
GenerationMania: Learning to Semantically Choreograph

Zhiyu Lin, Kyle Xiao and Mark Riedl
Georgia Institute of Technology
Atlanta, Georgia, United States

{zhiyulin,kylepxiao}@gatech.edu, riedl@cc.gatech.edu

Abstract

Beatmania is a rhythm action game where players take on the
role of a DJ who performs music by pressing specific con-
troller buttons to mix ”Keysounds” (audio samples) at the cor-
rect time. Unlike other rhythm action games such as Dance
Dance Revolution, players must play certain notes from up
to eight different instruments. Creating game stages, called
”charts,” is considered a difficult and time-consuming task,
and in this paper we explore approaches in computer genera-
tion for these maps. We present a deep neural network based
process for automatically generating Beatmania charts for ar-
bitrary pieces of music. Given a raw audio track of a song,
we identify notes with its corresponding instrument, and use
a neural network to classify each note as playable or non-
playable. The final chart is produced by mapping playable
notes to controls. We achieve an F1-score on the core task of
Sample Selection that significantly beats LSTM baselines.

Introduction
Rhythm action games such as Dance Dance Revolution,
Guitar Hero, or Beatmania challenge players to press keys
or make dance moves in response to audio playback. The
set of actions timed to the music is a chart and is presented
to the player as the music plays. Charts are typically hand-
crafted, limiting gameplay to songs that already accompany-
ing charts. Learning to choreograph (Donahue, Lipton, and
McAuley 2017) addresses the problem of automatically gen-
erating a chart to accompany an a priori unknown piece of
music.

Beatmania IIDX (BMIIDX) is a rhythm action game, sim-
ilar to Dance Dance Revolution, with an active commu-
nity of homebrew chart choreographers (Chan 2004). Un-
like Dance Dance Revolution, players take on the role of a
DJ and must recreate a song by mixing audio samples by
pressing buttons as directed by on-screen charts. In BMI-
IDX, some notes from instruments are played automati-
cally to create a complete audio experience. That is, there
are “playable” and “non-playable” notes in each song. A
playable object is defined as that which appears visually
on the chart and is available for players to perform, with
a one-to-one correspondence to an audio sample; on the
other hand, a non-playable object is one that is automat-
ically played as part of the background music. In order to
get a high score as well as reconstruct the original music, a

player needs to press the correct button at the correct time
for playable objects, as well as not to press any button when
not being instructed. The controller used in this game series
is also unique: It features both 7 buttons and a “turntable”
control which the player scratches instead of presses.

A fundamental difference between BMIIDX and many
other rhythm action games like DDR is that BMIIDX is con-
sidered a game with keysounds, which means every object in
the chart has an audio sample counterpart which plays if and
only if the corresponding action is executed. This even in-
cludes non-playable objects–their actions are automatically
executed. For comparison, Guitar Hero (Miller 2009) is an-
other keysound based rhythm action game where each note
in the game represents a guitar maneuver. In BMIIDX, how-
ever, each note can represent an audio sample from different
instruments.

These differences in the underlying mechanics yields a
unique paradigm for creating BMIIDX charts. Requiring
a clear binding between objects and instrument placement
based on an underlying score means BMIIDX charts cannot
be overmapped. Overmapping, which happens frequently in
DDR, describes the situation where patterns of actions are
unrelated to instruments being played or occur when no note
is being played by any instrument at that moment. That is,
the creation of BMIIDX charts are strictly constrained by the
semantic information provided by the underlying music. We
refer to this challenge as “Learning to semantically choreo-
graph” (LtSC).

Due to the strict relationship between chart and music—as
well as other differences, such as charts with several simul-
taneous actions—the prior approach used to choreograph
charts for Dance Dance Revolution (Donahue, Lipton, and
McAuley 2017) cannot be used to generate BMIIDX charts.

We approach the challenge of learning to semantically
choreograph charts for BMIIDX as a four-part process. (1)
We train a neural network to identify the instruments used in
audio sample files as well as the timing of each note played
by each instrument. (2) We automatically create Challenge
Models for charts in our training set, which we find improves
chart generation accuracy. (3) We train a supervised neu-
ral network that translates a musical context into actions for
each time slice in the chart. Unlike Dance Dance Convolu-
tion (Donahue, Lipton, and McAuley 2017), which used an
LSTM, we find a feed forward model works well for learn-

Figure 1: A visualization of a measure of Beatmania IIDX homebrew chart, Poppin’ Shower. Notes in this screen shot are
labeled with their author-created filenames. Note that only objects in the columns starting with A are playable objects visible
to players; Others are Non-playable objects used as background.

ing to semantically choreograph when provided a context
containing the instrument class of each sample, intended dif-
ficulty label of each sample, beat alignment, and summary
of prior instrument-to-action mappings.1 (4) Notes predicted
to be playable by the network are mapped to controls, and
the final chart is constructed. In addition, we introduce the
BOF2011 dataset for Beatmania IIDX chart generation.

Background and Related Work
Procedural Content Generation (PCG) is defined as “the cre-
ation of game content through algorithmic means”. Machine
learning approaches treat content generation as (a) learning
a generative model and (b) sampling from the model during
creation time (Summerville et al. 2017; Guzdial and Riedl
2016; Summerville and Mateas 2015; Hoover, Togelius, and
Yannakis 2015; Summerville and Mateas 2016).

Beatmania IIDX
The homebrew community of BMIIDX is arguably one of
the oldest and most mature groups of its kind (Chan 2004),
with multiple emulators, an open format (Be-music Source2,
BMS) and peer-reviewed charts published in semi-yearly
proceedings. Despite the community striving to provide the
highest quality charts, the process of generating such a chart
is very demanding, and due to the strict semantic bindings,
usually the author of the music or a veteran chart author has
to assist in the generation of the chart. Many aspiring ama-
teur content creators start by building charts for rhythm ac-
tion games without keysounds (i.e. Dance Dance Revolution
charting is considered by the community to be easier). Fur-
thermore, there is a strong demand for customized charts:
players have different skill levels and different expectations
on the music-chart translation, and such charts are not al-
ways available to them.

1A fixed window feed-forward network can often outperform a
recurrent network when short-term dependencies have more impact
than long-term ones (Miller and Hardt 2018).

2https://en.wikipedia.org/wiki/Be-Music_
Source

Figure 1 shows an example of a BMIIDX homebrew
chart. The objects in the “A” columns are playable objects
with keysounds.

Rhythm Action Game Chart Choreography
There are a handful of research efforts in chart choreogra-
phy for rhythm action games, including rule-based gener-
ation (OKeeffe 2003; Smith et al. 2009) and genetic algo-
rithms using hand-crafted fitness functions (Nogaj 2005).
Dance Dance Convolution is the first deep neural network
based approach to generate DDR charts (Donahue, Lipton,
and McAuley 2017). Donahue et al. refer to the problem of
learning chart elements from data as Learning To Choreo-
graph. Alemi et al. (2017) suggest that this approach can
reach real-time performance if properly tuned.

Dance Dance Convolution uses a two-stage approach. On-
set detection is a signal analysis process that determines the
salient points in an audio sample (drum beats, melody notes,
etc.) where steps should be inserted into a chart. Step selec-
tion uses a long-short term memory neural network (Hochre-
iter and Schmidhuber 1997) to learn to map onsets to spe-
cific chart elements. BMIIDX chart generation differs from
DDR in that the primary challenge is determining whether
each note for each instrument should be playable as a stage
object or non-playable.

Data
We compiled a dataset of songs and charts from the “BMS
Of Fighters 2011” community-driven chart creation initia-
tive. During this initiative, authors created original music
and charts from scratch. The dataset thus contains a wide
variety of music and charts and was composed by various
groups of people. Although the author is not required to cre-
ate a defined spread of different charts for a single piece of
music for the event, authors frequently build 3 to 4 charts for
each song. The dataset, which we refer to as “BOF2011”,
consists of 1,454 charts for 366 songs. Out of 4.3M total ob-
jects, 28.7%, or 1.24M of them, are playable ones. Table 1
summarizes the dataset. We will release the dataset.

We find that modeling the difficulty of charts plays an

Table 1: BOF2011 dataset summary.
Songs 366
Charts 1,454
Charts per song 3.97
Unique audio samples 171,808
Playable objects 1,242,394
Total objects 4,320,683
Playable object % 28.7

important role in learning to semantically choreograph, an
observation also made by (Donahue, Lipton, and McAuley
2017). Many of the charts in our dataset are relatively easy,
in which non-playable objects dominate. Furthermore, a
many of the same samples are repeatedly used, such as drum
samples placed at nearly every full beat throughout a chart,
resulting in only 171k unique audio samples in our dataset.
The ratio of playable objects to the total objects is not the
only factor that determines the difficulty of the chart. Per-
ceived difficulty of charts can also be influenced by:

• Notes that follow a rhythmic pattern;

• Groupings of notes that requires hand positions to play
accurately;

• Physical strain caused by a long stream of high density
patterns;

• ”Visual effects”–camera perspective changes causing sud-
den accelerating/stopping effects;

• A combination of the above in a small time window.

Chart authors label their charts according to difficulty
level. However, such labels are based entirely on the author’s
perception of the chart difficulty. For example, it is common
for some expert authors’ charts to be labeled as “normal”
levels despite being more difficult than other “difficult” lev-
els. Although the original Beatmania IIDX labels used the
monikers “normal”, “hyper”, and “another”, authors can ar-
bitrarily assign any label to describe the difficulty of their
chart.

Methods
Our chart generation system for BeatMania IIDX, which we
call GenerationMania, uses a pipeline consisting of the fol-
lowing tasks:

1. Sample Classification — Identifying the instrument used
in audio samples;

2. Challenge Modeling — Establish structure of each part in
the chart;

3. Sample Selection — Classifying audio samples into
playable and non-playable;

4. Note Placement — Assigning controls to each playable
keysound.

We realize that the task of generating a music score from raw
audio (which is essentially audio segmentation) can be well
decoupled from generating BMIIDX charts using a music

score. Based on the assumption that the music score is avail-
able, we focus on Sample Classification, Challenge Model-
ing and Sample Selection which is unique to BMIIDX stage
generation.

Sample Classification
Sample classification is a process by which notes from dif-
ferent instruments in the audio samples are identified. The
BMS file format associates audio samples with timing infor-
mation. That is, a chart is a set of sample-time pairs con-
taining pointers to the file system where an audio file for
the sample resides. Unfortunately, in the BMS file format
there is no standard for how audio samples are organized
or labeled. However, many authors do name their audio
sample files according to common instrument names (e.g.,
“drums.ogg”). The goal of sample classification is to label
each sample according to the instrument based on its wave-
form. The predicted labels will be used to create one-hot
encodings for each sample for the sample selection stage on
the pipeline.

We construct a training set by gathering audio samples to-
gether with similar instrument names according to a dictio-
nary and use the most general instrument name as the super-
vision label. We use the 27 most common categories for la-
beling. To ensure that we don’t overfit our classifier we train
on an alternate dataset, “BMS of Fighters Ultimate” (BOFU)
that does not share any music or charts with BOF2011, with
a partially labeled dataset having a total of 60,714 labeled
samples. Not every audio sample has a classifiable name,
which we count as unlabeled samples.

We process the audio samples into a spectrogram repre-
sentation and transform it into “audio fingerprints,” which is
a vector of mel-frequency cepstral coefficients (MFCC) (Lo-
gan and others 2000) of the log-magnitude mel-scale wave
amplitudes over time. This mapping is done via a linear co-
sine transform. We also fix the bit rate of the sound to 16k, so
that the representation has a consistent temporal resolution.
This pipeline is shown in figure 3.

For our model, we followed the method described in
(Sainath and Parada 2015). We feed the fingerprints through
two 2D convolutional layers, each with a bias. Each of the
layers is followed by a Rectified Linear Unit (ReLU) acti-
vation function with the next abstracted layer generated via
max-pooling. Finally, we feed the results into another fully
connected layer, which then outputs a one-hot encoding of
the predicted category. We use a gradient descent optimizer
with 50% dropout rate and a step size of 0.01.

After training on the BOFU dataset, we achieved an 84%
accuracy based on a 10% testing set.

Challenge Modeling
Te compute the difficulty level of each object in each chart
in the training set, we use a rule-based technique for assess-
ing the difficulty of each object in a chart. This technique
is adapted from the Osu! rhythm action game.3 The diffi-

3https://github.com/ppy/osu/blob/
master/osu.Game.Rulesets.Mania/Difficulty/
ManiaDifficultyCalculator.cs

Figure 2: The GenerationMania pipeline.

Figure 3: The Sample Classification Pipeline.

culty for each object of a given chart is weighted sum of the
individual strain and the overall strain. Individual strain is
calculated as the interval between keysounds mapped to the
same control on an exponentially decaying scale such that
short intervals have higher strain values than long intervals.
Overall strain is calculated as the number of controls that
must be activated simultaneously. In addition, challenging
patterns have prolonged effects on strain values for objects
directly following them. For each 0.4 second window, the
maximum strain value becomes the difficulty of that window
and every object receives that difficulty. An overall difficulty
of the chart is generated by a weighted sum of highest local
maximum strain values throughout.

Sample Selection
Sample selection is the task of determining which objects
in the music should be playable and which should be non-
playable. The input features for each object are as follows:
• Difficulty: A 1 × 1 value of difficulty from the difficulty

curve;
• Audio Features: A 1 × 27 one-hot representation of the

instrument class that the audio sample belongs to;
• Beat Alignment: A 1× 1 value ranging from 0 to 15 rep-

resenting which 16th segmentation out of a beat this note
resides in, with 0 representing the note on a beat. This
in most occasions represents a per-64th-note granularity
in a chart having 4/4 time signature, which is around 25
milliseconds on a chart at 150 BPM (Beat Per Minute);

• Summary: A 1 × 270 vector summarizes the playability
of different samples prior to the current object. For each
instrument class, a 1× 2 vector gives the probability that
that instrument was playable or non-playable in a given

window of time, as computed by the number of times it
was playable/non-playable divided by the number of ap-
pearances. This gives a 1 × 54 vector for a time window.
Five different time windows are provided covering 2, 4, 8,
16, and 32 beats.

Summarization is a technique popularized by
WaveNet (Oord et al. 2016) to factor prior information
from a fixed window at different time scales into a cur-
rent prediction. At training time and inference time, the
summary information is derived from the training data,
except for the self-summary baseline, for which summary
information is based on previous generation results.

Our sample prediction model is a feed-forward network
consisting of 4 fully connected ReLU layers of dimensions
64, 32, 16, and 2. To perform sample selection, we pick the
output node with the highest activation corresponding to the
playable or non-playable classes. Due to the class imbalance
that most of the objects are non-playable, we found that a
weighted Mean Squared Error loss function helps improve
the performance of the training.

At training time the difficulty curve is derived from the
dataset so that that sample selection network can be trained
to reconstruct the input data. At generation time, it can be
provided by the user.

Note Placement
For each object at each timestep that has been classified as
playable, we map it to one of 8 controls. Any process that
doesn’t map objects to the same control at the same time
is sufficient to make a chart playable, thus note placement is
not a significant contribution in this paper. We created a sim-
ple module that uses the same framework as Sample Selec-
tion, but trained to predict note placements as labels instead

of playability. A post-processing step checks and rearranges
the chart so that we never map two objects that occur in too
short of an interval to the same control.

Experiments
In this section, we evaluate variations of our sample selec-
tion model against a number of baselines. We used a super-
vised evaluation metric: by embedding a challenge model
extracted from the ground truth, we measure how similar the
generated chart is compared to the original. We establish two
guidelines for a good generation model: it should not only
predict playables when they should be presented to players
(high recall), but also nonplayables when they should be in
the background (high precision).

We applied 80%,10%,10% split on training, validation
and testing data. Since the charts for the same music shares
similar traits, we ensured that such charts are not both in the
training split and the testing split. We trained all the mod-
els using the training split and reported all the results on the
testing split.

We use the following baselines:

• Random: classifies a given object as a playable with a
probability of 0.3, chosen to give the best result;

• All Playable: classifies all objects as a playable;

• LSTM baseline: a sequence to sequence model
(Sutskever, Vinyals, and Le 2014) with forget gates and
a hidden and output layer size of 2. The highest activated
output is selected as the prediction.

The LSTM baseline was chosen because Dance Dance Con-
volution (Donahue, Lipton, and McAuley 2017) used an
LSTM network. However, it is impossible to directly com-
pare the approach used in DDC to our feed forward model
because the task and the inputs between Dance Dance Rev-
olution (non-keysound based game) and BeatMania IIDX
(keysound-based game) are different enough that substantial
changes to the DDC algorithm are required.

Our feed-forward sample selection model and the LSTM
baseline are configured with different combinations of input
features drawn from: audio features (instrument labels), dif-
ficulty curve, beat alignment, and summary vectors. We also
experiment with the use of summary vectors; we refer to the
models without summary inputs as “free generation”. There
is one special case of a free generation model in which we
allow the model to self-summarize. That is, we use summary
data based on what has been generated earlier in the chart.

For all neural network modules, we learn parameters by
minimizing a weighted mean squared error (MSE) with
weight of 1 to playables and 0.2 to non-playables. We used
a mini-batch of 128 for the feed forward model; Due to the
need for processing very long sequences, the LSTM model
is trained by each sequence and is run in CPU mode. The
feed forward model satisfies this criteria in around 6 hours
in GPU mode while the LSTM model takes far longer at
around 100 hours, on a single machine using Intel i7-5820K
CPU and NVIDIA GeForce 1080 GPU.

Results
Following the two guidelines we pointed out for evaluating
the models, we report the performance of these Sample Se-
lection models using precision, recall, and F1-score — a har-
monic mean of precision and recall. We calculate each met-
ric per chart, then report the average of these values.

The results are shown in Table 2. Without summaries,
the LSTM baseline performs the best, with a precision
approaching that of models provided with summary data.
LSTMs make use of history while free generation feed-
forward models can only make decisions based on the cur-
rent time step. With summaries, all the models receive a
significant boost in their average performance. Notably, the
feed-forward models with summary data has a higher re-
call, which means it produces much fewer false negatives.
The LSTM baseline also improved with summary data but is
hampered by low recall. Although LSTMs are usually used
with generating long sequence of data, we believe the lack of
data and high variance in each sequence causes it to perform
worse in our task.

The information contained in the summary plays a role
in the performance. We tried several different ways to cre-
ate summaries which gave us different levels of performance
boosts. The summary representation presented provided the
best boost to both the feed forward model and the LSTM.
Additionally, we considered an auto-encoder structure for
LSTM model, which tries to auto-summarize the chart. We
also considered multi-layer LSTM structures like in Don-
ahue et al. (2017). However, these models either overfit quite
quickly or have unrealistic computational requirements.

In our feed-forward model with summary, per-object dif-
ficulty information accounts for a 7.7% improvement in the
F1-score. While the LSTM produced the highest precision,
it is at the expense of recall, meaning in practice that it
produced a lot of charts where there are notes where there
shouldn’t be. For a rhythm action game, one needs high pre-
cision and high recall.

As with Donaue et al. (2017), we also observe that all gen-
erators varied in performance on charts with different diffi-
culty. We analyzed the effect of chart difficulty on our best
performing model, the feed forward model with summary.
We sorted all charts in the testing set by their difficulty then
examined single-chart performance. The result is summa-
rized it in figure 4. We observed a larger variance of perfor-
mance in easier charts, and a stable performance on harder
charts.

Discussion and Future Work
A side effect of how beat-phase information is organized in
our specific task is that we were unable to include ∆-beat
information in our models. ∆-beat is a feature that measures
the number of beats between the previous and next step.
They were used in DDC (Donahue, Lipton, and McAuley
2017). However, a naive approach of “finding the next note”
will not work for our task. This is mainly because (1) sev-
eral semantically unrelated notes can be placed at the exact
same time and (2) notes can be placed in very short intervals
(such as when representing a glissando). These issues pre-

Table 2: Results for playable classification experiments, presented in mean and standard deviation.
Model F1-score Precision Recall

Reference Baselines
Random 0.291± 0.089 0.335± 0.200 0.299± 0.020
All Playable 0.472± 0.207 0.335± 0.199 1.000± 0.000
Free Generation Models
FF Audio Features + Difficulty Curve + Beats 0.253± 0.143 0.523± 0.266 0.179± 0.113
FF Audio Features + Difficulty Curve + Beats + Self Summary 0.368± 0.198 0.422± 0.213 0.392± 0.258
LSTM + Audio Features + Difficulty Curve + Beats 0.424± 0.154 0.767± 0.176 0.353± 0.248
Generation with Summary
FF Audio Features + Beats + Summary 0.621± 0.206 0.760± 0.110 0.568± 0.254
FF Audio Features + Difficulty Curve + Beats + Summary 0.698± 0.162 0.778± 0.112 0.649± 0.197
LSTM + Audio Features + Difficulty Curve + Beats + Summary 0.499± 0.225 0.805± 0.121 0.405± 0.237

Figure 4: The performance of feed forward model (with
summary) regarding difficulty of the ground truth chart.

vent effective ∆-beat detection in granularity of single note.
Perhaps grouping notes based on their musical semantic re-
lations can be a solution to this.

Our Challenge Model technique is relatively simplistic
and there is room for expansion. The key assumption of
this model is that for a given arrangement of objects, every
player perceives exactly the same level of challenge. How-
ever, it is possible that players have different playing level
and have individual differences. This causes problems with
evaluating challenge level of asymmetric and/or hand-biased
patterns since every control is treated exactly the same. A
derivation of this assumption is that “easy” charts should be
treated the same as harder charts, which proves to be particu-
larly problematic and may be a cause of poor generation per-
formance on “easy” charts. We observed that unlike harder
charts, many “easy” charts are designed for newcomers to
the game, which in turn have reduced challenging artifacts
and focused notes representing only the melody of the mu-
sic. This results in drastically different charting style, which
may explain why our Sample Selection classifier performs
worse on them. Because the Challenge Model was hand-
authored using a particular dataset (Osu! stages), its perfor-
mance on a different dataset may deteriorate. The Challenge

Model is also sensitive to parameter tuning. A model-free
approach or a player experience based system may help in
this scenario.

Aside from that, the Challenge Model and summary can
be extracted from charts provided by players to allow for
a degree of controllability of the system. Our feed for-
ward model even allows generation on-the-fly. This make
it possible for our pipeline to be used in tasks such as dy-
namic challenge adaptation, where the challenge level of
the stage changes based on player’s performance and pref-
erences (Zook and Riedl 2015), and style transfer, where
two charts blend with each other(Johnson, Alahi, and Fei-
Fei 2016). Furthermore, a Challenge Model that is human-
understandable allows player to easily manipulate it to their
will, which in turn may facilitate human participation in this
process, allowing Computational Co-creativity applications
which would be especially helpful to content creators. We
don’t know if our system meets the player’s expectations yet;
We leave all of these as future work.

Conclusions
Choreographing Rhythm Action Game stages is a challeng-
ing task. BMIIDX adds even more challenge by posing extra
semantic constraints through one-to-one audio-sample-to-
playable-object relation. We have established a pipeline for
Learning to Semantically Choreograph, provided a dataset
for reproducible evaluations, and showed that a feed for-
ward neural network model with challenge modeling and
summary information performs well on satisfying these new
constraints. We further discuss how users can inject a degree
of control over the algorithm by inputting a customized or
manually edited difficulty curve and biasing the summary
information.

Learning to semantically choreograph is essential to gen-
erating keysound based game charts. However, incorporat-
ing semantics may potentially also be used to improve gen-
eration on non-keysound based games such as Dance Dance
Revolution, where it is possible to overmap actions and
still achieve high accuracy according to automated metrics.
Aside from solving a challenging creative task, intelligent
systems such as GenerationMania can be of benefit to home-
brew chart choreography communities by overcoming skill
limitations. The ability to control the generative process is
an essential part of the adoption of such systems.

References
Alemi, O.; Françoise, J.; and Pasquier, P. 2017. GrooveNet:
Real-Time Music-Driven Dance Movement Generation us-
ing Artificial Neural Networks. networks 8(17):26.
Chan, A. 2004. CPR for the Arcade Culture.
Donahue, C.; Lipton, Z. C.; and McAuley, J. 2017. Dance
Dance Convolution. In Proceedings of the 34th Interna-
tional Conference on Machine Learning.
Guzdial, M., and Riedl, M. 2016. Game level generation
from gameplay videos. In Twelfth Artificial Intelligence and
Interactive Digital Entertainment Conference.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Hoover, A. K.; Togelius, J.; and Yannakis, G. N. 2015. Com-
posing video game levels with music metaphors through
functional scaffolding. In First Computational Creativity
and Games Workshop. ACC.
Johnson, J.; Alahi, A.; and Fei-Fei, L. 2016. Percep-
tual losses for real-time style transfer and super-resolution.
In European Conference on Computer Vision, 694–711.
Springer.
Logan, B., and others. 2000. Mel Frequency Cepstral Coef-
ficients for Music Modeling. In ISMIR, volume 270, 1–11.
Miller, J., and Hardt, M. 2018. When Recurrent
Models Don’t Need To Be Recurrent. arXiv preprint
arXiv:1805.10369.
Miller, K. 2009. Schizophonic Performance: Guitar Hero,
Rock Band, and Virtual Virtuosity. Journal of the Society
for American Music 3(4):395429.
Nogaj, A. F. 2005. A genetic algorithm for determining
optimal step patterns in Dance Dance Revolution.
Oord, A. v. d.; Dieleman, S.; Zen, H.; Simonyan, K.;
Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.; and
Kavukcuoglu, K. 2016. WaveNet: A Generative Model for
Raw Audio. In SSW, 125.
OKeeffe, K. 2003. Dancing monkeys. Masters project 1–66.
Sainath, T. N., and Parada, C. 2015. Convolutional neural
networks for small-footprint keyword spotting. In Sixteenth
Annual Conference of the International Speech Communi-
cation Association.
Smith, G.; Treanor, M.; Whitehead, J.; and Mateas, M. 2009.
Rhythm-based Level Generation for 2D Platformers. In Pro-
ceedings of the 4th International Conference on Foundations
of Digital Games, FDG ’09, 175–182. New York, NY, USA:
ACM.
Summerville, A., and Mateas, M. 2015. Sampling Hyrule:
Sampling Probabilistic Machine Learning for Level Genera-
tion. In Conference on Artificial Intelligence and Interactive
Digital Entertainment.
Summerville, A., and Mateas, M. 2016. Super mario as a
string: Platformer level generation via lstms. arXiv preprint
arXiv:1603.00930.
Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgård, C.;
Hoover, A. K.; Isaksen, A.; Nealen, A.; and Togelius, J.

2017. Procedural Content Generation via Machine Learn-
ing {(PCGML)}. CoRR abs/1702.0.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to
Sequence Learning with Neural Networks. In Ghahramani,
Z.; Welling, M.; Cortes, C.; Lawrence, N. D.; and Wein-
berger, K. Q., eds., Advances in Neural Information Process-
ing Systems 27. Curran Associates, Inc. 3104–3112.
Zook, A., and Riedl, M. O. 2015. Temporal game challenge
tailoring. IEEE Transactions on Computational Intelligence
and AI in Games 7(4):336–346.

