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ABSTRACT
In most cases when users encounter with null and low search 
queries, there are lots of inventory to these queries on eBay, 
but they can’t be retrieved by regular query expansion. There-
fore, retrieving more relevant items by performing more ag-
gressive query rewrites will largely improve the user experi-
ence. This paper proposes a query rewrite system that refor-
mulate the original query into multiple alternative queries 
that enlarge recall without altering the main search intent. 
In this paper, we present a term dropping algorithm that un-
derstands and keeps the important terms in the query, and 
a term replacement algorithm that learns from user behav-
ior and language model. Experiments on randomly sampled 
eBay queries shows that the n-best rewrites by these two 
algorithms effectively recover more relevant items. Besides, 
the experiments indicate that our algorithm can predict the 
exact user refined query in its top-5 rewrite candidates for 
over 50% of the null and low queries.

Keywords
eCommerce, Search Experience, Query Rewrite, Language 
Model

1. INTRODUCTION
When the retrieved items of a query is lower than some 

certain number (e.g. 10), the search results page results in 
bad customer experiences. Therefore recovering more items 
for null and low queries will dramatically increase conversion 
and click through rates. Causes of this issue range from a 
misspelled word to a too specific query. Therefore, with a 
few exceptions this task can be tackled by simple rule-based 
solutions. In this scenario, dropping or replacing some terms 
in these queries may recover more items. The current null 
and low recovery algorithm randomly drops tokens in the 
user query up to some certain percentage and come up with 
a collection of subqueries. Subsequently a relevance model
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will be used to boost the relevant items in the ranking phase.
However, randomly dropping or replacing terms may alter
the original search intent which could result in retrieving ir-
relevant items. For example, when a null query “led brake
light nano made in taiwan” is sent for term dropping using
the current algorithm, top subqueries could preserve unim-
portant segments like “made in taiwan” As a result, even
though these items contain enough number of tokens in the
user query, the relevance is low and user experience is bad.
To address this issue, we implement separate algorithms that
can drop or replace terms using techniques originated from
natural language processing. These algorithms will attempt
to recognize the important segments of the query so that
dropping or replacing terms will not distort its intent.

The task of query term dropping is assisted by tagging
the part-of-speech (POS), entities, unit of measures (UOM)
and phrases. In the eCommerce domain, entities are item
properties such as brand name, material, color, shape, gen-
der, etc. On the other hand, for null and low queries that
are not verbose, we will reformulate the query by replacing
some of the tokens. This approach avoids accidental turn-
ing the specific seed query into a broad query. To achieve
this, we build a language model from large amounts of user
query logs. With a given set of randomly selected null and
low queries, we focus on the evaluation of n-best rewrites
that are produced for evaluation.

To summarize, our main contributions are:

• We propose an effective algorithm to drop unimportant
terms without distorting the intent of the query

• We apply a language model to estimate the probability
of candidate queries for term replacement.

2. RELATED WORKS
Information retrieval with verbose queries has attracted

lots of interest in recent years. Redundancies that reside in
these queries suggest that generating subqueries by dropping
unimportant terms using natural language processing (NLP)
techniques[1, 2, 3] in the original query would be helpful.
To extract patterns to reduce long queries, researchers tried
to extract features like tf-idf, POS, entities and similarity
scores to the original queries. When the retrieved documents
are available, more sophisticated work employs random walk
from each token in the original query on a graph of retrieved
documents and the score of each suggestion is ranked by the
Hadamard product of each term[4].



Query rewrite systems can be traced back to 2001’s when
Google started to provide dynamic spelling checking sys-
tems. Almost simultaneously, Yahoo started to track com-
mon misspelling of frequent queries such as movie stars.
Technical details for these systems are not available, but
they seem to be based on spelling algorithms and statisti-
cal frequencies. Traditional query rewriting system tries to
use rule-based techniques such as finding synonyms of words
that are extracted from wordnet[5]. In recent years, tech-
niques that utilize NLP and statistical models have been
widely used for tasks of query rewrite systems. Mays et.
al.[6] showed that noisy channel model could be used for
both real-word or non-word errors spelling correction. In
these works, either a set of real-word confusion pairs or a
lexicon against the edit distance is prepared[7]. [8, 9] pro-
posed to use a large set of ordered query pairs that are scored
by their semantic similarities. These algorithms are not
specifically designed for null and low search queries. On the
other hand, [10] tried to add taxa constraints to sub-queries
and retrieve items from a prebuilt database of historical
purchases of null and low queries. Distribution of inferred
taxa constraints from the historical data are then added to
each subquery for secondary retrieval. Furthermore, using
query-snippet pairs from user query logs enlarges the scope
of query expansion in an improved contextual way[11, 12].
Some works[13] tried to build a query rewrite system without
requiring a predefined dictionary. There are several other
researches that are relevant to query rewrite, such as using
large human labeled data set to build a conditional random
fields discriminative model[14].

3. QUERY TERM DROPPING
In this section, we describe the proposed approach to

query term dropping. The aim of term dropping is to re-
duce a verbose query to multiple short query candidates to
increase recall as well as keep the query intent.

To understand users’ intent, we tag the possible product
and aspects in the user query, including brands (such as
Nike), product names (such as Macbook and Play Station
2), colors, materials, product models (such as hd-650), UOM
etc. Entities and attributes are tagged by mapping the dic-
tionaries mined from eBay’s structured catalog. As null and
low queries are mostly tail queries, most of the tokens cannot
be covered by structured data. The syntax functionalities
of these tokens are labeled by the POS tagging. Moreover,
phrases are also detected in this phase by mining the user
query logs to make sure tokens in a phrase will be dropped
or kept as a whole. To this end, when there are multiple
possible tagging sequences, we select the sequence that tags
most of the tokens. This query tagging procedure provides a
context for core concept and attributives extraction in term
dropping.

The selection of terms to drop is set by predetermined
rules. Brands, product names or first noun phrases are con-
sidered as Tier 1 group. They are the likely core product in
this query. Aspects (colors, materials, etc), UOM and ad-
jectives etc. are considered as Tier 2 group, as they are the
attributes of the core product. The stop words and conjunc-
tive words etc. are considered as Tier 3 group. To this end,
a term dropping suggestion is generated by the core product
terms in combination with attribute terms. Under the re-
quirement of minimum number of tokens of the alternative
query, the n-best suggestions are by generated a scoring al-

Figure 1: Workflow of query term dropping. (a)
Query understanding phase: each token of the query
is tagged by part-of-speech or entities. (b) Rewrites
generation phase: drop unimportant tokens to gen-
erate subqueries. (c) Rewrites ordering phase: each
candidate is assigned with a score according to the
tags and passes (see text), and the ranking of the
candidates are given accordingly.

gorithm that considers both the alternate query length and
the quality of the tokens.

3.1 Brand Disambiguation
Due to the ambiguity of brands which are derived from

real word, recognition of brands such as “white” or “1928”
requires an additional disambiguation algorithm. Therefore
we build a discriminative model P (B|q) that predicts the
term B is a brand in the context of query q. This is achieved
by computing

P (B|q) =
∑
i

P (Ci|q)P (B|Ci), (1)

where Ci is the ith shopping category. In Eq. (1), P (Ci|q)
is the model that projects the context of the query onto the
shopping categories, and P (B|Ci) is extracted from the data
from eBay’s inventory. The model that learns P (Ci|q) is
evaluated by inferred category demand. The optimal thresh-
old for classification is determined by the user click data.
Tagging procedure for brand name will be performed once
Eq. (1) has been run through the entire token list in the
query.

3.2 Scoring Algorithm
The alternative query generation is implemented as a multi-

pass process. Earlier passes keep more original tokens in
the alternate query, resulting in more efficient query with
less recalls. Later passes will keep fewer tokens to enlarge
the recall size. The search engine issues the term dropping
queries pass by pass, and stops whenever it gets enough ef-
fective alternative queries and items to show to users. An
offline experiment suggests that for 70% of the null and low
queries, it need only one pass to complete the whole process.
Suggestions from the earlier pass will always rank higher
than the ones from later passes, as overall queries with more
original tokens are believed to be closer to the original user
intent.

In order to score the suggestions in one pass, we basically
prefer suggestions with more brands or nouns over sugges-
tions with more adjectives. The baseline tagging score is
given by a step function over their tags. After tagging, we
found that there are remaining 54% tokens are nouns. Due
to the fact that lots of null and low queries have misspelled
words that are of low document frequencies, we are inspired
to rank these nouns by the cross-entropy of their clicking



probabilities conditioning on their document frequencies:

Pclick(r) = −P (click|r) log (1− P (click|r)), (2)

where r is the document frequency of token, and P (click|r)
is evaluated by a large sample of null queries. The clicking
score is added to the tagging score with an undetermined
coefficient, which is later optimized by maximizing the dis-
counted cumulative gain (DCG).

4. QUERY TERM REPLACEMENT
In this section we describe the proposed approach to term

replacement. The inputs are a query q0 consisting of a se-
quence of m words (w1, . . . , wm). As the formalism in [6],
the algorithm generates a set of candidates C(q0), and then
the best suggestion is given by the highest language model
probability. To generate the candidates, we start by gener-
ating a set of candidate words for each input word wi that is
mined from the user behavior logs. Thus the probability for
each candidate query q1 ∈ C(q0) would be proportional to
P (q0|q1)P (q1), where P (q0) is the probability of the original
query modeled by the n-gram language model. Therefore,
term replacement is formulated as

q∗1 = arg max
q1∈C(q0)

P (q0|q1)P (q1), (3)

where P (q0|q1) and P (q1) is the noisy channel model and
language model respectively. Furthermore, in practice, con-
sidering the fact that the number of candidates in the noisy
channel model of a particular token ranges differently to the
cardinality of bigrams, we raise the noisy channel by a power
γ:

q∗1 = arg max
q1∈C(q0)

P (q0|q1)γP (q1). (4)

4.1 Noisy Channel Model
The noisy channel model, P (q0|q1), describes the emis-

sion probability of an original query q0 being replaced by q1.
We collect query pairs of term replacement within the same
session from user query logs. For each original query, we

assume that only one token wi is replaced by w
′
i , therefore

P (q0|q1) = P (wi|w′i).
Note that for each observed token wi, the probability

P (wi|w′i = wi) should be counted as well. Unlike [Mays
1991], where the probability of wi not being replaced is as-
signed with a tuning parameter, it is estimated by the effec-
tive non-replacement count:

P (wi|w′i = wi) =
Count(wi → wi)

Count(wi → w′i)
, (5)

where Count(wi → wi) = (Count(wi) − Count(wi → wi 6=
w′i))/2.

4.2 Language model
Language modeling in our approach utilizes an n-gram

language model that assigns the following probability to a
string of words:

P (w1 . . . wm) =

m∏
i=1

P (wi|wi−1
1 ) '

n∏
i=1

P (wi|wi−1
i−n+1) (6)

As shown in [15], language models solely built from query,
instead of the mixture of query and others, would be the

most predictive. Unlike grammatically strict natural lan-
guage for long text, the feature of user queries is even more
sparse. Therefore we only incorporate bigram features in the
language model. Remedies of the sparsity of bigram features
are achieved by Kneser-Ney smoothing technique[16].

In the scenario of web search for eCommerce, the terms
in the queries are not necessarily following a chronicle order.
If a user types “case iphone”, the intent is not far from the
query “iphone case”. For this reason, we also incorporate
the backward-bigrams in the model without enhancing the
number of parameters. Since the backward-bigram proba-
bility is not commensurate with the normal bigrams, these
probabilities are assigned with a free parameter λ:

P (w1 . . . wn) '
n−1∏
i=1

P (wi+1|wi)
n∏
i=2

P (wi−1|wi)λ (7)

Finally, instead of just choosing a candidate term replace-
ment with the highest probability, we only accommodate the
candidates that have higher probability estimated from the
language model than the original query. This is to remedy
over-replacing issue, that is, avoid null and low queries that
are not suitable for term replacement.

5. EXPERIMENT
We test how well our alternative query service can perform

on the eBay search engine. The evaluation scenario aims at
measuring the ability of the algorithm on recovering null and
low search result page and retrieve relevant items.

5.1 Data Preparation
We sampled two query sets of null and low queries from

search log for term dropping and replacement separately.
The training set for term dropping consists of one week of
user’s search and click data. The training data for the query
term replacement consists of query pairs taken from 11 weeks
of query logs. The sampled test set contains 3,000 null and
low queries from the consecutive week of the training data.

5.1.1 Query Term Dropping
In the experiment for term dropping, we leverage eBay’s

structure data dictionary for the product and attribute rec-
ognizing in the query tagging phase. When we perform
POS tagging for search queries, we employ the Stanford bi-
directional model. However, in the scenario of web search,
the pior probability of verbs is much less than ordinary new
articles, we perform an offline correction on top of the Stan-
ford POS tagging. With mined unigram and bigrams from
9 days’ search queries, the tagging for phrases are obtained
by the normalized mutual information:

MI(wi, wi+1) =
P (wi, wi+1)2

P (wi)P (wi+1)
(8)

5.1.2 Query Term Replacement
We remove all non-alphanumeric characters from the queries

or spelling corrections pairs. After filtering, there are 380
millions of query pairs. A collection of data statistics of the
training data is shown in Table 1.



Table 1: Statistics of unique n-grams in language
model.

1-gram 2-grams Noisy Channel

Parameters 2.8 million 29 million 18 million
Count 300 million 300 million 126 million

5.2 Results on Search Metrics
Our algorithm is fine-tuned in order to balance the ca-

pability of retrieving more items and their relevances. In
this section, we present the result of our experiment on the
search metrics.

5.2.1 Recovery of user behaviors
Users’ intent is reflected by their own query refinements

when they are not satisfied with the returned search result of
the original query. We first evaluate the probability of exact
predictions of our algorithm from one of the n-best query
rewrite candidates. The results are summarized in Table 2.

Table 2: Exact match between user’s refinements
and n-best query rewrite candidates.

Top-1 Top-5

Dropping 23.3% 54.6%
Replacement 31.9% 66.4%

5.2.2 Recall Enhancement
In Table 3, we show the number of retrieved items, R, of

the original query and the best rewritten query. For com-
parison, we also show the number for users’ rewritten query.
We are recovering the null and low search result pages in
general.

Table 3: Medium of number of retrieved items, R,
of original query (Or) , user’s rewritten query (Re)
and 3-best query rewrite candidates.

Or Re 1st 2nd 3rd

Dropping (R = 0) 0 8 8 5 12
Dropping (R ≤ 25) 2 42 75 45 75

Replacement (R = 0) 0 41 3 365 0
Replacement (R ≤ 25) 4 70 44 362 7

5.2.3 Category Overlap
The distribution of queries over shopping categories is key

indicator of high-level relevance for query rewrite systems
in eCommerce[10, 17]. It is a sufficiently strong signal that
the alternative query distorts user’s search intent if the in-
ferred level-2 categories are changed. The category overlap
is computed as the Jaccard similarity of up-to top 50 items
retrieved from the alternative query, C50

A , to the dominant
category of the original query, CO:

J(A,O) =

∣∣C50
A ∩ CO

∣∣
|C50
A ∪ CO|

(9)

In Table 4, we show the category overlap of top 3 sug-
gestions by term dropping and term replacement. Overall
71.5% (68.6%) of the items retrieved by top-1 term dropping
(replacement) suggestion has the same category with the

original query. Short queries with only 2-3 tokens are more
troublesome in term dropping with overlap rate 60.4%, as
dropping even one term may change the users’ intent largely.
For example, in the query “boden shoes 30”, dropping token
“30” (size 30) will alter the category from “kid’s clothing and
shoes” to “women’s shoes”. Similar issues can be relieved by
term replacement. Our result achieved an overall 74.3% cat-
egory overlap, compared to 74%, as reported in [10].1

Table 4: Category overlap between original query
and n-best query rewrite candidates.

1st 2nd 3rd overall

Term dropping 71.5% 65.5% 63.3% 66.8%
Term replacement 68.6% 93.1% 83.9% 81.9%

5.3 Qualitative Results
One important feature of our algorithms that lead to bet-

ter search experiences is the explicit mechanism to rewrite
search queries based on the context. In Table 5, we show
several examples of top query rewrite generated from the
algorithm.

As for term dropping, in the first query “tommy hilfiger”
is detected as brand and “sport bra” as an unbreakable noun
phrase. Our term dropping rewrites the query by dropping
“prep” “free” and misspelled word “shipp”. In query “10w
high quality speaker 6ohm”, our algorithms recognizes that
it contains two UOM constraints “10w”“6ohm” and relaxes
the query by dropping one of the UOM constraints. As men-
tioned in section 3.1, the brand names were disambiguated
by considering the shopping query. Though word “watt” of-
ten refers to a unit at most of the time, it is a high confident
brand when it occurs in queries in pottery&craft category.
In query “watt spagehetti platter”, our algorithm recognizes
“watt” as a china brand and keeps it in query rewriting. For
term replacement, the query “iphone watch” is rewritten as
“apple watch”, instead of “iphone clock”, because the bigram
probability Pb(watch|iphone )is much greater than the emis-
sion probability Pe(clock|watch). On the other hand, “am-
ber ball insect” is replaced by “amber sphere insect” because
the Kneser-Ney smoothing correctly compensate the proba-
bility of “amber sphere”, instead of recognizing “amber” as a
color.

6. CONCLUSION AND OUTLOOK
In this work, we have implemented algorithms that aim

to cure the null and low search results. In particular, we
showed that tagging technique developed in NLP could be
used to generate more context relevant subqueries, and that
additionally statistical natural language model provides a
promising avenue for making progress on the path to build-
ing full natural language understanding systems. Our nu-

1To our knowledge, the most relevant work to ours is Ref[10],
in which the authors reported an algorithm to generate
search sub-queries in the scenario of null search page with
additional taxa constraints. However, the result of this ap-
proach is not feasible to reproduce because the expense of
inferred exact taxa constrains of each query is maintaining a
dynamic database as large as the active inventory. For this
reason, this baseline is compared to the reported number in
the original literature, instead of reproducing its result for
the same query set.



Table 5: Examples of top query rewrite from the algorithms.

Or 1st

Dropping
tommy hilfiger prep sport bra nwt free shipp tommy hilfiter sport bra nwt

10w high quality speaker 6ohm 10w high quality speaker
watt spagehetti platter watt platter

Replacement
iphone watch apple watch

amber ball insect amber sphere insect

merical experiments indicate that user’s shopping experience
could be improved with higher level of engagement.

The improvements achieved by our algorithms are not
unique to vanilla null and low search pages, and are readily
applicable to even broader tasks with search engine, such as
extracting structured data from item titles, general query
reformulation and anomalous query synopsis. It could lead
to significant improvements in shopping experiences with
similar models especially with text data of less grammatical
strictness.
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