tutors and students. This
leads to long waiting times for students until a tutor is available
for their requests. In this case, tutors request tutoring support
on demand from teaching assistants to overcome a temporary
shortcoming.

As each of the student tutors have their course schedule, we
provide two redundant briefing sessions per week. The student
tutors have to attend one of these sessions to prepare for the
upcoming exercise sheet. Two teaching assistants carry out two
separate briefing sessions for the student tutors so that they
can substitute each other. The teaching assistants prepare the
briefing session and discuss the current version of the exercise
sheet.

D. Continuous Progress Monitoring and Feedback on Course

To pass the SE1 exercises, students have to pass the
requirements on each exercise sheet. During the semester

4ISEE 2019: 2nd Workshop on Innovative Software Engineering Education @ SE19, Stuttgart, Germany



the tutors continuously monitor how many students currently
comply with the conditions to pass the SE1 exercises. As the
tutors check off the approvals on the evaluation sheet, it is
currently time-consuming to analyze each sheet manually and
to continuously monitor the students’ progress.

Moreover, course instructors collect feedback on the SE1
exercise part via three different channels: (1) from the tutors
in the briefing sessions on their impression about how the
students cope with the exercises, (2) from students via an
anonymous online survey, (3) from students via an anonymous
evaluation of the whole course at the end of each semester.
Course instructors aggregate the feedback and formulate con-
crete change requests to improve both the process as well as
each weekly exercise sheet. The complexity of these changes
varies from typos to replacing subtasks or source code projects.

E. Participants with Different Prior Knowledge

The students in SE1 are from diverse studies with different
prior knowledge. Because the participants increasingly come
from subjects outside of the computer science department and
outside of the MIN faculty, we have to adapt to different prior
knowledge levels. Therefore, in the lecture and especially in
the exercises, we must be able to act in a target-group-oriented
and adaptive manner to reach all students. Consequently, it
is a challenge to design the course for students without any
previous experience and at the same time motivate advanced
programmers. In an ideal case, students could learn from each
other.

We still explore and experiment with different prior knowl-
edge combinations and other mechanisms to motivate experi-
enced programmers and educate beginners. We observed two
different patterns when students, having an unequal level of
prior knowledge work together. Some experienced students
allow their partners to contribute to the solution and they
actively explain concepts to their partners. Unfortunately,
the other pattern is that experienced programmers finish the
exercises quickly alone, explain the solution to their partner,
and finally get the solution checked by a tutor and leave early.
We highlight this as a negative example in the lecture and ask
the tutors to spot this pattern.

III. SOCIO-TECHNICAL TEACHING FRAMEWORK

In this section, we introduce our preliminary socio-technical
face-to-face teaching framework that partly solves the chal-
lenges we described in the previous section. We describe the
framework from the perspective of the three roles: students,
tutors, and course instructors.

A. Students Web Interface

Students access the framework via a web interface. They
access the current state of their evaluation sheet, exercise
sheets, lecture slides, and further references. At the beginning
of each exercise session, each student pair logs into the system
and enters their seat and pair programming partner. During the
exercise session, students enqueue requests for the tutors, for
instance, an evaluation of a subtask or a question. Based on

the number of predecessors in the queue and the number of
available tutors, the framework indicates an estimated waiting
time for the students until the next tutor will be available.

B. Tutors App

Tutors log into the framework via their smartphone. They
have access to an extended version of the exercise sheet with
additional remarks, sample solutions, and sample questions to
ask students during the evaluation. During the exercise session,
they process the queue of student requests. An available tutor
queries the next request from the student queue and visits
their workplace, which might be in a different room. The
tutor has access to the evaluation sheets of the students and
sees comments by tutors on previous evaluations. The tutor
evaluates the solution and rates different categories as, for
instance, presentation, code quality, and speech share. Thereby,
we keep the operational face-to-face teaching by the tutors
as a social component in our framework. Following tutors
utilize previous evaluation data and take previous comments
into account. For instance, if a tutor notices that one of the
students shows less participation in the presentations, the tutor
could directly address questions to that student.

In our course, the attendance of the weekly exercise sessions
is mandatory. The framework automatically flags students as
“attended”, if a tutor checks a solution to a subtask. Otherwise,
students have to enqueue to contact a tutor for requesting
attendance manually.

We observed that restrained students hesitate to ask tutors
when they get stuck on an exercise. Our framework monitors
the progress of each student pair in the background and en-
queues a request for slow progressing students automatically.
Thereby, tutors intervene and offer support early when students
fall behind.

C. Course Instructors Dashboard

Course instructors access the framework via a web interface.
For the tutor recruitment, they set up the questions for the
application form, which is an integrated part of the framework.
Course instructors monitor both the application process as well
as the distribution of students in the exercise sessions during
the registration period. Applicants fill out the form with their
personal information, additional references, information about
previous grades, as well as their availability and how many
exercise sessions they plan to supervise. The framework auto-
matically indicates unbalanced exercise sessions and notifies
the course instructors. Course instructors constantly monitor
the ratios between tutors and students for each time slot and
cap the participation limits for students to register for the
exercise sessions.

Based on the data, collected in the exercise sessions, course
instructors acquire an insight into the current status of the SE1
exercise part. The dashboard for course instructors offers an
insight into the following metrics:

• Ratio of students compliant with conditions. The
students in SE1 require to fulfill the conditions of the
SE1 exercises. Our framework shows the proportion

5ISEE 2019: 2nd Workshop on Innovative Software Engineering Education @ SE19, Stuttgart, Germany



of students who are currently compliant with the SE1
exercise conditions, how many are behind, and how many
dropped out.

• Attendance. Course instructors get an overview of when
students attend the exercise sessions. How many students
have to catch up with exercise sheets when they were
not able to complete the exercise sheet in one exercise
session? We further use this information to fine-tune the
balancing of tutors among the time slots.

• Complexity of exercises. As tutors check each subtask
of an exercise sheet individually, course instructors get an
insight into the time it takes students to complete each
subtask. Based on this metric, course instructors scope
and fine-tune each subtask so that solving a complete
exercise sheet is manageable in a three hour exercise
session.

• Pair programming partner matching. Course instruc-
tors get an overview about the pair programming partner
combinations. Which pair programming partner com-
binations are common? What is their level of prior-
knowledge? Course instructors use these insights to adjust
future pair programming partner matching.

• Quality assurance for tutors. Each evaluation of a
student solution is different. It is crucial that tutors have
uniform requirements for approving a subtask. Course
instructors are interested in questions such as: How many
evaluations does each tutor perform? How much time
does a tutor spend on checking each subtask? What is the
accept and reject ratio for each tutor? Course instructors
can discuss significant evaluation differences in the tutor
briefing sessions.

IV. RELATED WORK

Other researchers discussed teaching approaches for teach-
ing software development face-to-face to benefit from im-
mediate feedback loops. Kothiyal et al. [5] applied Think-
Pair-Share in a large introductory programming course. They
showed that they obtained a sustained engagement of 83%.
This lecture integrated two Think-Pair-Share phases while
students could ask an instructor for help. Krusche et al. [6]
reported on their experiences with an interactive learning ap-
proach. They pause the lecture in between and conduct in-class
exercises to minimize the delay between theoretical knowledge
and practical application. They further show in another study
[7] that active participation in these exercises leads to a better
exam grade. Krusche and Seitz [8] developed an automatic
assessment system for large computer science courses to cope
with the manual assessment effort. Our approach differs from
this approach by adding a social component in which the
students have to present their solutions to a tutor. Iacob and
Faily [9] redesigned their second-year undergraduate course
on software engineering for a large cohort. They also pointed
out main challenges when hosting this course and concluded
that scalable exercise sessions are needed to teach software
engineering skills.

V. DISCUSSION AND CONCLUSION

Face-to-face exercises entail a huge logistic effort, which
covers diverse aspects including tutor management, improving
teaching material, and student communication. We report on
major challenges that we identified in hosting the exercises of
SE1, a beginner level software development course with more
than 600 students with different levels of prior knowledge from
different majors. We conduct face-to-face exercises assisted by
50 tutors who assist and evaluate the students and identified
challenges including, sustaining hidden knowledge in case
of alternating teaching staff, reacting adaptively when tutors
are overwhelmed by a high number of students, monitoring
the workload of students, and dealing with heterogeneous
participants.

We suggest a preliminary socio-technical teaching frame-
work which keeps the face-to-face tutoring as an essential so-
cial part. Tutors enter the evaluation of the students’ solutions
in an app. This data enables course instructors to gain insight
into the practical exercise sessions to further improve the
learning experience for students in subsequent SE1 courses. So
far, we implemented a proof of concept, but in the future, the
complete framework has to become robust, secure and tested
extensively to be deployed as it processes sensitive student
data.

ACKNOWLEDGMENT

We thank Axel Schmolitzky, Heinz Züllighoven, Fredrik
Winkler, and Guido Gryczan for implementing this face-to-
face teaching approach in SE1 at the University of Hamburg.

REFERENCES

[1] D. J. Barnes and M. Klling, Java lernen mit BlueJ: Eine Einfhrung in die

objektorientierte Programmierung. Pearson Deutschland GmbH, 2009.
[2] C. McDowell, L. Werner, H. Bullock, J. Fernald, C. McDowell, L. Werner,

H. Bullock, and J. Fernald, “The effects of pair-programming on perfor-
mance in an introductory programming course,” ACM SIGCSE Bulletin,
vol. 34, pp. 38–42, Feb. 2002.

[3] N. Nagappan, L. Williams, L. Williams, M. Ferzli, E. Wiebe, K. Yang,
C. Miller, and S. Balik, “Improving the CS1 Experience with Pair
Programming,” in Proceedings of the 34th SIGCSE Technical Symposium

on Computer Science Education, SIGCSE ’03, (New York, NY, USA),
pp. 359–362, ACM, 2003.

[4] G. Baxter and I. Sommerville, “Socio-technical systems: From design
methods to systems engineering,” Interacting with computers, vol. 23,
no. 1, pp. 4–17, 2011.

[5] A. Kothiyal, R. Majumdar, S. Murthy, and S. Iyer, “Effect of Think-pair-
share in a Large CS1 Class: 83% Sustained Engagement,” in Proceedings

of the Ninth Annual International ACM Conference on International

Computing Education Research, ICER ’13, (New York, NY, USA),
pp. 137–144, ACM, 2013.

[6] S. Krusche, N. v. Frankenberg, and S. Afifi, “Experiences of a Software
Engineering Course based on Interactive Learning,” in SEUH, 2017.

[7] S. Krusche, A. Seitz, J. Brstler, and B. Bruegge, “Interactive Learning:
Increasing Student Participation Through Shorter Exercise Cycles,” in
Proceedings of the Nineteenth Australasian Computing Education Con-

ference, ACE ’17, (New York, NY, USA), pp. 17–26, ACM, 2017.
[8] S. Krusche and A. Seitz, “ArTEMiS: An Automatic Assessment Man-

agement System for Interactive Learning,” in Proceedings of the 49th

ACM Technical Symposium on Computer Science Education, SIGCSE
’18, (New York, NY, USA), pp. 284–289, ACM, 2018.

[9] C. Iacob and S. Faily, “Redesigning an Undergraduate Software Engineer-
ing Course for a Large Cohort,” in Proceedings of the 40th International

Conference on Software Engineering: Software Engineering Education

and Training, ICSE-SEET ’18, (New York, NY, USA), pp. 163–171,
ACM, 2018.

6ISEE 2019: 2nd Workshop on Innovative Software Engineering Education @ SE19, Stuttgart, Germany


