
From Firewalls to Functions and Back

Lorenzo Ceragioli1, Letterio Galletta2, and Mauro Tempesta3,4

1 Università di Pisa, Pisa, Italy
lorenzo.ceragioli@phd.unipi.it

2 IMT School for Advanced Studies, Lucca, Italy
letterio.galletta@imtlucca.it

3 Università Ca’ Foscari, Venezia, Italy
4 TU Wien, Vienna, Austria

tempesta@unive.it

Abstract. Designing and maintaining firewall configurations is hard
also for expert system administrators. Indeed, policies are made of a
large number of rules and are written in low-level configuration languages
that are specific to the firewall system in use. To simplify the work of
system administrators, some authors of the present paper proposed in
previous work a transcompilation pipeline and a tool that (i) extracts
the meaning of a real configuration by representing it into a tabular form;
(ii) refactors a configuration by removing redundant rules; (iii) ports the
policy from a firewall system to another. Here, we extend this pipeline
by proposing a new characterization that models rulesets and firewalls
as functions from packets to transformations. Transformations specify
which packets are accepted by the firewall and how they are translated.
Using this functional characterization we propose two new algorithms
that simplify the treatment of the pipeline.

1 Introduction

Firewalls are the fundamental mechanisms for the protection of computer net-
works. The effectiveness of a firewall system crucially depends on the correctness
of its configuration, since even a small flaw may severely impact the security or
the functionality of the entire network.

Policies are typically written in low-level configuration languages that are
specific to the firewall system in use and support non-trivial control flow con-
structs, such as calls and gotos. A configuration usually consists of a large number
of rules interacting with each other. Indeed, some rules may shadow others or
prevent them to be triggered depending on the order in which they appear in
the configuration. This context-dependency makes it hard to understand the ef-
fect of a single rule on the overall firewall behaviour. Moreover, when writing
a policy, network administrators must also take into account how packets are
processed by the network stack of the operating system running on the firewall.
The scenario becomes even worse when Network Address Translation (NAT)
is considered, since packets can be modified while they traverse the firewall by
translating IP addresses and performing port redirection.

To simplify the work of system administrators, some of the authors proposed
a transcompilation pipeline [4] and a tool [5] to (i) decompile real configurations
into abstract specifications representing the set of the permitted connections;
(ii) perform policy refactoring by removing redundant rules thus obtaining min-
imal and clean configurations; (iii) automatically port a configuration written
for a system into the language of another system. The proposed transcompiling
pipeline is made of the following stages:

1. decompile a policy from the source language to an intermediate language;
2. extract the meaning of the policy as a table describing how the accepted

packets are translated;
3. compile the semantic table into the target language.

Core of the stage 1 is the intermediate language IFCL equipped with a formal
semantics and with all the typical features of firewall languages. IFCL enables
the algorithmic manipulation of stage 2, where a SAT-based procedure is used
to derive a minimal declarative configuration in a tabular form that shows all
accepted packets and their NAT, without overlapping or shadowed rules.

In this paper, we extend the above pipeline by proposing new algorithms for
stage 2 and 3. The first one does not rely on a SAT solver, but on a denotational
semantics that directly represents a configuration as a function from packets
to packet transformations. These transformations specify whether packets are
accepted or not and how they are rewritten by NAT. Furthermore, the new
algorithm for stage 3 works with the new functional representation and preserves
the translation applied by the original configuration. Differently from [4], the
algorithm does not rely on tagging packets, thus simplifying the treatment of
firewall systems with limited support of this tagging feature, e.g., pf. Exploiting
the properties of IFCL, we characterize the target systems on which the new
algorithm is granted to work for all configurations, like iptables. We remark
that representing rulesets and firewalls as functions allows us to simplify the
treatment of the stages because we resort to a more abstract and handy domain.

The rest of the paper is organized as follows. Section 2 presents our proposal
via a small yet realistic example and also compares it to the previous approach
of [4]. Our new algorithms are described in Sections 3 and 4. In Section 5 we
present related works and in Section 6 we conclude and discuss some future work.

2 Overview of the Pipeline

We consider as an example the network in Figure 1, where the firewall is con-
nected to the LAN 192.168.0.0/24 with IP 192.168.0.1, and to the Internet using
the IP 151.15.185.183. Notice that hosts in the LAN have private addresses that
cannot be routed on the Internet, hence NAT must be used to rewrite the source
address of outgoing packets and the destination address of incoming packets. No-
tice also that such hosts cannot communicate directly with each other, messages
have to pass through the firewall. We wish to configure a firewall that satisfies the
following requirements. (R1) When a packet from the Internet with destination

. . .

192.168.0.8

192.168.0.0/24

151.15.185.183192.168.0.1

Fig. 1: A simple case of study of a firewall between a local network and Internet.

qi

q0 q1

qf

sIP /∈ S sIP ∈ S

dIP /∈ S

dIP ∈ S dIP /∈ S

dIP ∈ S

(a) Cipfw

qi

q0

q1DNAT

q2

q3DROP

q4

q5 SNAT

q6 DROP

qf

q7

q8 DNAT

q9 DROP

q10

q11 SNAT

sIP /∈ S sIP ∈ S

dIP /∈ S

dIP ∈ S

dIP /∈ S

dIP ∈ S

(b) Ciptables

Fig. 2: Control diagrams of ipfw and iptables (qi and qf being the initial and
final nodes).

port 22 reaches the external IP address of the firewall, it is redirected to the SSH
server at 192.168.0.8. (R2) Every LAN host is allowed to access HTTP servers
on the Internet. NAT is applied to rewrite the source address of outgoing packets
with the public address of the firewall, so that responses from web servers can be
routed back. (R3) Connections to the address 8.8.8.8 are not allowed. (R4) All
local hosts can connect to the SSH server in the LAN. (R5) The administrator
can connect to SSH on the firewall from host 192.168.0.8.

The ipfw firewall configuration in Fig. 3 implements the above requirements.
Lines 1 and 2 respectively configure the NAT module according to require-
ments (R1) and (R2), while rules in lines 6 and 7 apply NAT. Note that line
8 imposes an additional condition: the firewall communicates with hosts in the
Internet only over port 80. Line 5 is for requirement (R3), and line 9 for require-
ment (R4), besides (R2). Line 10 implements requirement (R5), while line 11

blocks any other traffic.

1 ipfw -q nat 1 config redirect_port tcp 192.168.0.8:22 22
2 ipfw -q nat 2 config ip 151.15.185.183
3

4 ipfw -q add 0010 check -state
5 ipfw -q add 0020 deny tcp from any to 8.8.8.8
6 ipfw -q add 0030 nat 1 tcp from not 192.168.0.0/24 to 151.15.185.183 22
7 ipfw -q add 0040 nat 2 tcp from 192.168.0.0/24 to not 192.168.0.0/24 80
8 ipfw -q add 0050 allow tcp from 151.15.185.183 to not 192.168.0.0/24 80
9 ipfw -q add 0060 allow tcp from any to 192.168.0.8 22

10 ipfw -q add 0070 allow tcp from 192.168.0.8 to 192.168.0.1 22
11 ipfw -q add 0080 deny all from any to any

Fig. 3: An ipfw configuration.

Before showing the result of the decompilation (stage 1 of our pipeline),
we briefly introduce the intermediate language IFCL. A firewall configuration
in IFCL consists of a set of rules, with a format common to most of the real
firewalls, and a control diagram that describes how packets are processed by the
firewall system under consideration. Specifically, a control diagram is a graph C

where every node is associated to a ruleset that is applied to packets reaching
that node. Arcs are labeled with predicates that encode the routing decisions
performed by the firewall. Intuitively, a packet p is accepted by the firewall if
there exists a path from the initial to the final node of C such that p is accepted
(and possibly transformed) by the rulesets associated to the nodes of the path.

A firewall rule consists of a predicate φ over packets and an action t, called
target, defining how packets matching φ are processed. We consider the targets:

ACCEPT the packet is accepted

DROP the packet is discarded

NAT(nd, ns) apply NAT

MARK(m) marking with tag m

In the NAT action, nd and ns specify how to translate the destination and source
addresses/ports of a packet and we use ? to denote the identity translation. For
instance, nd = n : ? means that the destination address of a packet is translated
according to n, while the port is kept unchanged. The MARK action marks a packet
with a tag m. Predicates of the rules in a ruleset may select packets based on
tags assigned by preceding rules of the firewall. Notice that, since the tag is not
part of the network packet, it is lost when the packet leaves the firewall. Here we
consider a subset of targets used in [4] and we restrict the NAT target to addresses
only not ranges as in [4]. We do not lose generality because the initial part of
stage 2 normalises the configuration by removing the targets concerning the flow
control and because performing NAT towards a range of addresses is rarely used
in practice. Additionally, we assume all connections to be new as done in [5].

Fig. 2a shows Cipfw, the control diagram of ipfw. Guards label the arcs to
check whether the source/destination address of packets (in symbols sIP/dIP)
belong to S (the addresses assigned to the firewall). Stage 1 produces the firewall
consisting of Cipfw and the assignment to both nodes q0 and q1 of the ruleset

(dIP = 8.8.8.8, DROP);

Received packets Accepted packets
sIP sPort dIP dPort sIP sPort dIP dPort

192.168.0.8 * 192.168.0.1 22 - - - -
* * 192.168.0.8 22 - - - -
151.15.185.183 * * \ { 80 - - - -

8.8.8.8
192.168.0.0/24

}

192.168.0.0/24 * * \ { 80 151.15.185.183 - - -
8.8.8.8
192.168.0.0/24

}

* \ { * 151.15.185.183 22 - - 192.168.0.8 -
192.168.0.0/24

}

(a) The semantics of the configuration in Fig. 3.

Received packets Accepted packets
sIP sPort dIP dPort sIP sPort dIP dPort

192.168.0.1 * 192.168.0.8 22 - - - -
151.15.185.183
127.0.0.1

151.15.185.183 * * \ { 80 - - - -
8.8.8.8
192.168.0.0/24

}

192.168.0.1 * * \ { 80 - - - -
8.8.8.8
192.168.0.0/24

}

(b) Function applied by node q9 of Ciptables.

Table 1: Tabular representation of the semantics and of the function in node q9.

(sIP /∈ 192.168.0.0/24 ∧ dIP = 151.15.185.183 ∧ dPort = 22, NAT(192.168.0.8 : ?, ? : ?));

(sIP ∈ 192.168.0.0/24 ∧ dIP /∈ 192.168.0.0/24 ∧ dPort = 80, NAT(? : ?, 151.15.185.183 : ?));

(sIP = 151.15.185.183 ∧ dIP /∈ 192.168.0.0/24 ∧ dPort = 80, ACCEPT);

(dIP = 192.168.0.8 ∧ dPort = 22, ACCEPT);

(sIP = 192.168.0.8 ∧ dIP = 192.168.0.1 ∧ dPort = 22, ACCEPT);

(true, DROP)

The second stage of our pipeline defines a function that specifies whether a
packet is accepted or not and eventually how it is transformed. In other words,
this function is the denotational semantics of the configuration in hand. Table 1a
displays the functional meaning of the example in Fig. 3. To obtain it we first
compute the functions associated to the ruleset of each node and then we com-
pose them along the paths of the control diagram. In this specific example the
composition is trivial since the rulesets associated with q0 and q1 are the same.

The last stage of our pipeline compiles the semantics into the target language,
here iptables. This stage consists of three steps. In the first, we consider the
control diagram Ciptables in Fig. 2b, where, by construction, the operations over

packets are only allowed on specific nodes, as suggested by the labels in the
figure. For transcompiling, we are thus left to associate with the nodes of Ciptables

a suitable function, computed from the semantics in Table 1a. Essentially, we
project it along the paths of Ciptables, taking care of the actions that iptables
prescribes in the traversed nodes.

For example, take node q9: only packets with a source IP address in S can
traverse it. Moreover, packets subjected to DNAT will reach q9 with the translated
destination address, since DNAT is applied in node q8. Differently, SNAT will occur
later on the path (in node q5 or q11). We build the Table 1b associated with node
q9 by transforming each row of Table 1a by applying the specified DNATand then
keeping only packets with source address in S. The second step discards the
first row of Table 1a since 192.168.0.8 /∈ S. Instead, filtering out the non-local
addresses in the second row yields the first row of Table 1b. The third row is left
unchanged. We select the only local address from the fourth row and we defer
the SNAT to the rulesets associated to nodes q5 and q11. Applying the specified
DNAT to the fifth row turns 151.15.185.183 into 192.168.0.8, which is already
represented by the first row of Table 1b.

The third step is straightforward: each row of the tabular representation of
the obtained function originates an IFCL rule. In this example, the result for
nodes q5 and q11 is

(sIP ∈ 192.168.0.0/24 ∧ dIP /∈ 192.168.0.0/24 ∧ dPort = 80, NAT(? : ?, 151.15.185.183 : ?))

while for q1 and q8 we have

(sIP /∈ 192.168.0.0/24 ∧ dIP = 151.15.185.183 ∧ dPort = 22, NAT(192.168.0.8 : ?, ? : ?))

and for nodes q3, q6 and q9 respectively

(dIP = 192.168.0.8 ∧ dPort = 22, ACCEPT);

(sIP ∈ 192.168.0.0/24 ∧ ¬(dIP ∈ 192.168.0.0/24 ∨ dIP ∈ 8.8.8.8) ∧ dPort = 80, ACCEPT);

(true, DROP)

(sIP = 192.168.0.8 ∧ dIP = 192.168.0.1 ∧ dPort = 22, ACCEPT);

(sIP = 151.15.185.183 ∧ dIP /∈ 192.168.0.0/24 ∧ dPort = 80, ACCEPT);

(true, DROP)

(sIP = 151.15.185.183 ∧ ¬(dIP ∈ 192.168.0.0/24 ∨ dIP ∈ 8.8.8.8) ∧ dPort = 80, ACCEPT);

(sIP = 192.168.0.1 ∧ ¬(dIP ∈ 192.168.0.0/24 ∨ dIP ∈ 8.8.8.8) ∧ dPort = 80, ACCEPT);

(dIP = 192.168.0.8 ∧ dPort = 22, ACCEPT);

(true, DROP)

All remaining nodes have an empty ruleset. Eventually, these rules are compiled
into the iptables configuration shown in Fig. 4. Note that some target lan-
guages may constrain the guard of rules to have a specific form, more restrictive
than the one used by IFCL. Hence, before generating the target configuration,
we transform every IFCL rule into an equivalent form, possibly implemented
with multiple rules. For example, in an iptables rule you cannot impose an IP

1 *nat
2 :PREROUTING ACCEPT [0:0]
3 :INPUT ACCEPT [0:0]
4 :OUTPUT ACCEPT [0:0]
5 :POSTROUTING ACCEPT [0:0]
6

7 -A PREROUTING -p tcp ! -s 192.168.0.0/24 -d 151.15.185.183 --dport 22
8 -j DNAT --to 192.168.0.8
9 -A OUTPUT -p tcp ! -s 192.168.0.0/24 -d 151.15.185.183 --dport 22

10 -j DNAT --to 192.168.0.8
11 -A INPUT -p tcp -s 192.168.0.0/24 ! -d 192.168.0.0/24 --dport 80
12 -j SNAT --to 151.15.185.183
13 -A POSTROUTING -p tcp -s 192.168.0.0/24 ! -d 192.168.0.0/24 --dport 80
14 -j SNAT --to 151.15.185.183
15 COMMIT
16

17 *filter
18 :INPUT DROP [0:0]
19 :FORWARD DROP [0:0]
20 :OUTPUT DROP [0:0]
21

22 -A OUTPUT -p tcp -s 151.15.185.183 --match iprange
23 --dst -range 0.0.0.0 -8.8.8.7 --dport 80 -j ACCEPT
24 -A OUTPUT -p tcp -s 151.15.185.183 --match iprange
25 --dst -range 8.8.8.9 -192.167.255.255 --dport 80 -j ACCEPT
26 -A OUTPUT -p tcp -s 151.15.185.183 --match iprange
27 --dst -range 192.168.1.0 -255.255.255.255 --dport 80 -j ACCEPT
28 -A OUTPUT -p tcp -s 192.168.0.1 --match iprange
29 --dst -range 0.0.0.0 -8.8.8.7 --dport 80 -j ACCEPT
30 -A OUTPUT -p tcp -s 192.168.0.1 --match iprange
31 --dst -range 8.8.8.9 -192.167.255.255 --dport 80 -j ACCEPT
32 -A OUTPUT -p tcp -s 192.168.0.1 --match iprange
33 --dst -range 192.168.1.0 -255.255.255.255 --dport 80 -j ACCEPT
34 -A OUTPUT -p tcp -d 192.168.0.8 --dport 22 -p tcp -j ACCEPT
35

36 -A FORWARD -p tcp -d 192.168.0.8 --dport 22 -p tcp -j ACCEPT
37 -A FORWARD -p tcp -s 192.168.0.0/24 --match iprange
38 --dst -range 0.0.0.0 -8.8.8.7 --dport 80 -j ACCEPT
39 -A FORWARD -p tcp -s 192.168.0.0/24 --match iprange
40 --dst -range 8.8.8.9 -192.167.255.255 --dport 80 -j ACCEPT
41 -A FORWARD -p tcp -s 192.168.0.0/24 --match iprange
42 --dst -range 192.168.1.0 -255.255.255.255 --dport 80 -j ACCEPT
43

44 -A INPUT -p tcp -s 192.168.0.8 -d 192.168.0.1 --dport 22 -j ACCEPT
45 -A INPUT -p tcp -s 151.15.185.183 ! -d 192.168.0.0/24 --dport 80 -j ACCEPT
46

47 COMMIT

Fig. 4: The ipfw configuration in Fig. 3 transcompiled to iptables.

address to be anything but 8.8.8.8 or 192.168.0.0/245. You can achieve the same
goal by considering the ranges obtained by taking the complement of the union
of those sets, as in lines 22-27 of Fig. 4.

The synthesis is similar to the one proposed in [4], where logical predicates
P(p, p̃) were assigned to the rulesets. These predicates are true if and only if
the packet p is accepted as p̃ by the corresponding ruleset. The predicate cor-
responding to a firewall was, thus, obtained by the composition of predicates

5 You can write something like ! -d 8.8.8.8, 192.168.0.0/24, but it will be inter-
preted as dIP /∈ 192.168.0.0/24 ∨ dIP 6= 8.8.8.8 i.e. in a really useless requirement.

for rulesets in the paths of the control diagram. The table was then produced
by computing the model of the firewall predicate using a variant of the bisec-
tion method in which every check resulted in a call to the SAT solver. Since we
have chosen an handy representation here, the resulting table can be computed
directly, hence gaining flexibility and avoiding the bottleneck of multiple invoca-
tion to the solver. On the contrary, the last stage of the pipeline is very different
from the one presented in [4]. Indeed, there one specific ruleset was produced
for each specific task: filtering the network, performing SNAT and DNAT. The ac-
tions to be performed on each packet were known thanks to the tags previously
associated by the firewall. Furthermore, the assignment of rulesets to the nodes
of the target control diagram was defined in an ad hoc way for the supported
languages (iptables and pf). That approach is not immediately extensible to
other systems, especially those with minimal control diagram like ipfw, where
some nodes may accomplish all the tasks. Finally, the last translation into the
target language was not treated in [4]. We believe that the new translation al-
gorithm simplifies this last step because we do not need to deal with tagging
whose support is very heterogeneous on the various systems.

3 From a Configuration to a Function: Synthesis

We present the algorithm for the second stage of our pipeline. Given an IFCL

configuration we compute a synthetic representation of its behaviour as a func-
tion on the ongoing traffic: we first formally define the domains on which the
resulting function operates, and we then introduce a convenient representation
from which we derive the algorithm.

Domains Let P be the set of all network packets. We define a semantic function
of type P → T(P) ∪ {⊥} that given a packet p ∈ P either discards it (returning
⊥) or accepts it, possibly with some changes due to NAT (returning a trans-
formation t ∈ T(P), defined field by field). Below we denote by t(p) the packet
obtained by applying the transformation t to the packet p. Furthermore, given
two transformations t and t′, we denote by tnt′ (t updates t′) the transformation
resulting by first applying t′ and then t, formally (tn t′)(p) = t(t′(p)) — as we
will see later on, n is not standard function composition since it deals only with
the outputs, which are accumulated.

The succinct representation we use is based on multi-cubes, which are a
generalization of geometric cubes [7]. In a n-dimensional space, a cube is the
cartesian product of n segments, whereas a multi-cube is the product of n unions
of segments. Since firewall rules put requirements on packets field by field, the set
of packets matching them is naturally expressible as a multi-cube. For example,
the set of packets satisfying the predicate

sIP = 192.168.0.8 ∧ sPort = 22 ∧ (dIP ∈ 192.168.0.0/24 ∨ dIP = 127.0.0.1) ∧ dPort ∈ {22, 80}

can be expressed using the following multi-cube:

{192.168.0.8} × {22} × (192.168.0.0/24 ∪ {127.0.0.1})× ({22} ∪ {80})

Algorithm 1

1: function ruleset synthesis(P : set of packets, R: ruleset, t: transformation)
2: if R = [] then return {(P, t)}
3: (φ, target) ·R′ ← R
4: (Ps,Pn)← split(P , t, φ)
5: λ′ ←

⋃
P ′
n∈Pn

(ruleset synthesis(P ′n, R′, t))

6: if target = ACCEPT then return {(Ps, t)} ∪ λ′
7: else if target = DROP then return {(Ps,⊥)} ∪ λ′
8: else if target = NAT(dn, sn) then return {(Ps, trnat(dn, sn) n t)} ∪ λ′
9: else if target = MARK(m) then return ruleset synthesis(Ps, R′, ttag(m)nt)∪λ′

We represent a semantic function as a set A of pairs (P, t), where P ⊆ P is a
multi-cube and t is either the transformation associated with every packet in P
or it is ⊥. Note that the projection of A on its first component is a partition
of P. The tables of the above example have rows corresponding to a pair (P, t):
the first four columns are the input (the multi-cube) and the last four are the
output (the transformation). For brevity, the rows with output ⊥ are omitted.

Algorithms The stage 2 first computes a semantic function for every ruleset of the
control diagram through RULESET SYNTHESIS in Algorithm 1; then, it composes
the results in a single table using COMPOSE in Algorithm 2.

Consider first the recursive algorithm RULESET SYNTHESIS. Its parameters
are respectively: a multi-cube P (initially P) representing the set of packets
we are interested in; the ruleset R we are analyzing, scanned rule by rule; and
the transformation t (initially the identity) already computed for P . Taken a
rule (line 3) the set P is split in the two sets Ps and Pn (line 4). The first is
the multi-cube of the packets that verify the rule when transformed by t, thus,
the algorithm returns it unchanged. The (complementary) set Pn is instead a
disjoint union of non-empty multi-cubes, on which the function is recursively
called on (line 5). Lines 6 and 7 are trivial. In line 8 the transformation dictated
by the NAT (represented by trnat) updates the accumulated one. Note that,
as stated before, n is not the standard function composition. Besides updating
the transformation, line 9 calls recursively the function, because MARK does not
terminate packet processing. The base case of recursion, when R is empty (line
2), yields the set of packets as it is and the computed transformation over them.

Now we exploit COMPOSE in Algorithm 2 to combine the results returned
by the previous algorithm. The underlining idea is to visit the control diagram
backward from the final node to the initial one, thus composing the semantic
function of a node q with the result of COMPOSE applied to each successor q′.
Consequently, the table assigned to q′ is the combination of the functions of all
the following nodes from q′ to qf . More precisely, line 3 computes the packets
that are dropped by node q, i.e., the pairs (P,⊥). Then, for each successor q′,
reachable through an arc labeled with ψ, line 6 propagates the remaining packets

Algorithm 2

1: function compose(q: node)
2: λR ← function assigned to node q
3: λq ← {(P, t) ∈ λR | t = ⊥}
4: for node q′ reachable from q with guard ψ on the arc do
5: λq′ ← function assigned to node q′

6: λ(q,q′) ← {(P ′, t) | (P, t) ∈ λR ∧ P ′ = ψ(t(P))}
7: λq ← λq ∪ {(P ′′, t′ n t) | (P, t) ∈ λ(q,q′) ∧ (P ′, t′) ∈ λq′ ∧ P ′′ = t−1(P ′ ∩ t(P))}
8: return λq

that verify ψ after the application of t6. Finally, line 7 composes each propagated
pair (P, t), with each pair (P ′, t′) of q′, if there is a nonempty subset P ′′ of P
included in P ′ after the application of t7. The result of the composition is the
pair (P ′′, t′′), where t′′ is the transformation t updated with t′.

The resulting table associated with qi of the control diagram is the synthesis
representing the semantic function of the firewall configuration.

4 From a Function to a Configuration: Generation

Here we describe the last stage of our pipeline which compiles the output of the
previous stage into the target language. In particular, we focus on an algorithm
that computes the functions for the rulesets and assigns them to the nodes of
the target control diagram. Note that when a firewall system is not capable of
expressing the input semantic function, the algorithm detects it. Moreover, it is
granted to compile (if possible) whenever the paths in the target control diagram
do not have duplicated NAT labels (e.g., DNAT repeated more than once).

Intuitively, our algorithm projects the table of the system to be compiled onto
the paths of the control diagram of the target system. Since the modeled sys-
tems constrain the nodes of the control diagram to perform only certain actions,
the projection must take into account the permitted actions of the traversed
nodes. We represent these constraints by labeling each node with a subset of
{SNAT, DNAT, DROP}, as we did in Fig. 2b. Only assignments that meet the con-
straints are granted to be expressible in the target language.

The tables assigned to nodes are generated incrementally, starting with an
empty set and then gradually adding pairs (P, t) implementing the expected
behaviour. First, we deal with rows specifying accepted packets, by assigning
them to the corresponding path in the target control diagram. For example, the
first line of Table 1a is assigned to the path π = qi, q0, q1, q4, q5, q6, qf in Ciptables.
Given such a path, we project a pair (P, t) along its nodes, by first computing
the transformations and then the corresponding multi-cubes. As regards the
transformation t, we decompose it and we generate a new transformation for each

6 In the Algorithm 2 we abuse the notation, denoting {p ∈ P | φ(p)} with φ(P).
7 Note that t is not an invertible function, hence with t−1(P ′ ∩ t(P)) we denote the

preimage of P ′ ∩ t(P) w.r.t. t, inside the domain P .

node following the labels. For example, a row with target NAT(dn, sn) associated
with the path π in Ciptables, results in NAT(dn, ? : ?) in q1, NAT(? : ?, sn) in q5
and in id in all the other nodes of π. As for the multi-cube P , we assign to
each node the result of the application of the predecessor transformation to its
corresponding multi-cube. The first node of the path is assigned to P . In the
example above we assign the pair (P, id) to qi and q0, (P, t′) to q1, where t′ is the
transformation implementing NAT(dn, ? : ?), and (t′(P), id) to q4. After repeating
this procedure for all the rows of the table, the accepted packets are managed
correctly, however the sets of pairs assigned to each node q can be incomplete:
some packets may be included in no multi-cubes of q. We call them free packets
of q. In other words, we still need to define the behaviour of the node for some
cases. Next we need to complete the just assigned sets in order to manage the
packets discarded by the input semantic function. Given that we do not modify
the pairs already added, it is not possible to compromise the previous result.
Moreover, since we are left to deal with dropped packets only, every packet that
is not already included in a multi-cube should be dropped.

We start from the nodes in the control diagram labeled with DROP, where the
choice is trivial: we assign ⊥ to every free packet. Then, we use a recursive
procedure to configure all other nodes to transform their free packets in such a
way that they reach some node q⊥ labeled with DROP as free packets of q⊥. Let
P⊥ be the set of multi-cubes containing the packets dropped by the function
associated to q (either directly or by passing them to another node that discards
them), and assume that q′ is a predecessor of node q reachable through an arch
labeled with ψ. The idea is to assign to the free packets of q′ a transformation
that maps them inside ψ(P⊥). We filter P⊥ using ψ because we want to send
the packets along the arc pointing to q. For each multi-cube of free packets of q′

we check if it is possible to map some of them inside ψ(P⊥), updating the table
accordingly. In each node, the transformations that we can exploit depend on
the labels. If a node is labeled with both SNAT and DNAT, then we can map all
the free packets to a single value inside ψ(P⊥). If we have no labels assigned, we
can only apply id, and then, for each multi-cube of free packets, the subset of
the dropped ones is computed as the intersection with ψ(P⊥). The case where
only DNAT (resp. SNAT) is assigned to a node is a composition of the previous
ones, where for the source addresses (resp. destination addresses) we take the
intersection with each multi-cube in ψ(P⊥), and we map the other addresses
to some value inside the same multi-cube. After updating the table of q′ the
back-propagation continues recursively.

5 Related Work

In this work we extend the pipeline defined in [4], of which the implementation
of the first two phases is described in [5]. To the best of our knowledge, [4]
and this work are the only approaches in literature to mechanically port firewall
policies, while there are other tools for some firewall administration tasks. There
are proposals that deal with specific problems without deriving an abstract rep-

resentation of the firewall policies, like [6] for refactoring, FIREMAN [11] and
Margrave policy analyzer [10] for error correction. Other approaches, like ours,
are based on abstract policies: they can be divided into those that start from a
real configuration and derive an abstract one to perform analyses, like Fang [8,9],
that can discover anomalies; and those that starting from an abstract policy gen-
erate a real configuration, like [1,3]. All these approaches propose their own high
level language with a formal semantics, and define a compilation from the real
configuration language to the abstract one (cf. our stage 1 and 2) or vice-versa
(cf. our stage 3). Instead our approach defines the compilation in both directions,
dealing with real source and target languages. It thus takes from real languages
actions both for filtering/rewriting packets (notably NAT and MARK) and for
controlling the inspection flow, widely used in practice. NetKat [2] embraces a
different approach, proposing linguistic constructs for programming a network
as a whole within the SDN paradigm. This approach is orthogonal to ours: we
consider real firewall configuration languages as low-level machine languages,
and provide the needed tools for supporting legacy systems.

Our approach and that of [4,5] differ from the other proposals mainly because
at the same time it (i) is language-independent; (ii) defines a formal semantics of
firewall behavior; (iii) gives a concise and neat representation of such a behavior;
(iv) supports NAT, MARK and targets for changing the control flow; (v) both input
and output are real configuration languages.

6 Conclusion

We presented two new algorithms for stages 2 and 3 of the transcompilation
pipeline of [4]. The new algorithm for stage 2 directly represents a configuration
as a function (in a tabular form) from packets to transformations, specifying
which packets are accepted and how they are re-written by NAT. The second
algorithm starts from the functional representation returned by stage 2 and com-
piles it into another system, preserving all the NAT of the original configuration
and not relying on any tag mechanism. Finally, we characterized the properties
of the target systems for which the algorithm is granted to work for all input
configurations. In particular, there are cases like ipfw where the algorithm is
not granted to work, in the sense that it can fail even when a solution would be
possible. This is due to the fact that the control diagram does not impose enough
constraints on which nodes can apply SNAT and DNAT. A limit of the proposed
approach is that multi-cubes can be split but not merged by the algorithms,
causing the synthesis to produce tables with many rows, and, consequently, the
compilation to produce long configurations.

As future work we plan to implement the new algorithms inside the tool
proposed in [5] and to carry out an experimental evaluation to test whether the
new functional representation improves the performance of the tool when deal-
ing with real-world configurations. We also plan to implement and evaluate a
procedure for multi-cube merging. Furthermore, we aim at improving the read-
ability of the generated policies by automatically grouping rules and by adding

comments that explain their meaning. Finally, it would be very interesting to
extend our approach to deal with networks with more than one firewall.

References

1. Adão, P., Bozzato, C., Dei Rossi, G., Focardi, R., Luccio, F.L.: Mignis: A Semantic
Based Tool for Firewall Configuration. In: proc. of the 27th IEEE CSF. pp. 351–365
(2014)

2. Anderson, C.J., Foster, N., Guha, A., Jeannin, J., Kozen, D., Schlesinger, C.,
Walker, D.: Netkat: semantic foundations for networks. In: proc. of 41st ACM
POPL. pp. 113–126 (2014)

3. Bartal, Y., Mayer, A.J., Nissim, K., Wool, A.: Firmato: A novel Firewall Manage-
ment Toolkit. ACM Transactions on Computer Systems 22(4), 381–420 (2004)

4. Bodei, C., Degano, P., Focardi, R., Galletta, L., Tempesta, M.: Transcompiling
firewalls. In: Proc. POST 2018. LNCS (2018)

5. Bodei, C., Degano, P., Focardi, R., Galletta, L., Tempesta, M., Veronese, L.:
Language-independent synthesis of firewall policies. In: Proc. 3rd IEEE European
Symposium on Security and Privacy (2018)

6. Diekmann, C., Michaelis, J., Haslbeck, M.P.L., Carle, G.: Verified iptables Firewall
Analysis. In: the 15th IFIP Networking Conference. pp. 252–260 (2016)

7. Jayaraman, K., Bjørner, N., Outhred, G., Kaufman, C.: Automated Analysis and
Debugging of Network Connectivity Policies. Tech. rep., Microsoft (2014)

8. Mayer, A.J., Wool, A., Ziskind, E.: Fang: A Firewall Analysis Engine. In: proc. of
the 21st IEEE S&P 2000. pp. 177–187 (2000)

9. Mayer, A.J., Wool, A., Ziskind, E.: Offline firewall analysis. Int. J. Inf. Sec. 5(3),
125–144 (2006)

10. Nelson, T., Barratt, C., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: The Mar-
grave Tool for Firewall Analysis. In: Proc. of LISA 2010 (2010)

11. Yuan, L., Mai, J., Su, Z., Chen, H., Chuah, C., Mohapatra, P.: FIREMAN: A
Toolkit for FIREwall Modeling and ANalysis. In: 27th IEEE S&P. pp. 199–213
(2006)

