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Abstract. Embedded systems are being adopted in applications with
mixed levels of criticality and security, thus making them more suscep-
tible to malicious cyber-attacks. The programming languages that are
typically used for these systems (e.g., C and C++) are memory-unsafe
by construction, and so exposed to a large range of cyber-attacks such
as Code Reuse Attacks (CRAs) and, in particular, the usage of Return-
Oriented Programming (ROP) to craft exploits. Control-Flow Integrity
(CFI) is one of the most popular and efficient mitigation techniques
against said attacks. Recently, CFI also started to be supported with
specialized hardware mechanisms in modern platforms by means of ded-
icated processor instructions. This paper focuses on the hardware-based
CFI solution offered by latest Arm platforms, namely Pointer Authen-
tication Code (PAC), and investigates on the possible approaches to
integrate said technique with virtualization mechanisms. In particular,
this work aims at (i) leveraging the hardware-based isolation offered by
the ARM TrustZone technology to perform key management, (ii) provid-
ing hypervisor-centric attack detection and recovery strategies, and (iii)
emulating PAC via software. Our proposals have been implemented and
tested within a Type-1 Hypervisor running upon an industrial-grade em-
ulated environment by Arm. The implementation and the investigations
carried out during this work revealed interesting insights but also crucial
limitations. Despite it emerged that the Armv8.3-A architecture allows
hypervising PAC with limited effort thanks to the available hardware-
based support, our work also revealed that a better support (in terms of
virtualization extensions of the processor) is needed to properly virtu-
alize PAC-enabled software and to implement recovery strategies in the
presence of attacks.

1 Introduction

Operating Systems, leveraging memory management units (MMUs), are able
to deny applications on writing/modifying text sections where the user code
resides, mitigating several code-injection-based attacks. However, other classes
of attacks are still possible without requiring the injection of malicious code. In
particular, Code Reuse Attacks (CRAs) exploit code that is already present in
the system, which is used with malicious data injected into the address space of
applications and/or in the context of a non-conventional execution flow. Indeed,
the underlying idea of such attacks is to deviate the normal execution flow to



a malicious path [8]: one of the most used technique is the, so-called, Return-
Oriented Programming (ROP).

Historically, this approach dates back to the return-to-libc attack, published
by Solar Designer in 1997 [7]. Here, the attacker is able to change the return
address of the called function presented in the libc library by manipulating the
function arguments in order to contain the address of a target routine. This
attack strongly influenced the hacking community that successively improved
ROP-based attacks. In general, a chain of short code sequences can be used rather
than a single function. Indeed, multiple code sequences present inside benign
programs, also called gadgets, can be combined to construct a ROP payload and
induce arbitrary malicious program behaviors. A gadget can simply be a return
instruction after loading, or popping, from memory the return address.

One of the biggest weaknesses of this kind of attacks is that they are mostly
based on known fixed addresses within the code in which there are gadgets.
For this reason, a well-known technique that aims at mitigating these attacks
is Address Space Layout Randomization (ASLR), which allows base addresses
of various segments (.text, .data, .bss, etc.) to be loaded/placed at randomized
memory addresses [11]. In this way, pre-calculated fixed addresses for gadgets
are not anymore consistent. The resistance of this technique is mainly based
on the adopted address length, which drives the range of feasible addresses in
which the code can be stretched against brute-force attacks, and on the absence
of pointer leaks [13].

Control-flow Integrity (CFI) is another promising and effective solution to
mitigate such attacks. Note that the execution flow of a program can be repre-
sented by a Control Flow Graph (CFG) in which nodes are parts of code and
edges are jumps/returns. CRAs involve the addition of a new path within the
Control Flow Graph (CFG) corresponding to the regular execution of a pro-
gram. In short, CFI enforces a pre-determined, trusted CFG, without paying
care at mitigating some specific attack [1, 6]. CFI is powerful but non-trivial to
implement, especially if a complete enforcement of a CFG is desired. To over-
come this limitation, industrial players are starting to push for hardware-based
supports that allow implementing CFI. One of the most relevant example is the
Pointer Authentication Code (PAC) feature, which has been recently introduced
in the latest Arm architectures—specifically, since version Armv8.3A. Intel ar-
chitectures also offer a hardware-based control-flow integrity technology named
Control-flow Enforcement (CET).

Contribution. This work specifically focuses on the PAC technology by Arm
and investigates on possible approaches to integrate PAC-based CFI with virtual-
ization stacks. In particular, this work aims at (i) leveraging the hardware-based
isolation offered by the ARM TrustZone technology to perform key manage-
ment, (ii) providing hypervisor-centric attack detection and recovery strategies,
and (iii) emulating PAC via software. Our proposals have been implemented and
tested within a Type-1 Hypervisor running upon an industrial-grade emulated
environment by Arm. The implementation and the investigations carried out



during this work revealed interesting insights but also crucial limitations of the
support provided by Arm in terms of virtualization extensions.

2 Essential background

This section introduces the main technologies used in this work. First, the
Armv8-A architecture is briefly described; then, an overview of the Pointer Au-
thentication Code feature is presented.

2.1 The ARMv8 architecture in a nutshell

Arm is a family of Reduced Instruction Set Computers (RISC) processors that
are becoming the reference architecture for modern embedded systems, espe-
cially for the industry of mobile phones due to their low-power characteristics.
The Arm version 8 (Armv8 for short) [9] architecture implements two execution
states, namely Aarch32 and Aarch64, respectively based on 32-bit and 64-bit reg-
isters (and transactions) with the corresponding specific instruction sets. Each
execution mode can dispose of up to four privilege levels, called Exception Lev-
els (EL): EL0 is the least privileged one, typically used for applications; EL1 is
the first privileged level that is typically used for OSes; EL2, more privileged,
is typically used for Hypervisors; while EL3 is the most privileged one and is
used for trusted bare-metal firmware (e.g., Arm Trusted Firmware). Arm also
introduced a security-oriented processor extension called TrustZone [3], which
natively provides the foundations to implement a Trusted Execution Environ-
ment via hardware by splitting the processor into two similar execution modes
denoted Secure and Non-Secure worlds. As it is illustrated in Figure 1, EL1 and
EL0 are available in both the worlds. EL2 in Secure world is only available on
the latest Arm architectures, i.e., since version Armv8.4A [2], while EL3 only
resides in Secure world.
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Fig. 1. Armv8-A Exception Levels and Security States.



2.2 Pointer Authentication Code

In 2016, ARM released the version 8.3-A of its application processor architecture.
One of the main changes introduced in this version is a mechanism able to
authenticate the content of a physical register before it is used as the address
for an indirect branch or as a data reference. This mechanism is called Pointer
Authentication Code (PAC) [9, 12].

PAC is a protection mechanism against exploitation of memory corruption
bugs and prevents the modification of function pointers and generic code point-
ers, such as return addresses stored in memory or registers. The mechanism is
able to authenticate pointers and embed a short Message Authentication Code
(MAC) within 64-bit memory address. This implies that the mechanisms can
be enabled only in the Aarch64 state of Arm platform (i.e., the 64-bit support)
and that the actual address space is less than 64 bits because a part of the
address needs to be reserved to the MAC. The MAC is built from a pointer (a
64-bit value), a 128-bit secret key stored in system registers, and a 64-bit modi-
fier. Technically, the code is a cryptographic checksum on data, obtained by the
QARMA [4] algorithm, which guarantees authenticity and integrity of pointers.

In practice, PAC introduces some additional instructions to the Instruction
Set Architecture (ISA) for (i) calculating an authentication code and embedding
it into a pointer; and (ii) verifying an authentication code and restore the original
pointer.

Furthermore, a set of system registers have been introduced to store the keys
used by the PAC cryptographic algorithm.

The PAC specification provided by Arm defines five keys:

– two pairs of keys named A and B, where each pair includes a key for creating
PACs of instruction addresses and a key for creating PACs of data addresses,
for a total of four keys; and

– one key named G for general purpose usages.

The size of the PAC depends on size of (virtual) memory address spaces,
which determines how big is the unused part of memory address that can hence
be used to host the PAC. For instance, given an instruction address contained in
the Xd 64-bit general-purpose register, the PACIA Xd, Xn instruction computes
the corresponding authenticated pointer (i.e., the address and its PAC) using the
key A. The value stored in Xn before calling the instruction is used as a modifier.
The authenticated pointer will be stored in Xd, which will hence contain the
concatenation of the original address in Xd with its PAC.

Analogously, AUTIA Xd, Xn authenticates the instruction address stored in
Xd by re-calculating and verifying its PAC. If the authentication succeeds, the
instruction automatically restores the original pointer into Xd. If it fails, the
instruction restores the original pointer into Xd by adding a dirty bit in the most
significant part of the address. In this case, the usage of the latter address will
result in a translation fault. This way for signaling the authentication failure
suffers a severe problem: it is not easy to distinguish a PAC failure—i.e., a



possible CFI violation, and hence an attack—from a common exception resulting
from an illegal access to memory. This aspect is discussed in details in Section 4.2.

The PAC instructions are typically used for authenticating the return address
stored in the link register lr and using the value of the stack pointer as a modifier.
Other relevant instructions are PACIASP and AUTIASP, which perform the same
tasks of PACIA and AUTIA with the difference of implicitly using lr as Xd and
the stack pointer sp as Xn. For this reason, they are expected to be most used
PAC instructions in standard software.

Support for PAC is also available at the level of compilers. For instance, since
version 7 of the GCC compiler, by enabling the option -msign-return-address

it is possible to automatically protect every function with PAC (adequate assem-
bly code is generated at the beginning and at the return points of each function).

As an example, Figure 2 represents the classical prologues and epilogues for
building an activation record of a function (on the left), and its modification
with the PAC-related instructions introduced by the compiler (on the right).

Fig. 2. Example of prologue and epilogue of a function with (right) and without (left)
PAC.

The PAC keys are stored into system registers and are hence accessible by the
privileged mrs/msr instructions (the standard Arm instructions to manipulate
system registers), which are not executable at EL0. The key management is the
only part of the PAC support that has to be controlled by software: this aspect
motivated our investigations.

3 Objectives

This work aims at a detailed analysis of the PAC support offered by Arm plat-
forms to the end of realizing the following new features by leveraging the adop-
tion of a Hypervisor:

– Improved key management. One of the most vulnerable parts of a system
with cryptographic functions is the way it handles secrets, which most times
are keys. Concerning the PAC support for Arm architectures, this aspect is
totally left to the programmer. As mentioned in Section 2, PAC keys are
stored in system registers that are accessible by privileged instructions. In
this way, a kernel running at EL1 (such as Linux, Android, or a RTOS)
can use one or more keys to control the flow of the applications and/or the



kernel itself. For instance, the PAC support for Linux uses a key for each
process [10], context-switching the value of the PAC key registers to kernel
data structures. If assuming an attack model in which the attacker is able to
read kernel data, e.g., due to a data leakage vulnerability, the PAC keys can
be retrieved and used to craft PACs to alter the control flow. To mitigate
such attacks, this work investigates the possibility of implementing a PAC
key management by leveraging the TrustZone technology, i.e., employing
virtualization to intercept the accesses to the PAC key registers and then
configure the actual PAC keys by using software running in Secure world.
Under this approach, the OS running in Non-Secure world can be unaware
of virtualization, and can continue using its own PAC keys, which will be
associated to the actual keys by the software running in Secure world. As
it will be detailed in the next section, a hash function has been adopted to
implement said key association.

– Attack detection and recovery. Hypervisors are typically adopted in
embedded systems to implement mixed-criticality systems. Domains of the
hypervisor can host the execution of (i) a rich, low-critical OS such as Linux,
which is notoriously prone to bugs and typically serves the execution of com-
plex software that are also prone to attacks; or (ii) a safety-critical OS such
as a real-time OS, which typically implements crucial functions. In such a
kind of settings, the hypervisor can be used to implement recovery strate-
gies in the presence of attacks. That is, when an attack in the low-critical
domain is detected, the hypervisor can shutdown this domain and trigger a
fail-safe/fail-operational recovery strategy in the safety-critical domain. Our
aim is to investigate how a violation of the CFI, i.e., a failure of a PAC
authentication, can be used to trigger such a recovery strategy.

– PAC emulation. Another aspect addressed in this work is the evaluation
of the possibility of using PAC without the presence of the corresponding
hardware support. In other words, we studied how to emulate via software the
PAC mechanism in order to let programs compiled for Armv8.3 (including
PAC-related instructions) to be compatible with older Arm processors. When
adopting a Hypervisor, this can be achieved with para-virtualization.

4 Investigations

This section presents the main investigations performed in this work. Our pro-
posals have been implemented in a custom Type-1 hypervisor that is under
development in our laboratory and integrated with Arm Trusted Firmware, a
reference low-level, open-source firmware for managing TrustZone-enabled pro-
cessors. It is important to note that, at the time of writing of this paper and to
the best of our knowledge, PAC is available in only two system-on-chips (Kirin
980 from HiSilicon and Apple A12 Bionic), which however do not dispose of off-
the-shelf evaluation boards. Hence, an evaluation of our proposals on an actual
platform was not possible. Our implementations have been tested upon Arm
Fixed Virtual Platform, a processor emulator offered by Arm. The emulator



aims at reproducing the functional behavior of real processors, but is not cycle-
accurate: for this reason, it was not possible to extract meaningful measurements
to be presented in this paper.

4.1 PAC key management with TrustZone

Among the protection features related to the PAC mechanism, the Arm architec-
ture allows configuring the processor to trap the accesses to the registers holding
the PAC keys in a higher Exception Level. In particular, accesses to said reg-
isters from EL1 can be trapped in EL2, while the accesses from both EL2 and
EL1 can be trapped in EL3. This feature is particularly useful to manage the
PAC mechanism at the hypervisor level.

The solution studied in this work leverages the Arm Trustzone technology in
order to (i) deny the access to the keys from each Exception Level belonging to
the Non-Secure world, and (ii) manage keys only from the Secure world without
any form of awareness for the OS running in the Non-Secure world. In this way,
if an attacker is able to exploit a vulnerability within the Non-Secure world,
hence gaining privileges for reading (or even writing) the key registers at EL1/2,
the accesses to the key registers will be trapped and virtualized.

Note that a hypervisor running at EL2 is free to implement its own policy to
virtualize the accesses to the PAC key registers performed by the OSes running
at EL1. This would guarantee a form of protection enabled by the ring-based
privilege levels of Arm platforms, but keys are still manged in Non-Secure world.
A more secure solution can be realized by exploiting the TrustZone technology.
The idea is to dispose of a secure service running on a Trusted OS within the
Secure World that acts as the only software layer in charge of handling the PAC
keys, i.e., modifying the corresponding physical registers.

Specifically, as soon as an OS (from Non-Secure EL1) or the Hypervisor (from
Non-Secure EL2) perform a read/write operation to the PAC key registers, a trap
is triggered and managed by the Secure Monitor at EL3. The Secure Monitor
will then (i) perform a world context switch, (ii) give access to the Secure World
on accessing the keys, and finally (iii) awake the Trusted OS to perform the
actual access to the PAC keys. At this point, the Trusted OS running in Secure
EL1 is free to implement any policy to virtualize accesses to the target PAC key
register. Here, the challenge is to act as a transparent layer, i.e., the OS in EL1
should be oblivious of this virtualization chain.

The realized policy to handle write accesses to the PAC key registers works
according to the following steps:

– retrieve and save in a secure storage the key that the Non-Secure World was
trying to set (referred to as the virtual key);

– generate a new key by using a cryptographic hash function that takes as
input the virtual key and a secret; and

– write the generated key into the physical PAC key register.

In dual manner, when a read operation is trapped, the secure service just returns
the virtual key to the Non-Secure World.



Note that the function that generates the key cannot be a simple hash func-
tion; otherwise, even if the used hash algorithm is secret, a brute-force attack
can easily allow guessing the algorithm. A cryptographic hash function is hence
needed. The secret key used by the function is randomly generated at each sys-
tem boot for making brute-force attack still more difficult. In the presence of
warm resets, the secret can be also periodically or on demand re-generated by a
secure service running in the Secure world.

To implement these features, the Arm Trusted Firmware (ATF) running at
EL3 has been patched in order to (i) configure the processor such that the Non-
Secure World cannot access the PAC key registers, and (ii) give the possibility
to the Secure World to manage the context of the Non-Secure World while
virtualizing the read/write operations. Additionally, a basic bare-metal firmware
has been developed to implement a simple secure service running at Secure EL1
to handle key management.

4.2 Detection and recovery

The PAC support is not designed to detect attacks in a direct manner. If an
instruction for authenticating a PAC fails, the processor replaces the PAC with
a specific pattern that makes the corresponding pointer an illegal address, while
no PAC-specific exceptions are generated. An exception is generated only when
the pointer is used, e.g. for a branch. For example, consider the epilogue of the
function with PAC support shown in Figure 2 where the AUTIASP instruction
verifies whether the PAC stored in the LR register can be authenticated. If the
authentication fails, it does not generate an exception, but it replaces the PAC
with an illegal address that will be stored in the link register LR. Then, when the
return instruction (RET) is executed, the value in LR is used and a translation
fault is generated.

Unfortunately, the information provided by the processor about this excep-
tion through state registers in not enough to recognize that a failed authentica-
tion happened. As a consequence, it is difficult to distinguish an attack with
respect to a common illegal memory access performed by a lower level of privi-
lege, e.g., due to a harmless bug in a user application. In other words, the PAC
mechanism does not provide explicit support (e.g., a processor flag) for a rapid
attack detection—to the best of our knowledge, the only option is to parse the
faulty address and check if the PAC-specific illegal pattern is present.

This work investigated possible solutions to overcome this limitation. A first
solution considered in this work consists in trapping all translation faults to
a higher level of privilege, and then verify if the address that generated the
exception includes the specific pattern of a failed authentication. Unfortunately,
the architecture does not help in implementing this approach as it is not possible
to trap translation faults only. The only available option is to trap all exceptions,
hence leading to a high overhead.

A second solution investigated in this work consists in exploiting the archi-
tectural support to trap PAC instructions. Instead of reacting to translation
faults, the idea is to prevents the usage of faulty addresses by executing said



instructions at the level of the hypervisor and then checking the results of PAC
authentications to detect failures. To develop a proof-of-concept implementa-
tion of this approach, only a subset of PAC instructions has been virtualized;
specifically, those that are natively supported by the GCC compiler: PACIASP to
create a PAC in the prologue of a function, and AUTIASP to authenticate a PAC
in the epilogue. As stated before, as soon as software running in EL1 (or EL0)
executes a PAC instruction, a trap exception is generated and routed to the
hypervisor (EL2). Note that, to virtualize PACIASP and AUTIASP, the hypervisor
should create or authenticate a PAC with values that reside in the Exception
Level that generated the trap. Furthermore, to implement a transparent virtu-
alization, their results must be stored into the corresponding registers of the
Exception Level that generated the trap exception. The following subsections
detail the implemented mechanisms to provide a taste of the complexity and the
issues that arise when adopting this approach.

Virtualizing PACIASP. First note that the PACIASP cannot be used within
the hypervisor, as it would use the LR and SP registers of the EL2 context and
not those of the Exception Level that generated the trap. For this reason, the
PACIA Xd, Xn instruction has to be used by moving to Xd and Xn the values of
LR and SP, respectively, from the context of EL1 or EL0. Furthermore, if the
PAC support is enabled in EL2, the Hypervisor should temporarily replace the
physical key with the one belonging to the EL1/0 context. A crucial issue is that
PACs have a length that is dependent on (i) the size of virtual addresses and (ii)
whether address tagging is enabled or not. During the execution of each PAC
instruction, this information is implicitly extracted by system registers of the
current Exception Level. As a consequence, when PACs are computed at EL2,
it is not guaranteed to dispose of the same configuration of EL1/EL0, hence
risking to generate incompatible PACs (i.e., by losing useful parts of the original
pointer). For this reason, after EL2 computes the PAC, it is necessary to perform
some checks and, in some cases, to fix the results of the PAC generation. For
example, if tagging is not enabled in EL2, but it is enabled in the Exception
Level that caused the trap exception, then the first byte (which must remain
equal as in the original pointer) is replaced by the byte of the PAC created
by EL2. This byte is then non-recoverable. In this case, the Hypervisor should
truncate the PAC created in EL2 by replacing the first byte with the original
pointer, hence replicating the behavior of the instruction to create the PAC when
executed at the Exception Level that caused the trap exception. The same thing
happens if the size of virtual addresses in EL2 is smaller than the one of virtual
addresses in EL1. Here, a PAC created in EL2 would override some relevant bits
of the original pointer. Clearly, this does not happen when the size of the virtual
addresses in EL2 is greater than the size of those in EL1 (i.e., a smaller PAC is
created).

Virtualizing AUTIASP. The same problems encountered in virtualizating
PACIASP also hold for the case of AUTIASP. In addition, since PACs created



with virtualization could have been modified to handle the problems discussed
above, it is not possible to use a standard authentication proccess in every case.
For this reason, to authenticate a PAC, the original pointer has to be rebuilt to
compute its PAC, which can then be authenticated. At this point, our imple-
mentation verifies if the two PACs are the same, so finally allowing for attack
detection.

4.3 PAC Emulation

Considering its native support in compilers, PAC is likely to establish as a ref-
erence solution to implement CFI. For this reason, it is relevant to explore pos-
sibilities to provide support for PAC also in architectures that do not dispose of
specialized instructions. Para-virtualization is a powerful technique to offer this
support.

In this work, PAC instructions have been emulated via software. A proof-of-
concept implementation has been developed, again by only supporting the main
PAC instructions managed by GCC (PACIASP and AUTIASP). A tool to patch
the binary code produced by GCC for ARM has been implemented: the tool
replaces PAC instructions (which would take no effect in architectures that do
not offer hardware-support for PAC) with secure monitor calls—i.e., SMC instruc-
tions. Approaches similar to those discussed in the previous subsection have been
adopted. Here, the main difference is that we do not dispose of PAC instructions,
hence every creation and authentication of PACs must be performed in software.
The QARMA algorithm has been re-implemented in C for this purpose. Not sur-
prisingly, this solution led to a very high run-time overhead, mostly related to
the software execution of QARMA, which jeopardized the system performance.
Our preliminary measurements revealed that, besides introducing considerable
overhead, the intensive usage of SMC instructions to emulate PAC can still lead
to reasonable performance. Future work should investigate on the use custom
hardware accelerators to implement the QARMA algorithm. For instance, this
approach could be viable in FPGA-based system-on-chips such as those of the
Zynq and Zynq Ultrascale families by Xilinx.

5 Conclusion

This work studied a brand-new security mechanism to implement Control-Flow
Integrity (CFI) that is available in the latest Arm platforms, namely Pointer Au-
thentication Code (PAC), and its possible integration with Hypervisors. Specif-
ically, the paper focused on investigations to the end of (i) improving the PAC
key management by leveraging the Arm TrustZone technology, (ii) implementing
Hypervisor-centric attack detection and recovery strategies, and (iii) emulating
via software the PAC mechanism.

Overall, the result of our investigations can be summarized with three take-
away messages. First, TrustZone-assisted key management can be realized with
limited effort thanks to the virtualization extensions offered by Arm, provided



that accurate care is given to the structure of PACs. Second, attack detection
with PAC is difficult to realize due to architectural limitations. A solution with
limited overhead has been proposed to solve this problem, but it would make
much more sense to dispose of a simple flag in a status register of Arm processors
to signal a failed PAC authentication. Third, emulating the PAC mechanism by
only using software approaches is not a practically-viable approach as it leads to
low performance, but the usage of custom hardware accelerators may solve this
issue.

Our investigations will hopefully lead to interesting future works aimed at
improving the usability, the performance, and the security of PAC, which include
a deeper investigation of the aspects addressed in this paper, support for dual-
hypervisor designs [5], and accurate performance evaluations with optimized
implementations in hypervisors.
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