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Abstract

Domain-configurable planning and plan recognition ap-
proaches such as Hierarchical Task Network and Combina-
tory Categorial Grammar-based (CCG) planning and plan
recognition require a domain expert to handcraft a domain
definition for each new domain in which we want to plan
or recognize. This paper describes an approach to automat-
ically extracting these definitions from plan traces acquired
from Real-Time Strategy (RTS) game replays. Specifically,
we present a greedy approach to learning CCGs from sets
of plan trace, goal pairs that extends prior work on learning
CCGs for plan recognition. We provide an empirical evalua-
tion of our learning algorithm in the challenging domain of
RTS games. Our results show that we are able to learn a CCG
that represents larger sequences of actions, and use them for
plan recognition. Our results also demonstrate how scaling
the size of the plan traces affects the size of the learned rep-
resentation, which paves the road for interesting future work.

Introduction
Domain-configurable planning and plan recognition have
been used in various applications such as robotics and
games. Each approach requires a domain definition that rep-
resents knowledge about the structures of plans and actions
in an application domain. This knowledge can be repre-
sented using Planning Domain Definition Language (Mc-
Dermott et al. 1998), Hierarchical Task Networks (Erol,
Hendler, and Nau 1994), and Combinatory Categorial Gram-
mars (CCG) (Steedman 2001). CCGs are a grammar formal-
ism that has been shown to effectively capture phenomenon
in real-world language (Geib and Steedman 2007) and more
recently represent and recognize plans in the form of the
ELEXIR framework (Geib 2009; Geib and Goldman 2011).

Past work on CCG-based planning and plan recognition
used handcrafted domain definition, which can be time-
consuming and error-prone to construct. Recent work in
form of LexLearn successfully learned CCGs by enumer-
ating all possible abstractions for a set of plan traces (Geib
and Kantharaju 2018) given a set of templates. LexLearn
was then later used to learn reactive behaviors for the Real-
Time Strategy Game µRTS, and applied to the problem of
adversarial planning (Kantharaju, Ontañón, and Geib 2018).
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However, exhaustive enumeration may not scale well when
learning from long plan traces.

This paper presents a greedy CCG learning algorithm
called LexGreedy motivated by work on probabilistic HTN
learning by Li et al. (2014) that improves the scalability of
learning, allowing knowledge extraction from longer plan
traces. Our learning algorithm employs a greedy approach
to abstract common sequences of actions from a set of plan
trace, goal pairs, and then estimates probabilities for each
abstraction. We evaluate our approach for CCG-based plan
recognition in the domain of RTS games using the AI RTS
testbed µRTS. RTS games provide a challenge for both CCG
learning and plan recognition as strategies employed by RTS
game-playing agents can be long, and the learned CCG rep-
resentation must be compact to handle these long plans.

This paper is structured as follows. First, we provide some
related work in the area of CCG learning and hierarchi-
cal plan learning. Second, we provide a brief description
of our application domain µRTS. Third, we provide back-
ground knowledge on CCGs, CCG-based plan recognition,
and CCG learning. Fourth, we describe our greedy CCG
learning algorithm LexGreedy . Fifth, we provide our exper-
imental evaluation and analysis. Finally, we conclude with
directions for future work.

Related Work
There are two major areas of related work: CCG learn-
ing for Natural Language Processing (NLP) and plan hi-
erarchy learning. Zettlemoyer and Collins (2005) use su-
pervised CCG learning to learn a mapping between sen-
tences and their semantic representations. Thomforde and
Steedman (2011) presents Chart Inference, an unsuper-
vised learner for deriving structured CCG categories for un-
known words using a partial parse chart. Bisk and Hock-
enmaier (2012) introduce an unsupervised learner to gen-
erate categories from part-of-speech tagged text that relies
on minimal language-specific knowledge. Kwiatkowski et
al. (2012) define a learning approach for learning sentence
and semantic representation pairs from child utterances.

Our work differs from CCG learning for NLP in that
the learned CCG represents plan knowledge about different
strategies employed in RTS games instead of the syntactic
and semantic structure of sentences. Specifically, this work
learns plan hierarchies that abstract common sequences of



actions into abstract plan structures like those in Hierar-
chical Task Network (HTN) learning. Nejati, Langley, and
Konik (2006) learns teleoreactive logic programs (Langley
and Choi 2006), a specialized class of HTNs, from expert
traces. Hogg, Muñoz Avila, and Kuter (2008) present HTN-
Maker, an HTN learning algorithm that learns HTN meth-
ods from analyzing the state of the world before and af-
ter a given sequence of actions. Hogg, Kuter, and Muñoz-
Avila (2010) build off HTN-Maker and introduces Q-Maker,
a learning algorithm that combines HTN-Maker with rein-
forcement learning. Zhuo, Muñoz-Avila, and Yang (2014)
presents HTNLearn which builds an HTN from partially-
observable plan traces.Gopalakrishnan, Muñoz-Avila, and
Kuter (2016) introduce Word2HTN, which learns both tasks
and methods using Word2Vec (Mikolov et al. 2013). Nguyen
et al. (2017) present a technique for learning HTNs for
Minecraft, a sandbox video game, using Word2Vec and Hi-
erarchical Agglomerative Clustering.

The closest related work to our learning approach is
that of Li et al. (2014), who successfully learns probabilis-
tic HTNs using techniques from Probabilistic CFG learn-
ing. They abstract both looping constructs and frequent se-
quences of actions given a set of non-parameterized se-
quences of actions. Our work, on the other hand, learns a
CCG representation from parameterized actions, but only
abstracts common sequences of actions.

µRTS
µRTS1 is a minimalistic Real-Time Strategy game designed
to evaluate AI research in an RTS setting (Ontañón 2013).
Figure 1 shows two scripted agents playing against each
other in µRTS. Compared to complex commercial RTS
games such as StarCraft, µRTS still maintains those prop-
erties of RTS games that make them complex from an AI
point of view (i.e. durative and simultaneous actions, real-
time combat, large branching factors, and full or partial ob-
servability). For the purposes of this paper, µRTS games
are deterministic, and fully observable. µRTS has been used
in previous work to evaluate RTS AI research, (Shleyfman,
Komenda, and Domshlak 2014; Ontañón and Buro 2015)
and has also been used in AI competitions.2

This work specifically focuses on learning different strate-
gies employed by scripted game agents. In this work, we
use a collection of scripted game agents to generate plan
traces. One such game agent uses a strategy called Rush.
Rush strategies consist of quickly constructing many units
of a specific type, and having all those units attack the en-
emy. An example of a rush strategy from the commercial
RTS game Starcraft is Zerg rush. Plan traces are constructed
using replay data from gameplay of the scripted agents. A
replay is a trace of a game represented as a sequence of
state, action tuples containing the evolution of the game state
as well as the actions performed by each player during the
game. We extract sequences of actions from these replays

1https://github.com/santiontanon/microrts
2https://sites.google.com/site/

micrortsaicompetition/home

Figure 1: Screenshot of µRTS gameplay

to create plan traces. We provide a formal definition of plan
traces and replays in the next section.

Background
This section describes a restricted form of Combinatory Cat-
egorial Grammars (CCGs), using the definition of CCGs
from Geib (2009), and defines CCG-based plan recognition,
plan traces and replays. Each action in a domain is associ-
ated with a set of CCG categories C, defined as follows:
Atomic categories: A set of category units A, B, C... ∈ C.
Complex categories: Given a set of atomic categories C,

where Z ∈ C and {W, X, Y...} 6= ∅ and {W, X, Y...} ∈ C,
then Z/{W, X, Y...} ∈ C and Z\{W,X, Y, ...} ∈ C.

Intuitively, categories are functions that take other functions
as arguments. Atomic categories are zero-arity functions,
whereas complex categories are curried functions (Curry
1977), defined by two operators: “\” and “/”. These op-
erators each take a set of arguments (the categories on the
right hand side of the slash, {W, X, Y...}), and produce the
result (the category on the left hand side of the slash, Z).
We define the root of some category G (atomic or complex)
if it is the leftmost atomic category in G. For example, for
the complex category ((C)\{A})\{B}, the root would be C.
The slash operators define ordering constraints for plans, in-
dicating where other actions are to be found relative to an
action. Those categories associated with the forward slash
operator are after the action, and those associated with the
backward slash are before it.

CCGs are lexicalized grammars. As such, we define a
CCG by a plan lexicon, Λ = 〈Σ, C, f〉, where Σ is a finite
set of action types, C is a set of CCG categories, and f is a
mapping function such that ∀a ∈ Σ,

f(a)→ {ci : p(ci|a), ..., cj : p(cj |a)}

where ci . . . cj ∈ C and ∀a
∑j
k=i p(ck|a) = 1. Given a

sequence of actions, these probabilities represent the like-
lihood of assigning a category to an action for plan recog-
nition. For more details on these probabilities and how they
are used for plan recognition, see Geib (2009).

Similar to the work by Geib and Kantharaju (2018), we
assume that all complex categories are leftward applicable
(all arguments with the backward slash operator are dis-
charged before any forward ones), and we only consider



Train(U1,T)

Train(U1,T)

Harvest(U4,R)

Harvest(U4,R)

WrkRush

Train(U1,T) Attack(U2,U3) Harvest(U4,R)

Figure 2: Hierarchical Representation of CCG

complex categories with atomic categories for arguments.
We also extend the definitions of action types and atomic
categories to a first-order representation by introducing pa-
rameters to represent domain objects and variables. A dis-
cussion of CCGs with parameterized actions and categories
is presented by Geib (2016).

One major benefit of using CCGs is that the same repre-
sentation can be used to plan and recognize goals. In this
work, goals correspond to strategies employed by scripted
agents. Below is an example CCG representation with pa-
rameterized actions and categories for executing and recog-
nizing a Worker Rush strategy in µRTS. We let Σ = {Train,
Attack, Harvest} and C = {Train, Harvest, WrkRush}:
f(Train(U1, T ))→ {Train(U1, T )) : 1}
f(Attack(U2, U3))→

{((WrkRush)/{Harvest(U4, R)})\{Train(U1, T )} : 1}
f(Harvest(U4, R))→ {Harvest(U4, R)) : 1}
The action types Train(U1, T ), Attack(U2, U3), and Har-
vest(U4, R) each have parameters representing different
unitsU1, U2, U3, U4, unit type T , and resourceR. Since each
action has only a single category, P (ci|a) = 1.

Figure 2 provides a hierarchical representation of the
above plan lexicon. Action types are denoted by ovals
and categories are denoted by rectangles. The atomic cat-
egories “Train” and “Harvest” breaks down “Train” and
“Harvest” into the action types Train and Harvest. The
complex category “((WrkRush)/{Harvest})\{Train}” as-
sociated with the action type Attack, breaks down the strat-
egy “WrkRush” into the following sequence of atomic cat-
egories and actions: 〈Train,Attack,Harvest〉. We note that
CCG categories are similar to methods from the Hierarchical
Task Network literature (Erol, Hendler, and Nau 1994).

We now define a few terminology relevant to CCG-based
plan recognition and learning. We define a plan π as a se-
quence of observed actions a1, a2, . . . am and a partial plan
as a subsequence of these actions a1, a2, . . . ak, 1 ≤ k ≤ m.
A partial plan can be a plan. Next, we define the CCG plan
recognition problem as PR = (π′,Λ, s0), where π′ is a par-
tial plan, Λ is a CCG, and s0 is the initial state of the world
from where π′ was executed. The solution to the plan recog-
nition problem is a pair (G, π′′), where G is the predicted
goal of π′, and π′′ is the predicted sequence of actions such
that π′+π′′ results inG. We refer readers to Geib (2009) for
a description on how CCGs are used for plan recognition.

A plan trace is a plan that is fed into a learning algorithm.
Recall that actions in a plan trace are extracted from replay

data. For a given two-player game, replay data is defined as a
sequence of game state and action pairs seen over the course
of a game session, R = [(s0, a

1
0, a

2
0), ..., (sn, a

1
n, a

2
n)],

where i is a game frame, si is the current game state and
a1
i and a2

i are the actions done by player 1 and player 2.
From this, we can create two plan traces: one for player 1
(a1

0, a
1
1, . . . , a

1
n) and one for player 2 (a2

0, a
2
1, . . . , a

2
n). We

ignore states s0 . . . sn because we do not learn state infor-
mation for our representation, and leave this to future work.

Greedy Learning of Combinatory Categorial
Grammars

Prior work on CCG planning and plan recognition required
hand-authored domain definitions representing the structure
of plans in a domain. This process can be time consuming
and error-prone for complex domains. Recent work by Geib
and Kantharaju (2018) used LexLearn learn these CCGs.
However, LexLearn was not able to scale to longer plan
traces because it enumerated all possible abstractions for
the set of plan traces, and relied on a breadth-first (BF)
search based plan recognition algorithm. The complexity of
BF plan recognition lies in the branching factor (average
number of categories per action) and length of the plan. If
the branching factor and plan length are high enough, plan
recognition becomes intractable. In terms of CCGs, scaling
means having a low average number of categories per action
while still recognizing plans with high accuracy. The pur-
pose of this work is to scale learning of CCGs to longer plan
traces. This grammar can then be used for CCG planning
and plan recognition.

We describe our greedy approach for generating action
category pairs from plan traces, motivated by Li et al. (2014)
that reduces the number of learned abstractions and does not
rely on a plan recognizer. Our learning process is split into
two processes: generating action category pairs (Greedy-
Gen), and estimating action category pair conditional proba-
bilities (GreedyProbEst). Algorithm 1 is the high level pseu-
docode for our learning algorithm, LexGreedy , where Λ
refers to the learned CCG.
LexGreedy takes two inputs: an initial lexicon, Λinit, and

a set of training pairs, D = {(πi, Gi) : i = 1...n}, where
each πi is a plan trace, a1, ..., am, that achieves some top-
level task, denoted by the atomic category Gi. For the do-
main of µRTS, Gi denotes strategies employed by game-
playing agents. LexGreedy assumes that each each πi results
in its respective Gi, and the initial lexicon, Λinit, contains a
single atomic category for each action type. The atomic cat-
egory’s parameters are identical to those of its action type.

Greedy Category Generation
The task of GreedyGen is to hypothesize a set of complex
categories that yield common sequences of actions from a
set of plan traces πi ∈ D. This is divided into two steps:
hypothesizing abstractions (tasks), and generating complex
categories given these tasks. We borrow the term tasks from
the HTN literature, which is a symbolic representation of an
activity in a domain (Hogg, Kuter, and Muñoz-Avila 2010).
Algorithm 2 outlines GreedyGen in high-level pseudocode.



Algorithm 1 Greedy Learning Algorithm - LexGreedy
1: procedure LexGreedy(D , Λinit)
2: Λ = GreedyGen(D ,Λinit)
3: GreedyProbEst(D ,Λ)
4: for all a ∈ ΛΣ do
5: for all c ∈ Λf(a) do
6: if p(c|a) < τ then
7: Remove c from Λf(a)

8: end if
9: end for

10: Normalize probability distribution of Λf(a)

11: to satisfy the following constraint:
12:

∑
c∈Λf(a)

p(c|a) = 1

13: end for
14: Return Λ
15: end procedure

Algorithm 2 Greedy Category Generation Pseudocode
1: procedure GREEDYGEN(D ,Λinit)
2: Let Π = {πi|i = 1 . . . n, πi ∈ D}
3: Let Λ = Λinit
4: Let PT = ∅
5: repeat
6: 〈t, (ψ0 . . . ψu)〉 = CreateCommon(Π)
7: 〈Π′,PT ′〉 = Update(Π, 〈t, ψ0 . . . ψu〉)
8: if PT ′ 6= ∅ then
9: PT = PT ∪ PT ′

10: Π = Π′

11: end if
12: until t = ∅ ∨ PT ′ = ∅
13: Λ← Λinit ∪ CreateCommonCategories(PT )
14: Λ← Λ ∪ CreateGoalCategories(Π)
15: Return Λ
16: end procedure

This process takes, as input, a set of plan traces and their
corresponding goalsD, and initial lexicon Λinit, and returns
a lexicon containing the set of hypothesized categories Λ.

We define Π as a set of abstract traces which contain both
actions and tasks generated during the learning process, and
PT as the set of learned common abstractions. Initially, Π
contains plan traces from D. GreedyGen iteratively hypoth-
esizes new tasks that abstract some common sequence of
actions and tasks ψ0 . . . ψu found in Π, and replaces them
with the new task. Since ψk ∈ {ψ0 . . . ψu} can be a task,
this makes the learned abstractions hierarchical. We ignore
parameters of actions and tasks when searching for the most
common sequence. If we considered their parameters, each
action and task in the sequence and their parameters have
to match exactly when searching for the most common se-
quence, which can reduce abstraction.

We look at each function in Algorithm 2 below. The func-
tion CreateCommon creates a new task t for the most com-
mon sequence of actions and tasks ψ0 . . . ψu in the set of ab-
stract traces Π above a given tunable abstraction threshold
γ. We define this threshold γ as the percentage of instances

in D. If there are ties for the most common sequence, then
the first encountered sequence is considered. We note that
this sequence must contain at least one action. If no sequence
contains at least one action, then CreateCommon returns ∅.

Next, Update updates each trace in Π with this newly-
created task t, and parameterizes 〈t, (ψ0 . . . ψu)〉. For each
ωi ∈ Π, the function replaces each occurrence of ψ0 . . . ψu
with t and creates a pair 〈t′, ψ′0 . . . ψ′u〉, where t′ is the pa-
rameterized task and (ψ′0 . . . ψ

′
u) are parameterized actions

and tasks. The parameters for task t′ is defined by the set
union of the parameters of ψ′0 . . . ψ

′
u. The parameters for any

action is defined by their original parameters from πi. Up-
date replaces the common sequences in ωi if and only if the
result still contains at least one action. Update returns the re-
vised traces Π′ and the set of parameterized task, sequence
pairs PT ′, and updates Π and PT if PT ′ is non-empty. If
Update can not replace any actions in each abstract trace
(PT ′ = ∅), the loop terminates.

Once the loop terminates, GreedyGen creates complex
categories for the common sequences in PT (CreateCom-
monCategories) and the abstract traces in Π (CreateGoal-
Categories). Both functions create complex categories using
the following template:

ρk →Υ(x)/{Υ(ρu)}/ . . . /{Υ(ρk+1)}
\{Υ(ρ0)}\ . . . \{Υ(ρk−1)}

where ρk (where 0 ≤ k ≤ u) is the action whose action
type will be assigned the complex category, x is a task, and
Υ is a function that either creates an atomic category for a
task or retrieves the atomic category in Λinit for an action.
In our experiments, ρk is the action closest to the middle
of ρ0 . . . ρu. If the action type of ρk is already assigned the
complex category, the category is then ignored.

CreateCommonCategories creates complex categories for
each pair 〈t′, ψ′0 . . . ψ′u〉 ∈ PT . We let ρk = ψ′k, x = t′

and ρi = ψ′i, where ψ′i, ψ
′
k ∈ ψ′0 . . . ψ

′
u and ψ′k is an ac-

tion. CreateGoalCategories creates complex categories that
yields each ωi ∈ Π. Here, we let Υ(x) = Gi, ρi = ψi, and
ρk = ψk, where ωi = ψ0 . . . ψu and ψk is an action.

We illustrate the greedy generation process through an ex-
ample. Suppose we have an initial lexicon Λinit as follows:

f(Train(U1, T ))→ {Train(U1, T ) : 1}
f(Attack(U2, U3))→ {Attack(U2, U3) : 1}
f(Harvest(U4, R))→ {Harvest(U4, R) : 1}
f(Return(U5, B1))→ {Return(U5, B) : 1}

where U1, U2, U3, U4, U5 are units, R is a resource, B is a
base, T represents a unit type, Σ = {Train, Attack, Har-
vest, Return}, and C = {Train, Attack, Harvest, Return}.
Next, suppose we have the following two plan traces:

π1 = 〈Harvest(U1, R1),Return(U1, B1),Train(U3, H)〉
π2 = 〈Harvest(U2, R2),Return(U2, B2),Attack(U4, U1)〉

and π1 corresponds to strategy HeavyRush and π2 corre-
sponds to strategy WorkerRush. First, we create Π = {ω1 =
π1, ω2 = π2}. Next, CreateCommon creates a task tx for



the most common sequence 〈Harvest,Return〉. Next, Up-
date replaces this common sequence in Π,

ω1 = 〈tx,Train(U3, H)〉
ω2 = 〈tx,Attack(U4, U1)〉

creates a set of parameterized task, sequence pairs and adds
them to PT :

〈t′x(U1, R1, B1), (Harvest(U1, R1),Return(U1, B1))〉
〈t′x(U2, R2, B2), (Harvest(U2, R2),Return(U2, B2))〉

Since there are no more common sequences in Π, we exit
the loop. Next, CreateCommonCategories creates a complex
category for each pair in PT using the previously defined
template:

Harvest(U1, R1)→ Υ(t′x(U1, R1, B1))/{Return(U1, B1)}
Harvest(U1, R1)→ Υ(t′x(U2, R2, B2))/{Return(U2, B2)}

where each action in the sequence is replaced with its initial
category in Λinit and ρk = Harvest(U1, R1). Finally, Cre-
ateGoalCategories creates complex categories to yield both
ω1 and ω2,

Return(U1, B1)→ HeavyRush\{Υ(t′x(U1, R1, B1))}
Return(U1, B1)→WorkerRush\{Υ(t′x(U2, R2, B2))}

where ρk = Return(U1, B1). These categories are added to
the lexicon and the category generation process is complete.

Greedy Probability Estimation
Probability estimation is the process of estimating action
type, category conditional probabilities P (c|a), which are
used during CCG plan recognition. Recall that the CCG plan
recognition problem is defined as PR = (π′,Λ, s0), where
π′ is a partial plan, Λ is a CCG, and s0 is the initial state
of the world from where π′ was executed. CCG-based plan
recognition assigns a single category from Λ to each ac-
tion in π′ and parses these categories using CCG combina-
tors (Geib 2009). Geib and Kantharaju (2018) used stochas-
tic gradient ascent to estimate the conditional probability as
a normalized weighted frequency of assigning category c to
action a during plan recognition, where a breadth-first plan
recognizer was used to acquire these frequencies. We pro-
pose a greedy approach (GreedyProbEst) to estimate proba-
bilities without a plan recognizer.

The GreedyGen process creates complex categories and
assigns these categories to a subset of actions and their types
in each plan trace πi ∈ Π. GreedyProbEst assigns the re-
maining actions in each πi that are not assigned a com-
plex category during the GreedyGen process to atomic cate-
gories from Λinit. This essentially simulates part of the plan
recognition process (assignment of categories to actions in
a plan) without actually executing a plan recognition algo-
rithm. From this, we can infer the number of times a com-
plex category c is assigned to some action type, denoted by
Hc,α where α is the action type of action a ∈ πi.

GreedyProbEst computes Hc,α as follows. Let Λ indicate
the lexicon created by GreedyGen, and Λf(α) refer to the
set of categories assigned to α. For each action type α ∈

ΛΣ, GreedyProbEst gets the set of categories C assigned to
actions in Π with α. Next, for c ∈ Λf(α), Hc,α is computed,

Hc,α =

{
F(c, C) c ∈ C
1 otherwise

where F(c, C) is the frequency of c in C. GreedyProbEst
then computes the probability p(c|α) for α ∈ ΛΣ as:

p(c|α) =
Hc,α∑

c′∈Λf(α)
Hc′,α

LexGreedy successfully learns a CCG upon complet-
ing the probability estimation process. However, the gener-
ated CCG may not be tractable for plan recognition. Thus,
LexGreedy prunes categories from Λ with an estimated
probability lower than a given pruning threshold τ (lines
4-12 in Algorithm 1). Intuitively, this represents the max-
imum number of allowable categories per action. Finally,
LexGreedy re-normalizes the conditional probabilities (lines
10-12 in Algorithm 1) and the learning process is complete.

Experiments
The purpose of our experiments is to evaluate both the scala-
bility of CCG learning and performance of the learned CCG
for CCG-based plan recognition. To this end, we compare
against the exhaustive CCG learning technique LexLearn
by Geib and Kantharaju (2018). All experiments were run
on a machine with 3.40GHz Intel i7-6700 CPU and 32 GB
RAM. We start by describing the learning dataset used in our
experiments. Next, we define the tunable parameters for both
LexLearn and LexGreedy. Finally, for each experiment, we
describe metrics and experiment setup, and analyze results.

We generated a learning dataset of plan traces paired
with their corresponding goals using a replay dataset gen-
erated from gameplay sessions on the µRTS testbed. Re-
call that replay data is a sequence of game state/action pairs
seen over the course of a game session. These actions are
player actions, i.e., the set of all the unit actions issued to
each unit controlled by a player at the current game state.
For example, if three actions are done by a player’s units,
{Attack, Harvest, Produce}, the player action would be
Attack Harvest Produce.

Our replay dataset was created by running a 5-
iteration round-robin tournament using the following built-
in scripted agents: POLightRush, POHeavyRush, POR-
angedRush, POWorkerRush, EconomyMilitaryRush, Econ-
omyRush, HeavyDefense, LightDefense, RangedDefense,
WorkerDefense, WorkerRushPlusPlus. Each agent played
against each other as both player 1 and player 2 on the open
maps of the CIG 2018 µRTS tournament.3 We chose these
agents over other agents such as NaiveMCTS because they
execute a defined strategy which we could use as the goal
for learning and plan recognition.

Using the replay dataset, we constructed our learning
dataset as follows. For each replay in the replay dataset, we
generated two plan trace/goal pairs: one for each agent in the

3https://sites.google.com/site/
micrortsaicompetition/rules



Figure 3: Scalability results for LexGreedy (pruning)

Figure 4: Scalability results for LexGreedy (No pruning)

replay. Each pair was constructed by parsing player actions
done by an agent, and using the agent itself as the goal (i.e.,
the goal of plan recognition will be to identify which of the
agents does a plan trace come from).

Next, we define the tunable parameters for each learning
approach. Both LexGreedy and LexLearn have one com-
mon parameter: pruning threshold τ , which effectively lim-
its the maximum number of categories per action. This pa-
rameter was set to allow for tractable plan recognition using
the learned CCGs. After initial experimentation, we chose
τ = 0.1 for LexLearn, and τ = 0.01 for LexGreedy . All
other parameters for LexLearn were set according to the
original paper (Geib and Kantharaju 2018). LexGreedy’s ab-
straction threshold γ was set based on the experiment. For
Experiment 1, γ ranged from 25% to 100% in increments of
25 and for Experiment 2, γ was 75% and 100%.
Experiment 1: The first experiment focuses on analyzing
the scalability of LexGreedy and LexLearn. We measure
scalability by computing the average number of categories
per action, defined as the total number of categories over the
total number of action types in the CCG. We use this met-
ric because it directly impacts the tractability of breadth-first
plan recognition, and the compactness of the learned repre-
sentations. An optimal CCG would have an average of 1.0.

For this experiment, we averaged our results over 5 runs.
For each run, we randomly shuffled all plan trace/goal
pairs in the learning dataset, and learned CCGs using both
LexLearn and LexGreedy. The learning dataset was shuf-

Figure 5: Comparison of LexLearn and LexGreedy against
different plan trace lengths

fled because LexLearn is an incremental algorithm, and its
learned CCG depends on the ordering of the plan traces.
Figure 3 shows the number of categories per action plotted
against the maximum number of allowed actions per plan
trace (ranging from 3 to 50 actions). Overall, we see that all
values of γ (25-100%) almost followed the same pattern for
plans with less than 10 actions. After 10 actions, γ = 25%
diverged from the rest of the values and continued a posi-
tive trend while the others maintained a negative trend. This
implies that longer plans benefit from γ than smaller plans.

However, there was no overall trend in the results. This is
a result of pruning the number of categories per action after
learning the CCG. To prove this, we ran LexGreedy where
we set τ = 0, preventing LexGreedy from pruning any cat-
egories. Figure 4 shows the results of this experiment. We
see that all values of γ have similar average number of cate-
gories per action. We also notice a positive linear correlation
between plan lengths and average number of categories per
action, which is the expected result.

Figure 5 provides a comparison between the scalability
ofLexLearn (Exhaustive) andLexGreedy (Greedy), plotting
plan length against number of categories per action. We only
provided results for LexGreedy with a γ = 100% as results
with other thresholds were relatively similar to it. We note
that LexLearn was only able to execute for plans of length
3 because it ran out of memory for longer plans. Recall that
LexLearn’s probability estimation technique uses breadth-
first plan recognition. LexLearn will run out of memory if
the average number of categories per action is high enough.
LexGreedy was able to successfully learn a CCG repre-

sentation for plans with 50 actions with a low average num-
ber of categories per action, successfully demonstrating the
scalability of our learning technique. We also notice that the
average number of categories per action was close to 1, in-
dicating that both LexLearn and LexGreedy learned a near
optimal CCG. Despite this, there was a large variance in the
number of categories assigned to each action where some
actions had 1 category and others had significantly more.
Therefore, as we will see in Experiment 2, this large vari-
ance will result in our CCG plan recognizer running out of
memory for plans with more than 10 actions.
Experiment 2: The second experiment focuses on the per-



Figure 6: Effect of plan length on plan recognition - F1 Score

Figure 7: Effect of plan length on plan recognition - MTTR

formance of the learned CCGs for plan recognition. We
use the ELEXIR framework developed by Geib (2009) for
breadth-first plan recognition. Recall that the CCG plan
recognition problem is defined as PR = (π′,Λ, s0) and its
solution as (G, π′′). We set s0 = ∅ as ELEXIR can recog-
nize plans with an empty s0, and focus on predicting G.

We use two metrics from the original LexLearn pa-
per (Geib and Kantharaju 2018). The first metric, follow-
ing Zhuo, Muñoz-Avila, and Yang (2014) is the F1 Score:

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

where precision and recall (Zettlemoyer and Collins 2005)
adapted for the problem of plan recognition are:

Precision =
# correctly recognized
# of parsed plan traces

Recall =
# correctly recognized

# of plan traces
The second metric is Mean-Time-To-Recognition (MTTR)
or the average percentage of actions in a plan required to rec-
ognize the goal. The formal definition of this can be found
in Geib and Kantharaju (2018). A high-performing CCG
would have a high F1 score and a low MTTR.

All metrics are averaged over 5 runs. For each round, we
randomly shuffled all plan trace/goal pairs in the learning
dataset, split the dataset into 80% training and 20% testing,
trained LexLearn and LexGreedy , and recognized the plan
traces in the testing dataset using the learned CCG.

Figure 6 provides average F1 scores for plan lengths rang-
ing from 3 to 10 for LexGreedy (Greedy), LexLearn (Ex-
haustive), and random recognition (Random) (higher is bet-
ter). Random recognition recognizes a plan by choosing a
goal at random from the set of possible goals (recall goals
are the agents). Similar to Experiment 1, LexLearn ran out
of memory for plans with more than 3 actions, and both
γ = 0.75 and γ = 1.0 didn’t have any significant difference
in performance. However, both LexLearn and LexGreedy
were able to outperform random recognition with an F1
score of 0.0909. We note that pruning can have a significant
impact on the F1 score as categories in the learned CCG that
are needed for plan recognition can be removed. This may
have resulted in LexGreedy outperforming LexLearn as the
latter approach had a significantly higher pruning threshold.
In terms of RTS games, pruning results in the reduction of
strategy execution knowledge. While pruning helps scale the
learned CCGs, it can prevent a game-playing agent from rec-
ognizing less-frequently used strategies.

Figure 7 shows average MTTR plotted against plan
lengths from 3 to 10 for both LexGreedy and LexLearn
(lower is better). We see that LexGreedy (MTTR of approx-
imately 92%) was able to outperform LexLearn (MTTR of
approximately 93%) for plans with 3 actions. Similar to the
F1 scores, γ = 75% and γ = 100% do not have significantly
different average MTTR over all plan lengths. The main
takeaway from this is that both LexLearn and LexGreedy
were both able to recognize plans prior to completion. This
is important for agents playing RTS games because early
recognition results in a higher chance of winning a game.

We restricted the plan lengths to a maximum of 10 ac-
tions because ELEXIR ran out of memory when recogniz-
ing plans greater than length 10. However, from Experiment
1, we see that LexGreedy was able to learn plans for length
50. This indicates that, while we are able to learn CCGs for
longer plans, we can not yet use the learned representations
for plan recognition. We believe that if we gave ELEXIR
more memory or used a non-breadth-first plan recognizer,
we may have recognized plans with more than 10 actions.

Conclusion and Future Work
This paper presented a greedy CCG learning algorithm
called LexGreedy motivated by work on probabilistic HTN
learning by Li et al. (2014) that improves the scalability of
learning. We evaluated our learned representations on CCG-
based plan recognition in the domain of RTS games using
the AI RTS testbed µRTS, and evaluated the scalability of
learning. Our results demonstrate LexGreedy can learn com-
pact CCGs for long plans in µRTS, allowing us to auto-
mated the authoring of CCG domain definitions. However,
the learned CCGs are still too large for plan recognition.

There are a few avenues for future work that build di-
rectly from this work. First, we would like to analyze the
scaling from LexGreedy for planning in and playing µRTS.
Second, we want to develop a plan recognizer that can recog-
nize plans using the representations learned by LexGreedy.
Third and finally, we would like to improve LexGreedy by
making it an incremental learning algorithm.
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