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ABSTRACT

Book recommender systems (RSs) are useful in libraries, schools and
e-commerce applications. To our knowledge, no book RS exploits
social networks other than book-cataloguing websites. We propose
a recommendation component that learns the user’s interests from
social media data and recommends books accordingly. Our new
method of modelling users’ interests acquires a user’s distinctive
topics using tf-idf and represents them as word embeddings. Even
though the system is designed to complement other systems, we
evaluated it against content-based RS, a traditional book RS, and
obtained similar performance. So, the system’s new user would
receive recommendation as accurate as current users.

KEYWORDS

recommender systems, personalization, user modelling, social me-
dia, Twitter

ACM Reference format:

Haifa Alharthi & Diana Inkpen & Stan Szpakowicz. 2017. Unsupervised
Topic Modelling in a Book Recommender System for New Users. In Pro-
ceedings of ACM Conference, Tokyo, Japan, August 2017 (SIGIR 2017 eCom),
8 pages.

1 INTRODUCTION

The information flood on the Internet makes desirable a wide va-
riety of applications, among them recommender systems (RSs).
They help limit users’ choices to the possibly most preferred items.
To make suggestions, existing RSs exploit users’ rating history,
product features, user social-media content and relationships, user
personality and emotions, and more.

Investigating book RSs is a worthwhile endeavour. They are
useful in libraries, schools and e-learning portals, as well as book-
stores and e-commerce applications. They can help libraries with
abundant unused resources—e.g., 75% of the books in the library of
Changsha University of Science and Technology have never been
checked out [48]. The practice of reading for pleasure has declined
in recent years, especially among children.! This decline may affect
life quality: readers may be significantly more likely than non-
readers to report better health/mental health, to volunteer and feel
strongly satisfied with life [18]. Exposure to fiction also correlates
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with higher ability of communication, empathy and social support
[27, 28].

One challenge facing RSs is the user cold start. It happens when
new users with no rating history are introduced to the system. A
book RS may consider non-readers as new users and recommend
books to them, and so help encourage the practice of reading. An
issue related to cold start is the lack of explicit feedback from
existing users, who may find it burdensome to assign ratings to
items.

This paper proposes an automatic personalization module that
learns the users’ interests from social media data and recommends
books accordingly. The Topic-Model-Based book recommendation
component (TMB) would help existing RSs deal with new users
with no user rating history. For each user, a topic profile is created
that summarizes subjects discussed on her social media account.
User profiles are matched with descriptions of books, and the most
similar ones are suggested. To evaluate TMB, a dataset was collected
that encompasses user profiles on Twitter and Goodreads, a social
book cataloging Web site. We compared the top k recommendations
made by TMB and content-based system (CB). Both retrieved a
comparable number of books, even though CB relied on users’
rating history while TMB only needed their social profiles. We
conclude that new users would receive recommendations (made by
TMB) as accurate as those for current users (made by CB).

Content-based RS is a standard RS which is widely used for book
recommendations [22, 31, 35, 44]. A CB recommender is a classifier
that learns the patterns and similarities in the purchase history of
one user to predict her future interests.

Many book RSs exploit social media, as explained in section 2,
but they are all focused on social networks established mainly for
readers such as LibraryThing. Our research investigates the use of a
general platform, Twitter, to make book recommendations. Here is
why: Twitter is not exclusive to bookworms, so it can help address
the issue of new users who have no reading profiles. Moreover, since
its establishment, Twitter has been used to survey opinions, report
news (more than 85% of the Twitter activities are related to news
events), raise awareness, create social and political movements and
more; topics discussed on this medium have wide diversity and are
up-to-date [11]. This offers a chance to understand the reactions
and opinions of active users to their surroundings, e.g., the social
and political scene. It allows the capturing of broad topics that
the user cares about and may not read about them yet which may
help with the over-specialization issue, users receiving non-diverse
recommendation lists.

The remainder of the paper is organized as follows. Section 2
summarizes the related work especially in the domains of social RSs
for books and news articles. Section 3 gives a high-level description
of the system and its components. Section 4 explains the details
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of data collection and preprocessing, as well as the system imple-
mentation. Section 5 defines the experiment settings and illustrates
its results. Section 6 discusses the results. Section 7 concludes and
suggests future work.

2 RELATED WORK
2.1 Topic Modelling of Text in RSs

Topic models have helped estimate preferences in many RSs. To
name a few, recommendations were based on the topics extracted
from movie plots [4], articles [33, 45], online courses syllabi [2]
and trending categories on e-commerce portals [19]. Unlike the
previously mentioned work which mainly analyzes textual descrip-
tion of items, TMB model the topics discussed in a user profile to
capture their interests and make recommendations accordingly.

Based on topics learned from users’ Twitter accounts, RSs could
suggest hashtags [16] and friends [36]. TMB, on the other hand,
addresses the new user issue by exploiting tweets to recommend
items that are not Twitter-relevant (e.g., not hashtags).

2.2 Social media and the new user issue

Social media have been a great resource to “warm up” the user cold
start. A users connections on social network were exploited in [7],
[40], [17], [3] and [29]. In addition to using Facebook friends lists,
[40] analyzed users’ demographics and pages liked by a user.

[32] solved the new user issue by analyzing a target user ’s
tweets and identifying which movie genres she likes. The cosine
similarity between a tweet and a movie storyline is calculated. If the
similarity is higher than 0.5, the movie’s genre is added to the user’s
favourite genres. Later, movies from the most frequent genres are
recommended.

2.3 Recommendations of textual items

This section covers social RSs dedicated to recommending textual
items, including books and news articles. First, we need to differen-
tiate the characteristics of the book and the news recommendation
tasks. News has a short lifetime and may become irrelevant within
days or even hours. On the other hand, many books have survived
hundreds of years and are still widely read and recommended. Fur-
thermore, news content is dynamic and changes rapidly / daily.
That requires the analysis of hashtags and entities such as names
and places that may correspond with the news. However, books
include broad aspects and are mostly unrelated to present names
and actions. Thus, unlike news, book social RSs need to look for
users’ long-term interests.

2.3.1 Book recommendations using social media. LibraryThing
is a social book-cataloguing Web site which allows users to form
friendships and catalogue and tag books. [37] match books that
a target user likes with books that her friends like. Each book in
LibraryThing has a cloud of tags, and the system suggests the most
similar tag-represented books, using a word correlation matrix.
Another system also uses tags to find similar books in the user’s
friends list [38]. Books are considered similar when they share
one or more tags with friends or are highly rated by a user’s most
reliable friends.
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Another system that exploits LibraryThing, presented by [14],
addresses the new item issue. Each book is characterized by tf-idf
vectors of social tags (extracted from LibraryThing) and book tags
(from the whole text of a book). For new books with no available
social tags, a relevance model (RM) is adopted to learn from a
book’s tags to predict social tags. A pure RM gives results similar
to collaborative filtering. To our knowledge, no book RSs exploit
social networks other than book-cataloguing websites.

2.3.2 Twitter-based news recommendations. To make news rec-
ommendations, [1] treat a user profile as a query; the k most sim-
ilar candidate news articles are recommended. User profiles are
constructed from three elements: hashtags, entities and topics. A
concept is weighted by counting the times a user mentions it (e.g.,
#technology = 5). A framework, OpenCalais, is used to spot names
of people, places and other entities in addition to topics; there is a
limitation to 18 different topics (e.g., politics or sports). Entity-based
user profiles scored the highest S@k (Success at rank k) at 0.20.

[8] propose a Twitter-based URL recommender. Cosine similarity
is computed between user profiles and URL topics, and the system
recommends URL items with the highest scores. For each user, self-
profile and followee-profile are constructed out of bag-of-words.
For a URL, a bag-of-words is also created out of terms occurring in
tweets which embed the URL. In a field experiment, 44 participants
rated the recommended URLs. The best performance was 72.1%
accuracy when the RS used self-profiles and candidate URLs from
FoF (followee-of-followees).

Unlike work in [1, 11, 20] which looks for news-related and nar-
row lists of entities and categories, TMB is dynamic and represents
the dominant topics discussed by a user without searching for pre-
defined concepts. Our system does not require entity recognition
or ontology development.

3 TOPIC-MODEL-BASED BOOK
RECOMMENDER SYSTEM

This section explains the TMB components, book and user profiles,
and formally defines the recommendation process.

3.1 Book and user profiles

A book profile (BP) is represented as a vector of terms comprising
its description. We used short descriptions of books available online.
On the other hand, a user profile (UP) is a vector that consists of
terms extracted from the target user’s Twitter timeline. Terms are
elicited from textual content of tweets and their embedded links.
Retweets and replies are included with tweets so as to avoid sparsity,
while hashtags are counted in if they are spelled correctly. User
profiles are built automatically using topic modelling techniques
without being mapped to an external ontology or to predefined
categories. For topic modelling, we considered two techniques:
Term Frequency - Inverse Document Frequency (tf-idf) and Non-
Negative Matrix Factorization (NMF). We also experimented with
Latent Dirichlet Allocation (LDA), but did not report the results
due to the low performance. This supports the finding of a previous
study [39] that NMF performs better than LDA when dealing with
tweets.
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3.1.1 Term Frequency - Inverse Document Frequency. The tf-idf
weighting approach is widely used in information retrieval. Term
frequency (tf; 4) of a term ¢ is the number of times it occurs in
document d. A document in this context is all tweets and/or links in
one user timeline. Inverse document frequency (Equation 1) helps
distinguish the terms that are specific to a user/document.

idf; = logd% (1)

N is the number of users and df; is the number of documents
where term t occurs. Equation 2 defines the tf-idf weight of term ¢
in document d.

tf-idfrq = tfr,a *idf: @)
The terms with highest weights are considered the tf-idf topic
model [26].

3.1.2  Non-Negative Matrix Factorization. This dimensionality
reduction and topic modelling technique has been found to work
well with short text [9, 15, 47]. For a user, a term-document matrix
is created; a document here is one tweet or link. NMF factorizes the
m X n term-document matrix A into two non-negative matrices W
and H. The former represent the term-topic matrix m X k, whereas
the latter is the topic-document matrix k X n. The number of NMF
topics k should be defined ahead of decomposition. The matrix WH
approximates the original matrix A. Every document in WH repre-
sents a linear combination of k topic vectors in W with coefficients
given by H [15].

3.1.3 Topic embeddings. Word embeddings have gained a lot of
attention lately thanks to the revival of neural networks. They are
word vectors with fixed dimensions. We use the word2vec model,
proposed by Mikolov et al. [30]. Terms in book and user profiles are
mapped to word embeddings produced by the word2vec model. The
model is trained on a very large amount of text and can predict the
context of a given word. It represents words in a space where two
words occurring in similar contexts are neighbours. We used pre-
trained word embeddings developed on the Google News dataset of
around 100 billion words. It comprises vectors of 300 dimensions for
3 million words and phrases.? Other available pre-trained models
(e.g., Global Vectors for Word Representation®) have been built using
text from Twitter and Wikipedia, but the Google news embeddings
are more relevant to both books and tweets. While books have
formal descriptions, tweets are casual, with hashtags that require a
model which encompasses abbreviations.

3.2 The recommendation procedure

Let U = uq,up,...u, be a set of Twitter users. For user u;, a
time threshold Ty, is established to avoid the overlap in learn-
ing and prediction times. The learning timeframe LT, involves
all tweets and links created by u; before T,;,, whereas the recom-
mendations timeframe RTy,;, contains books read by u; after Ty,;.
For user u; € U, a user profile UP,; is a vector comprising terms
W1, W2, . .. Wp, extracted from tweets or links shared by u; during
LT,,. Let By; = b1,ba,...b; be the set of books read by user u;
during RT,,. For book b € By;, the book profile BP; is a vector
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of words wi, wz, ... wy, found in b;’s description. To recommend
books to u;, TMB calculates the cosine similarity (Equation 3) be-
tween UPy, and BP for every book in By,;, and suggests the books
with k most similar BP.

UP,, - BP;
TP, | = 18P

If terms are replaced by their word embeddings, an average
vector is created for word vectors in UP,,; and another for BP;.

Then, cosine similarity is performed between the resulting average
vectors.

®)

similarity =

4 DATA PREPARATION AND SYSTEM
IMPLEMENTATION

This section describes how the dataset was collected and prepro-
cessed. It also presents the implementation of the system, unfolding
technical details of the creation of book and user profiles.

4.1 Data collection

We collected user data from Goodreads and Twitter, because there
are no datasets with both users social profiles and their reading
lists. The Twitter API was queried to retrieve any review shared
by Goodreads users, and more than 1000 tweets were found, from
which we accessed their authors and IDs. Twitter API allows the
collection of a maximum of 3500 tweets per user. We gathered text,
ID and date of creations of tweets for user with Goodreads review.
Links were extracted from user timelines and their textual contents
(if any) were collected. This was achieved by applying an efficient
Python library called Newspaper, which obtains a clean tag-free
text from a given Web page. Once the Twitter user profiles were
complete, we collected data from Goodreads for the book profiles.

User Goodreads IDs were obtained from the tweets of default re-
views. Next, a scrapper was developed to retrieve all review IDs and
dates from users’ “read books” lists, which contain only completed
books. The Goodreads API was consulted to extract information
about all books read by a user, including book metadata, text re-
views, ratings, read date and added date. The book metadata, which
can be used to build content-based recommender systems, include
ISBN, ISBN13, title, authors, language, the average rating of all
reader, the number of pages, publisher, publication date, text review
count and book description. The read date indicates the time of
completion of a read book, while the added date is the time when a
book was catalogued.

When users insert new books into their lists, they may discuss
them on their social media. Therefore, in TMB, the recommendation
timeframe RT considers added dates instead of read dates. The
rating scale, according to Goodreads, treats 1-2 stars as “dislike”,
and 3-5 stars as “like”; books rated 3-5 will be called relevant in the
remainder of the paper. The number of users shrunk to 69 after the
deletion of non-English users, inactive users and those with private
Goodreads accounts. Even though many datasets with large number
of users exist, some recommendation methodologies such as TMB
require personal information about users. This makes it hard to
experiment on large datasets. Examples of such work include [41]
which used a dataset of 52 users to test affective-based RS,and [34]
which tested a context-aware RS on an 89-user dataset.
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Figure 1: Dataset collection and statistics.

4.2 Data preprocessing

Before topic extraction, text of tweets, link, and book descriptions
must be cleaned. The tweets were tokenized using Tweet Tokenizer
from NLTK [5], which is Twitter-conscious, and tagged using the
GATE Twitter part of speech tagger [12]. Hashtags were checked
using aspell. Misspelled words were excluded because they are not
useful: the goal is to match them with book descriptions which are
spelling-error-free. For links and book descriptions, regular NLTK
Word tokenizer [5] and Stanford part-of-speech tagger [42] were
applied. Only nouns (singular or plural) were kept, then lemmatized
by NLTK WordNet Lemmatizer [5]. A noun, according to Merriam-
Webster, represents an “entity, quality, state, action, or concept”.
Nouns, then, can capture the interests of users more than any
other part of speech. In fact, to model user interests based on their
social media accounts, other researchers also considered only nouns
[10][43].

After building topic models from tweets and links, we noticed
that unimportant (generic) terms such as “website” are dominant.
Therefore, we went further by excluding NLTK stop words, 100
most common English nouns,’ and words of fewer than 4 letters. For
tweets, we also filtered out the 200 words with lowest idf Weights.6
Repeated content of links is deleted, and so are Web-related terms,
e.g., “website” and “Facebook”.

4.3 System implementation

A user Twitter timeline was divided in half, and the date of the
middle tweet was considered a time threshold that differentiates
learning and recommendations periods. To ensure that tweets do
not address the predicted books, a one-month difference was set
between the timeframes. The average numbers of tweets and books
included in the learning period are 758 and 802, while the minimum

“http://aspell.net/
Shttp://www.linguasorb.com/english/most-common-nouns/
The idf weights for tweets from all users after the deletion of stop words.

numbers are 121 and 13 respectively. The lowest number of ratings
needed to develop CB with quality recommendations is 10. This
threshold is adopted by many researchers, including [46].

We developed twelve variations of user profiles. They differ in
the topic modelling technique (NMF or tf-idf), in the source of data
(tweets alone, links alone, or tweets and links) and in the word
representations (embeddings [emb] or none). The NMF algorithm
was implemented using the scikit-learn Python package [6]. After
conducting many trials, the number of NMF topics was set to five,
with six words in each, because topics became redundant afterward.
The number of tf-idf topics was set to 100. To calculate cosine
similarity between words vectors, we used genism, a Python library.
Not all topics have corresponding word vectors, and a reduction in
the number of topics is expected.

5 EXPERIMENTS AND RESULTS

We measure the predictive power of the system using off-line evalu-
ation, which is appropriate for obtaining the accuracy of an RS. The
on-line appraisal would provide more performance insights, but it
is an expensive option that requires the deployment of a real-time
version of TMB. A user study is another option; it was avoided
because it usually includes a limited number of users.

5.1 Experiment settings

Strategies of top k recommendations are tested in a similar fashion
to the leave-one-out evaluation applied in [13, 21, 23]; it splits the
dataset into a training set and a one-item test set, then generates
a list of the top N recommendations from the training set. In our
setting, however, the training set is made up of all books not in-
cluded in the recommendation timeframe, so we cannot use it for
prediction. This is why we followed a slightly different assessment
methodology, used in ranking-based RSs adopted by [24] and [25].

We created one set of 1000 random books that are unique and
not rated by any user. For each user, we randomly selected one
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relevant book from the recommendation timeframe, added it to
the 1000 books and asked our system to perform ranking. If the
rank of the relevant book is f, the RS should have the lowest f
value (preferably 1). If f < k, it is a hit, otherwise it is a miss.
Similarly to many related projects, we set k to 10. Metrics adopted
are hit-rate (Equation 4), sometimes called recall, and the average
reciprocal hit-rank (Equation 5) [13]. To avoid a bias, five trials
were conducted, and the reported results averaged. We measured
the statistical difference in results using the t-test at a maximum of
p-value = 0.05.

#hit
HR = T (4)
#users
1 #hits 1
ARHR = (5)

#users fi

Our approach was compared to a content-based RS and to a
random system. CB was implemented using the default settings of
Graphlab, a well-established framework for RSs. Books in the CB
training and test sets were represented with book metadata (see
section 4.1). Although we considered a comparison with collabora-
tive filtering (CF), the rating matrix is highly sparse, which means
that the results would not reflect a typical CF.

Some of the randomly chosen 1000 books might have topics
similar to a user profile. On the other hand, they could share similar
content, e.g., author or description with a user’s read books. How-
ever, we did not filter out such books because this would introduce
a bias and favour one system over the other. In addition, for each
of the 69 users, we examined five books, so the overall number of
tested books is 345. If there is a bias with a few books, it should not
affect the majority of test cases.

5.1.1 Results. Figure 2 shows the HR and ARHR scores of four-
teen recommendation techniques. The best-performing methods
are CB and tf-idf-emb built with links; it achieved the highest HR
results, while CB reached the best ARHR. Tweet-based tf-idf-emb
has similar results to CB. The results of these two methods are not
statistically different. In general, tf-idf gives better results than NMF.
This is expected due to the difference in numbers of topic terms.
Comparing the algorithms with and without word embedding vec-
tors, the addition of word embedding enhances the performance.
The results are statistically different except for the tf-idf-emb of
tweets and the tf-idf-emb of tweets and links. There is no consis-
tency in the effect of using tweets or links. For example, using links
with tf-idf gives the highest score but with NMF-emb the score is
the lowest among all data categories. The random system could not
bring any relevant book to the top k.

6 DISCUSSION

The field of RSs is active. Many state-of-the-art recommendation
methods have been proposed in the recent years. However, we only
compared TMB results with CB which has been around for a long
while. TMB gives similar performance to a traditional system, CB
without the need for user rating history. Nevertheless, we do not
claim that the system works independently. To verify this, more
comprehensive experiments are required.

One suggested method, which gives the best results, is to use
word embeddings of top tf-idf terms. The use of tf-idf weighting
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allows the capturing of distinctive topics frequently discussed by
one user in contrast with those discussed by her community. To
eliminate noise, we only kept the top tf-idf words. Otherwise, the
average word embedding of all terms in Twitter time-line would be
skewed towards less significant terms. We think that this method
obtains fine-grained interests not extensively shared among users.
For example, a term that is not as popular, like “mythology”, may
have a high idf value and be in the top tf-idf list.

All variations of TMB could identify books that interest the
user out of a thousand other books, with the link-based tf-idf-emb
retrieving the highest number of books. To illustrate how word
embeddings contribute to the recommendations made by link-based
tf-idf-emb, we plotted (Figure 3) the word embeddings of one user
profile (b) and his two book profiles (c, d). Section (a) of Figure 3
shows the closeness of word vectors found the UP and BPs. One can
notice the variety of topics in the user profile. User interests might
be broad and not only related to the books they already preferred.

The textual content of the links can be longer than that of the
tweets, and so possibly capturing a wider range of interests. In fact,
there is an evident difference in their effect on pure NMF and tf-idf.
Thanks to word embeddings, however, the performance of models
that adopt tweets increased dramatically. Word vectors could enrich
the topics by including the context of terms. Their improvement of
tweet-based algorithms could be due to the presence of hashtags,
which summarize a whole subject or event.

We conducted error analysis to investigate the differences in
performance between CB and TMB (tf-idf based on links and word
embeddings). In a leave-one-out evaluation, we tested five books
for each user. The two systems retrieved the same number of rele-
vant books when giving recommendations to 31 users. CB could
retrieve more relevant books than TMB for 17 users, whereas TMB
surpassed CB when dealing with 21 users. For better understanding,
we analyzed each system’s best recommendations.

CB retrieved three out of five books relevant for users A and B,
while TMB suggested only one book to user A and none to B. User
A had 512 books in the CB training set, while user B had 542. From
the three books recommended to A, only one had the same author
as a book in the training set; that is to say, CB relied on book de-
scriptions to make the recommendation. The one book which TMB
recommended to user A had cosine similarity of 0.69 and shared
words that were semantically close to the user topics (e.g., drawing
vs. illustrator). Like for user A, only one book recommended by CB
to user B shared the same author with a book in the CB training
set. The possible reason why TMB could not suggest any book to
user B is that the user’s topics were related to political issues (e.g.,
abortion, immigration), while the user’s readings were diverse. For
example, user B’s five relevant books addressed history, romance,
philosophy and education. The user’s interests were broad, while
his discussed topics on Twitter were narrow and related to current
issues.

Users C, D and E received five, three and two recommended
books by TMB, respectively, while CB could recommend two books
for user C and none for user D and E. User C had 140 books in
the CB training set. Most of his readings were related to religious
matters. The user topic profile reflected these interests: the top tf-idf
words were glory, theology and gospel. The lowest cosine similarity
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Figure 2: The comparison of TMB approaches, CB and the random system.
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Figure 3: Word embeddings of terms in a user profile and two book descriptions.
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between the user topic profile and the five retrieved books was 0.72.
User D had 13 books in the CB training set. All books in the training
and test set were written by distinct authors. The user topics were
also related to philosophy and religion, as well as the user readings
(see Figure 3). User E had 528 books in the CB training set. Her topic
profile covered wide interests (e.g., courtroom, femininity, mutiny,
and heroin) and the two recommended books were slightly similar.
One of them, titled “Against the Country”, was described with words
such as offender, antihero and blast. The other book was described
with such words as assassination and murder.

7 CONCLUSION

This paper proposes TMB, a system that builds a topic model for a
user from textual content shared voluntarily on her social media,
and recommends the books most related to these topics. We ac-
quired a user’s distinctive topics by tf-idf weighting and represent
them as word embeddings in order to capture their context. TMB
achieves a recommendation accuracy similar to CB, a commonly
used book RS, particularly when word embeddings are deployed.
Thus, TMB can aid current RSs in suggesting books to new users
without major loss in performance.

For future improvement, we plan to study the temporal effect on
topic models, as well as the relationship between the level of user
activity and the accuracy of the recommendations. Since hashtags
carry more meaning than other terms on Twitter, an interesting
approach would be to create hashtag-based profiles that are en-
riched with word vectors. Also, user profiles could include other
parts of speech, especially verbs and adjectives. To enhance the
performance of the system, we will train embeddings for tweets
and books.
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