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Abstract. In oil and gas sector, maintenance reports from a floating oil
and gas production, storage and offloading (FPSO) unit play an impor-
tant role for fixing the failures on time and for learning from previous
experiences. Documenting these reports in a structured way is an im-
portant task for such units. In this work, we experiment with different
machine learning techniques to classify the maintenance reports. However
the unstructured text from these reports combined with domain specific
terms, abbreviations, misspellings and multiple language use makes the
automatic classification of these reports quite challenging. Our findings
show that how challenging this task is with the existing report structure
and content.

1 Introduction

Offshore oil & gas installations are complex structures that are expensive to
build and need continuous monitoring for maintenance and upgrading. It is vital
to avoid any unnecessary production stops or accidents, as this would have seri-
ous implications for both the companies themselves and their staff. Financially
just a short temporary halt of production comes at a substantial cost. More
importantly, however, is the risk of serious life-threatening accidents if parts
break down or malfunctions arise. Offshore oil & gas production is by nature a
challenging task, and the dependence on technology calls for proper procedures
for reducing the risk of equipment failures and other accidents that affect the
security of people and climate.

Maintenance reports document maintenance activities that are either carried
out on a regular basis or triggered by particular events. Whereas some of them
address small repairs like the change of broken light bulbs or screws, others con-
cern more time-critical problems that need to be taken very seriously by the
management. The intention is to use these maintenance reports to structure the
documentation of these activities for later use and facilitate learning and ex-
change of competence over time. Engineers acquire valuable experiences as they

Copyright held by the authors. NOBIDS 2018



take part in maintenance activities, but not all of them are equally experienced
and no individual engineer can be expected to fully understand the structures
and functions of a complete oil & gas installation.

Maintenance reports follow a particular format that forces the engineers to
provide some basic information about the maintenance work. There are a number
of structured fields that identify for example a piece of equipment, a location or
a date, but the engineers are also encouraged to write a short textual description
of the work they are carrying out. Even though these descriptions are fairly short
and of variable quality, they are crucial when someone wants to check if their
present problem has been faced and solved at some time in the past.

Failure codes are of particular interest in maintenance reports. Unfortunately,
many reports do not have any failures codes entered, since they were not known
at the time the report was created. For later maintenance activities this is prob-
lematic for two reasons: (i) A maintenance task is not treated correctly or timely
because they fail to realize that similar tasks have been successfully dealt with in
the past, and (ii) they are not able to generalize - or learn - from previous cases
because a critical piece of data is missing in the documentation of old cases.

In principle, we can approach the missing failure codes as a classification
problem. Experiments show, unfortunately, that the structured fields of mainte-
nance reports are not sufficient to produce a classifier with a very high accuracy.
The question is whether the textual descriptions may help us fill in the failure
codes instead. These texts were not written to support later classification and
are probably quite typical for internal documentation in many companies. They
were quickly written and with limited knowledge of the problem at hand, and
they are best understood by their fellow engineers. The descriptions are neither
precise nor complete, but they do reveal something that is potentially relevant
for classifying the maintenance work. The contribution of this paper is two-fold:
(i) we analyze the challenges of extracting the content of internal industrial texts
and assess the usefulness of various linguistic operations, and (ii) we evaluate to
what extent machine learning techniques can classify the maintenance reports
on the basis of their textual descriptions.

The structure of the paper is as follows. After presenting the dataset in Sec-
tion 2, we discuss the methods for analyzing the textual descriptions in Section
3. We then use some machine learning techniques to classify the maintenance
reports and discuss the results of the experiments at the end.

2 Dataset

The dataset used in this work stems from a floating production, storage and
offloading (FPSO) unit in the Norwegian oil and gas industry in the North
Sea. It contains a total of 4968 failure reports on various maintenance activities
in the oil and gas field. Failure reports are labelled with different code groups
according to their association with different parts of the FPSO unit, such as
electric generators, steam turbines etc. In the dataset there are 40 code groups. In
each code group there are various fault types where each report can be associated



with. However the fault type field that may or may not be filled by the reporter.
In the dataset the fault type field is not consistently filled. In general, the reports
consist of a number of structured fields and one text describing the failure. In
Fig.1 the general structure of the failure reports can be seen.

Report texts describe asset failures from a FPSO unit in the North Sea. The
average length of the reports is 75 words, where the minimum length is 7 and
the maximum length is 1580 words. An interesting property of the reports in
the dataset is that the usage of multiple languages. As it is shown in Fig.2,
the languages used in the reports are mostly Norwegian (58.7%) and English
(22.6%), however it is possible to see the usage of Danish (3.7%) and Swedish
(0.4%) as well. In addition, in 13.2% of the reports multi-language use occurs
within the same report. In total there are 32,011 unique words in the reports.

Fig. 1. The general structure and fields of failure reports.

2.1 Challenging properties of the dataset

Dealing with the automatic analysis of the free, unstructured text has challenges.
When we consider the technical failure reports at FPSO units, the data comes
with even more challenges:

– Misspellings: In the failure reports there are several misspelling of words
and abbreviations in addition to the usage of incorrect grammar and unfin-
ished sentences.

– Domain specific terminology and jargon: The usage of domain specific
terms and acronyms is available in the failure reports.



Fig. 2. Different languages used in maintenance reports.

– Multi-language use: As mentioned earlier, 13.2% of the failure reports has
the usage of multiple languages at once.

– Abbreviations: For the ease of reporting there are several abbreviations
available in the reports. Several of those abbreviations are not explained
and it is only possible for the human domain experts to understand.

– Non-standard structures: The structure of reports is not standardized.
Even though it seems that there is a form of structure in some of the reports,
many of the reports do not follow the same structure.

– Imbalance in report types: The distribution of 4968 failure reports among
40 different code groups is not balanced. As it is shown in Fig. 3 the difference
between the distribution of reports vary a lot.

Fig. 3. Imbalance in report types.



3 Methods

3.1 Text simplification and pre-processing

Prior to conduct the classification experiments we conducted some normalization
of the texts. This normalization includes some text simplification strategies as
well as general NLP pre-processing techniques.

Sentence boundaries were standardized as much as possible, in order to en-
hance the performance of the classifiers. In particular, newlines and non-standard
sentence boundaries were normalized by substituting the symbols with a basic
dot. Regular expressions were used to do these transformations.

Besides, most reports include specific dates and times describing when the
report was made or edited and by whom. This information was also transformed
into general named entities labels so as to reduce the vocabulary space the clas-
sifier has to deal with as much as possible. Figure 4 shows an example of an
original maintenance report and Figure 5 illustrates the same text after sim-
plification. This example illustrates how actual dates, times and proper names
for equipment, location, people and measurement numbers, were mapped into
general labels during normalization. Protocol questions included in most reports
as templates for employees were also removed, with the purpose of excluding
unnecessary information.

Fig. 4. Maintenance report example. Original text.

Fig. 5. Maintenance report example, after text simplification.



After these simplification, standard NLP pre-processing was performed, in-
cluding tokenization, normalization of words with capital letters, stop-words
removal and stemming, whereby words are reduced into their base form. NLTK
was used for these purposes.

3.2 Feature extraction

Two different feature models were explored in this study. A baseline model,
consisting on a bag-of-words model including TF-IDF frequencies, and two word
embedding models, in particular distributed memory (DM) and distributed bag
of words (DBOW) were explored. Gensim and scikit-learn were correspondingly
used for these purposes.

The approach for obtaining such features varies slightly. TF-IDF models are
fitted individually with text data from each code group or class. In contrast,
document embedding models are fitted with the text data from all classes, and
then each of the selected class infers embeddings from the same global model.

3.3 Classification

Text classification is a fundamental field that has been well studied by researchers
and practitioners of a variety of fields, including artificial intelligence, statis-
tics, pattern recognition, cognitive psychology, computer vision and medicine.
In this section, we first formally define the classification task. Then different
types of classification algorithms, specifically, K nearest neighbor, Multinomial
Naive Bayes, Random Forest and Support Vector Machine, are adopted and
explained.

Problem definition Let X = {x1,x2, ,xN} be the input set after pre-processing,
and y be the output being assigned to a class c ∈ C after generated by infer-
ence model f . xi is the input vector of the i-th document, and N represents the
number of documents in training set. The classification problem can be denoted
as: y = f(X ). Our goal is to assign y to a class c which is the same with ground
truth class c.

K Nearest Neighbor The fundamental mechanism behind nearest neighbor
method is to find K training samples which are closest in distance to the newly
arrived input point [4]. The distance can be any types of metric measurements
according to specific applications. In this paper, euclidean distance is adopted
to find the closest K points in training set.

d(x,x) = ||(x− x)|| =

√√√√ D∑
i

(x2
i − xi

2) (1)

https://www.nltk.org/
https://radimrehurek.com/gensim/
https://scikit-learn.org/



where x and x are the representations of training and target points respectively.
d(·) is the distance between x and x and D is the dimension of input vector.
The predicted class y can be achieved according to the conditional probability
given the set of the nearest K neighbors Z:

ŷ = argmacc∈Cp(y = c|Z) =
1

k

∑
i∈Z

I(yi = y) (2)

where I(·) is the indicator function having the value of 1 if y belongs to a specific
class else 0.

Naive Bayes Naive Bayes classifier classifies newly input documents using
Bayes rule under the assumption of the independence between input features
[7]:

ŷ = argmacc∈Cp(c)

D∏
i=1

p(xi|c) (3)

Multiple models can be used to calculate the posterior probability of the rele-
vance of input x given class c, among which includes Multinomial [6] and Guas-
sian models [8]. In our case, Multinomial model is used since it can cover both
discreet and continuous feature spaces [9].

p(x|c) =
(
∑

i xi)!∏
i xi!

∏
i

pxi
ci

(4)

where xi is the relative value of the i-th feature of input document.

Random Forest Random Forest is an ensemble of decision tree algorithms [2],
where each decision tree participates in the class prediction process through re-
sult aggregation. Decision trees embody the classification approach [14] through
a tree-like structure, which is made up of a root and internal nodes, branches
and leaves. Branches represent paths denoted by a range of values and internal
nodes control splitting rules represented by selected features from input space.
Information Gain is one of the most popular feature selection methods adopted
in this paper at each internal node during splitting process.

InformationGain(Xp, xi) = H(Xp)−
m∑
j=1

Ni
Np

H(Xj) (5)

where Xp is the set of training documents before split, and Xj ∈ Xp is a subset
of documents disjoint with each other after split. m is the number of values of
feature xi appeared in training set. Ni andNp are the number of documents in Xp
and Xj respectively. H(·) specifies the entropy. The feature and value are selected
with the highest Information Gain value recursively until the splitting process
reaches the leaf node and is assigned to a class. Thus, the final classification
result of Random Forests is given as the averaged prediction of the individual
decision trees.



Support Vector Machine Support Vector machine (SVM) is another method
that we use to categorize fault type labels of text descriptions [5]. SVM sets out
to fit a hyperplane with largest margin to nearest examples of any class. These
examples are known as support vectors. The optimization process of SVM is to
support vectors with largest margin between arbitrary classes while minimizing
the lost function L. In our paper, the extension version of hinge loss [13] is
adopted to achieve the best margin. Specifically, for

L =
∑
j 6=c

max(0,WT
j x−WT

c x + δ) + λ · R(θ)

where Wj and Wc are model parameters. δ is the tolerance threshold to be
tuned during training process. R(·) represents the regularization term used to
prevent over-fitting problems and model complexity, which can be either L1

or L2 regularization. θ represents the set of model parameters and λ is the
regularization parameter.

4 Experiments

Different experiments run in different phases: 1- NLP techniques in preprocessing
2- Machine learning algorithms for classification

4.1 Evaluation Metrics on Classifications

Here we enumerate the evaluation metrics on classification tasks adopted in this
paper. The formulae are shown in Table 1.

– Accuracy (ACC): Despite its popular property in evaluation of classifica-
tion tasks, some issues occur in an imbalanced domain. For instance, consider
a problem where only 1% of the examples belong to the positive class, a accu-
racy of 99% is achievable by predicting negative class for all examples. Thus,
ACC is at best misleading, when the ratio between positive and negative
examples is significantly skewed.

– Harmonic Mean of Precision & Recall (Fβ):The definition is based
on two metrics, recall and precision. Recall captures the completeness of
how many positive examples are predicted positive, while precision captures
the exactness of how many predicted positive examples are true positive.
Because of an imbalanced multi-class data distribution in our experiments,
we adopt macro averaging in [10] to summarize the classifiers performance
over a set of classes C. Thus, the example size of a class does not affect the
measurement. For a given class c, Fβ is defined as the harmonic mean of
precision and recall [12]. β is introduced to adjust the relative importance
of recall with respect to precision and is set to 1 in our case.

– Cohens Kappa (κ): It compares an observed accuracy with and expected
accuracy [3]. Specifically, κ provides a score ranging from -1 to 1, from which
the performance of a classifier can be evaluated with respect to random



chance. The bigger the value is, the better the performance shows. The
interpretation of κ score follows the work in [1].

– Geometric Mean Accuracy (GMA): The metric takes the geometric
average (GMA) of the recall score in each class and it benefit from the use
of geometric mean when there is a multiplicative or exponential relationship
between class scores averaged especially for imbalanced data distribution
[11].

Besides, two guessing strategies are chosen as baselines:

– Stratified (STRAT): It generates predictions by respecting training sets
class distribution.

– Most Frequent (MFREQ): It always predicts the most frequent label in
the training set.

Table 1. Classification evaluation metrics

Evaluation Metrics Definition

Accuracy (ACC) ACC =
tp+ tn

tp+ tn+ fp+ fn

Fβ Fβ =
(1 + β)2 · PrecM ·RecM
β2 · PrecM ·RecM

Cohens Kappa (κ) κ = 1 − 1 − po
1 − pe

Geometric Mean Accuracy (GMA) GMA = |C|
√∏

c∈C recall(c)

4.2 Parameter Settings

Hyper parameters are selected through grid-search for different tasks and classi-
fiers. Then values with best performance of classification tasks are selected. Each
sampled experiment for a particular feature extraction method will be scored in
terms of its exhibited Fβ macro averaged score with K = 5 in K Nearest Neigh-
bor predictions.

where tp, tn, fp and fn denote true positive, true negative, false positive and false
negative respectively

PrecM =

∑
c∈C

precision(c)

|C| where precision(c) =

∑
i
I(yi=c)I(ŷ=c)∑

i
I(ŷ=c)

. RecM =∑
c∈C

recall(c)

|C| where recall(c) =

∑
i
I(yi=c)I(ŷi=c)∑

i
I(yi=c)

where po denotes the observed accuracy and pe denotes the expected accuracy of
classification performance



5 Evaluation

As described before, there are several properties in oil and gas maintenance re-
ports which make them particularly challenging to be automatically understood:
specialized terminology and expressions, multiple languages, misspelled and non-
standard words, inconsistent syntax and lack of proper sentence boundaries.

In order to assess the impact of the different simplification and pre-processing
techniques, as well as feature extraction models, a careful evaluation was per-
formed. This evaluation was implemented in three steps: (i) assessment of the
feature extraction methods; (ii) evaluation of singular simplification and pre-
processing techniques; (iii) evaluation of simplification and pre-processing meth-
ods in combination.

5.1 Assessment of the feature extraction methods

As results from experiments with each of the feature extraction methods show,
each method performs differently on different models. Figures 6, 7 and 8 show the
distributional graphs containing all the models sampled during hyperparameter
search. In these figures, the vertical axis represents the total number of models
that achieved any of the F scores along the horizontal axis. Note that axis scales
are not consistent among the graphs.

The graphs show that the performance of document embeddings (DM and
DBOW) varies significantly. Although TF-IDF show a more consistent perfor-
mance across various hyperparameters, and exhibited the best performance of
all the three methods, it also includes the worst performing model.

Fig. 6. Distributed memory (DM)

5.2 Evaluation of individual text simplification and pre-processing
techniques

Table 9 shows classifier performance for the text simplification techniques ex-
plored here. As can be seen from this table, both SVM and MNB perform below
a simple baseline, questioning the validity of using text simplification techniques
for the classification of maintenance reports. Specially it is low in all cases where



Fig. 7. Distributed bag of words (DBOW)

Fig. 8. Term Frequency-Inverse Document Frequency (TF-IDF)

Fig. 9. Classifier performance by text simplification technique. Classifiers in each group
are ranked in terms of F score exhibited with each technique.



the performance of classifiers with person-name filtering. Also it is possible to
see that different classifiers perform better on different experiments.

Table 10 shows the results of the classifiers when performing standard NLP
pre-processing. Interestingly, the SVM experiment including stemming yielded
the best results, while the worst results were obtained for the MNB classifier
under the same conditions. The reverse can be seen with non-alphanumeric fil-
tering. In general, these pre-processing methods had a much a bigger impact
on the performance of SVM, yielding results above the baseline. In contrast,
MNB got results over the baseline only when non-alphanumeric filtering was
performed.

Fig. 10. Classifier performance by NLP pre-processing technique. Classifiers in each
group are ranked in terms of F score exhibited with each technique.

5.3 Evaluation of individual text simplification and pre-processing
techniques in combination

Lastly, we evaluated the performance of the different pre-processing methods in
combination. The top five performing combinations of pre-processing methods
for SVM and MNB can be seen in Tables 11 and 12.

qs: question structure filtering; sw: stop-words filtering; l: lowercase (no capitalization
letters); st (stemming); dnt: datetime-number-tag filtering; nlta: non-alphanumeric
filtering; dt: datetime filtering



Fig. 11. SVM: The top 5 best performing pre-processing and simplification techniques
in combination, ranked by F score.

Fig. 12. MNB: The top 5 best performing pre-processing and simplification techniques
in combination, ranked by F score.



Although there is no consistent ranking between the two classifiers, however,
lowercase, stop words filtering and non-alphanumeric filtering appear amongst
the techniques with most impact on their performance. This is not surprising,
as these techniques are generally used as pre-processing steps in most NLP
pipelines. Slightly more unusual is the fact that stemming does not seem to
be very relevant for the classification algorithm’s performance. We suggest that
this might be due to the fact that there is a high number of spelling errors and
specialized vocabulary which can make the vocabulary space simplification more
challenging.

6 Discussion and Conclusion

In this work we looked into the maintenance reports from a floating production,
storage and offloading (FPSO) unit in the Norwegian oil and gas industry. These
reports are used to structure the documentation of these activities for later use
and facilitate learning and exchange of competence over time.

Failure codes which some of the reports in the dataset include, help the
engineers to classify the type of failures in order to treat the failures on time
and to learn from the similar failures happened in the past. However, not all the
reports include failure codes. In this work, we use machine learning in order to
predict the missing failure codes. By using the textual description of the failure,
after pre-processing of the text and feature extraction, we experimented with
three different machine learning classifiers: K Nearest Neighbor, Naive Bayes
and Support Vector Machine. As explained in the previous sections, the results
show that different classifiers outperforms other methods on different tasks. But
unfortunately none of the methods are good enough to be useful in this task
and tested methods do not solve challenges. The challenges of the dataset, as
explained in detail in Section 2.1, makes data preparation and analysis very hard.
Maintenance reports have special characteristics. Usage of multiple languages at
once, unstructured text with misspellings, technical terms, abbreviations are
quite challenging for the existing natural language processing methods to deal
with.
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