
The EMFeR Solution to the

TTC 2018 Software Mapping Case

Christoph Eickhoff
Kassel University

christoph@uni-kassel.de

Simon-Lennert Raesch
Kassel University

raesch@uni-kassel.de

Albert Zündorf
Kassel University

zuendorf@uni-kassel.de

1 Introduction

The Transformation Tool Contest 2018 Software Mapping Case [SMCase] asks for choosing implementation
variants for computation requests and for mapping chosen implementations on appropriate hardware nodes.

This paper shows the EMFeR [EMFeR, ERZ18] solution to this case. The Github repositories for EM-
FeR is https://github.com/fujaba/EMFeR and the Github repository for this solution may be found at
https://github.com/fujaba/EMFeRTTC18

2 From SDMLib to EMFeR reachability graphs

The Software Engineering Group at Kassel University works on SDMLib [SDMLib], a library supporting Story
Driven Modeling [NZR13, SDMGuide]. SDMLib provides class models and graph transformations and reachabil-
ity graph computation. Reachability graph computation has been proposed by Arendt Rensik in his Groove system
[Groove]. Reachability grpah computation starts with an initial situation e.g. a set of requests for components
with multiple alternative implementation variants that may be deployed on several alternative compute nodes.
Next, reachability graph computation deploys a number of nondeterministic model (graph) transformations that
evolve a given situation in different directions. For example, a transformation may choose implementation 0i0

for component 0 or alternatively implementation 0i1. After generating all possible successor situations, the
reachability graph computation starts over and generates all possible successors of these successors, again and
again. The process terminates when all reachable situations have been generated.

For some applications there may be different sequences of transformation applications that result in the same
situation. To detect such cases, reachability graph computation deploys sophisticated hash key computation that
allow to identify isomorphic situations, easily. In addition, reachability graph computation deploys an explicit
isomorphism check to identify accidental hash key clashes.

In [ERZ16] we used the SDMLib reachability graph computation to attack the attributes and methods clus-
tering case of the Transformation Tool Contest 2016. Our performance on that case was, well, below average.
As each new situation is realized as a full copy of all objects that represent the old situation (and than some
modifications of these objects), we ran out of memory after generating about 20.000 situations. To deal with this
limitation, in [ERZ16] we optimized our reachability graph computation by deploying a metric that is used for
prioritizing the set of new situations in order to extend the most promising situations first. This leads to some
sort of hill climbing algorithm combined with a kind of taboo search as we backtrack out of explored ”hills” and
the isomorphism checks avoid to revisit explored situations again.

In addition to our experiences with the methods clustering case of the Transformation Tool Contest 2016 we
have deployed reachability graph computation for solving computer game puzzles, e.g. [P+16].

From these experiences we identified two main areas for possible improvement of our reachability graph
computation and to come up with our new reachability graph computation in EMFeR - EMF extended by
Reachability graphs [EMFeR]:

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.

In: A. Garcia-Dominguez, F. Krikava and G. Hinkel (eds.): Proceedings of the 10th Transformation Tool Contest, Marburg, Germany,
21-07-2017, published at http://ceur-ws.org

1 package uniks . t t c18
2 class ESolut ion {
3 r e f e r s EAssignment [] ass ignments
4 }
5 class EAssignment {
6 St r ing requestName
7 St r ing compName
8 St r ing implName
9 St r ing nodeName

10 r e f e r s EAssignment [] ass ignments
11 }
12 class EChoice {
13 r e f e r s EAssignment ass ignment
14 St r ing resName
15 }

Listing 1: EMF Class Model

1. SDMLib reachability graph computation relies on graph transformations that are not available in all techni-
cal areas. For example [P+16] has been build in dot net and we had to build a new graph transformation engine
to apply reachability graph computation to that example. Thus, in EMFeR we replaced graph transformations
by transformations written in general purpose programming languages e.g. in plain old Java.

2. SDMLib reachability graph computation does a full cloning of the current situation each time a transfor-
mation is applied. For the Software Mapping Case of the Transformation Tool Contest 2018 this e.g. means
that we copy all objects representing computation nodes and their properties again and again although these
objects never change. Therefore, EMFeR deploys a lazy copying mechanism that copies only objects that have
been modified or that refer to modified objects. Thus, e.g. objects for compute nodes and their properties are
shared between multiple situations.

Caution: EMF contains relationships and bidirectional associations prevent lazy copying. If for example we
use a bidirectional reference between an Implementation object and a compute node object, a new reference
would modify both objects and thus both objects need to be copied. If the compute node objects are (EMF)
contained in a Hardware Model object this containment is again implemented as a bidirectional reference causing
the hardware model object to be cloned and in turn all (other) contained computation node objects need to be
cloned, too. Thus, to leverage lazy copying, one must restrict the (EMF) model to unidirectional associations.

Altogether, EMFeR reachability graph transformations may be used with transformations written in plain old
Java and the lazy copying mechanism allows EMFeR to work with large object models and to be still able to
generate some 100.000 to some 1.000.000 situations. Thus, in this paper we use EMFeR to attack the Software
Mapping Case of the Transformation Tool Contest 2018

3 The solution

The Software Mapping Case of the Transformation Tool Contest 2018 comes with a data model based on abstract
syntax trees (AST). This AST based data model is enriched by application specific access methods. Thus, the
data model provides a convenient problem specific API. This works fine until you try to debug your solution. In
the variables view of your IDE, the references to sub objects are mostly hidden in an AST children list. This
made working with the data model quite uncomfortable.

Anyhow, our EMFeR framework currently relies on EMF data models. Thus, we could not directly use the
provided data model but created our own EMF based data model and forward and backward transformations
from the provided data model into our data model and vice versa. Listing 1 shows our data model in Xcore
notation [Xcore]. Basically, out data model comprises only an ESolution object that refers to a number of nested
EAssignment objects. Each EAssignment object refers to the names of the addressed Request and Component

and the name of the chosen Implementation and hardware Resource node. This suffices to represent a possible
solution for the current mapping task. In order to validate the solution and to compute its energy usage, we
transform our solution into the original data model and perform the validation there.

Listing 2 shows our solver implementation. After some initializations in lines 2 to 4, lines 5 to 13 setup EMFeR

1 public So lu t i on s o l v e (Root model) throws Solv ingExcept ion {
2 EMFeRTrafos emFeRTrafos = new EMFeRTrafos (model) ;
3 ESolut ion i n i t i a l S o l u t i o n = Ttc18Factory . eINSTANCE. c rea teESo lu t i on () ;
4 emFeRTrafos . createTopLevelAss ignments (i n i t i a l S o l u t i o n) ;
5 EMFeR emfer = new EMFeR()
6 . wi thStart (i n i t i a l S o l u t i o n)
7 . withMetr ic (s o l u t i o n −> emFeRTrafos . getNumberOfSolvedIssues (s o l u t i o n))
8 . withTrafo (” choose implementation ” ,
9 s o l u t i o n −> emFeRTrafos . getImplementat ionChoices (s o l u t i o n) ,

10 (so lu t i on , cho i c e) −> emFeRTrafos . applyImplementationChoice (so lu t i on , cho i c e))
11 . withTrafo (” a s s i g n node” ,
12 s o l u t i o n −> emFeRTrafos . getComputeNodeChoices (s o l u t i o n) ,
13 (so lu t i on , cho i c e) −> emFeRTrafos . assignComputeNode (so lu t i on , cho i c e)) ;
14 int noOfStates = emfer . exp lo r e () ;
15 So lu t i on b e s t S o l u t i on = emFeRTrafos . getDummySolution () ;
16 double bes tObjec t i ve = Double .MAX VALUE;
17 for (ReachableState s t a t e : emfer . getReachabi l i tyGraph () . g e t S t a t e s ()) {
18 ESolut ion newSolution = (ESolut ion) s t a t e . getRoot () ;
19 So lu t i on emferSo lut ion = emFeRTrafos . t r an s f o rmPar t i a l (newSolution) ;
20 i f (! emfe rSo lut ion . i s V a l i d ()) {
21 continue ;
22 }
23 double newObjective = emferSo lut ion . computeObjective () ;
24 i f (newObjective < bes tObjec t i ve) {
25 b e s t So l u t i o n = emferSo lut ion ;
26 be s tObjec t i ve = newObjective ;
27 }
28 }
29 return b e s t So l u t i o n ;
30 }

Listing 2: Calling EMFeR

for the computation of a reachability graph that explores possible solutions for the model at hand.
Line 6 provides the initial ESolution object to EMFeR. This initial ESolution object has already assignments

for each top level request but no implementation and no computation node has been selected, yet. Line 7 provides
a metric computation to EMFeR. Currently, we use a very simple metric that counts the number of decisions
that have already been made. Thus, EMFeR will always expand the situation next, that already contains the
most decisions. This basically results in a depth first search strategy for the solution space.

Lines 8 to 10 provides a model transformation to EMFeR that deals with the selection of alternative imple-
mentation variants. This is done in two steps. First, line 9 provides operation getImplementationChoices to
EMFeR. This operations computes a set of EChoice objects (cf. Listing 1) where each EChoice object describe
the selection of a certain Implementation variant for a certain Component addressed by a certain EAssignment.
For each such EChoice object EMFeR calls operation applyImplementationChoice (on a lazy copy of the cur-
rent situation). This creates a new situation where the corresponding Implementation has been assigned to the
addressed EAssignment and in case of sub component requests new EAssignments has been created that yet
wait for new choices to be made.

Similarly, lines 11 to 13 deal with choosing hardware Resource node objects for the deployment of
Implementations. In line 12, operation getComputeNodeChoice computes set of EChoice objects that as-
sign alternative hardware Resource node objects to EAssignments. Operation assignComputeNode does the
assignment.

Line 14 of Listing 2 does the reachabiltiy graph computation or search space exploration. Operation
emfer.explore terminates when all possible alternatives have been explored or after generating a default of
300.000 situations. (You may pass another limit for the number of explored situations as parameter.)

The loop from line 17 now iterates through all generated situations and line 19 transforms each situation

into the data model of the Software Mapping benchmark. This enables line 20 to check the chosen solution for
validity. Lines 23 to 27 compare each valid solution with the best valid solution known so far and in case of an
improvement, the new solution becomes the best solution. Finally, line 29 return the bestSolution.

4 Results

Table 1 shows the benchmarking result of EMFeR compared with the simple solution and the ILPDirect solution
provided with the Software Mapping Case. After all, the EMFeR solution works correct for the simple cases
but it does not perform better than the simple brute force solution coming with the Software Mapping Case.
The problem is that we currently use a kind of depth first search strategy. This does not work well, if EMFeR
e.g. chooses an implementation for the very first component and this implementation cannot be deployed to any
hardware node. In that case, EMFeR iterates through all possible hardware assignments before it reconsiders
the early implementation choice. This runs into a time out very easily.

One idea to improve our approach is to validate choices before trying them. This means, operation
getImplementationChoice from line 10 of Listing 2 should not compute EChoice objects that use implemen-
tations that cannot be deployed on any hardware node. Unfortunately, we did not manage to ask the provided
solution checking mechanisms coming with the Software Mapping Case to check partial solutions for validity.
The provided solution checking needs to evaluate attribute computations that may refer to parent and child
nodes in the abstract syntax tree and these have to exist in order to enable the computation. It is probably
possible, to use a more relaxed checking mechanism that approximate the validity of implementation choices.
Unfortunately, we ran out of time on this problem.

Even if we manage to improve our choice set computation, EMFeR is not well suited for the Software Mapping
Case. EMFeR’s reachability graphs keep all visited situations in memory in order to identify previously visited
situations. This pays off, when a situation is visited again and we do not need to revisit all its successors.
However, the solution for the Software Mapping Case computes sets of choices for one assignment after the
other. Thus, it visits the search space in a strictly tree structured manner and it never visits the same situation
twice. Accordingly, keeping old states in memory does not pay off in this case and it becomes just an overhead.
So, we have little hope to win this benchmark case and this somehow demotivated us to put more effort into
optimizing our search strategy. We are looking forward to more suited benchmarks next year.

Benchmark Simple Solution EMFeR ILPDirect
time ms objective time ms objective time ms objective

0 trivial 3 226823.67 542 226823.67 139 226823.67
1 small 5 34620.20 57 34620.20 38 34620.20
2 small-many-hw 10 34620.20 99 34620.20 124 34620.20
3 small-complex-sw 10 - 163,158 - 1062 34620.20
4 medium 120,002 - 101,525 - 124,367 5467973.79
5 medium-many-hw 120,002 - 101,525 - 111,427 -

Table 1: Eliminate States

References

[EMFeR] EMFeR - EMF extended by Reachbility Graphs https://github.com/fujaba/EMFeR June, 2018.

[ERZ16] Christoph Eickhoff, Lennert Raesch, Albert Zündorf The SDMLib Solution to the Class Responsibility
Assignment Case for TTC2016. TTC@ STAF, 27-32

[ERZ18] Christoph Eickhoff, Lennert Raesch, Albert Zündorf EMFeR: Model Checking for (EMF) Models
Submitted to Models 2018, 14-19 October 2018 Copenhagen, Denmark

[Groove] GROOVE - GRaphs for Object-Oriented VErification http://groove.cs.utwente.nl June, 2018.

[NZR13] Ulrich Norbisrath, Albert Zündorf, Ruben Jubeh, Story Driven Modeling CreateSpace Independent
Publishing Platform; Auflage: 1 (22. April 2013) ISBN-13: 978-1483949253

[SDMGuide] Ulrich Norbisrath, Albert Zündorf, Tobias George, Ruben Jubeh, Bodo Kraft, Sabine Sachweh Soft-
ware Stories Guide 2017/7/31 https://kobra.bibliothek.uni-kassel.de/bitstream/urn:nbn:de:hebis:34-
2017073153163/3/SoftwareStoriesNotationWhitePaper.pdf

[SDMLib] SDMLib - Story Driven Modeling Library www.sdmlib.org May, 2017.

[P+16] David Priemer, Tobias George, Marcel Hahn, Lennert Raesch, Albert Zündorf Using graph transfor-
mation for puzzle game level generation and validation ICGT - International Conference on Graph
Transformation, 223-235, 2016

[SMCase] Sebastian Götz, Johannes Mey, Rene Schöne and Uwe Aßmann Quality-based Software-
Selection and Hardware-Mapping as Model Transformation Problem www.transformation-tool-
contest.eu/TTC 2017 paper 4.pdf May, 2017.

[Xcore] Xcore - Modeling for Programmers and Programming for Modelers. https://wiki.eclipse.org/Xcore

