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ABSTRACT
In the Rakuten data challenge on taxonomy Classification
for eCommerce - scale Product Catalogs, we propose an
approach based on deep convolutional neural networks to
predict product taxonomies using their descriptions. The
classification performance of the proposed system is further
improved with oversampling, threshold moving and error
correct output coding. The best classification accuracy is
obtained through ensembling multiple networks trained dif-
ferently with multiple inputs comprising of various extracted
features.
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1 INTRODUCTION
E-commerce sites provide millions of products that are con-
tinuously updated by merchants. The correct categorization
of each product plays a crucial role in helping customers find
the product that meets their need in many aspects, such as
product searching, targeted advertising, personalized recom-
mendation and product clustering. However, due to the large
scale of the products, it is often not feasible and error prone
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to manually categorize the products. Therefore, large-scale
automatic categorization is in great need.

2 RELATEDWORK
The challenges in large-scale automatic categorization in-
clude: Firstly, the products are sparsely distributed in a large
number of categories and the data distribution is far away
fromuniform distribution. Such imbalanced data could largely
deteriorate the categorization performance [5, 21]; Secondly,
the commercial product taxonomy is usually categorized in
tree structures with thousands of leaf nodes, which adds
another layer of difficulty to explore the correlations among
large number of taxonomies in a hierarchical structure. Vari-
ous classification methods, such as flat classification, cascade
classification and probabilistic cascading have been deployed
in the large-scale taxonomies. [1, 8, 13]. However, it remains
to be a challenging problem due to the large data scale, data
heterogeneity, and category skewness [24].
In light of the challenges, different methods have been

proposed to achieve optimal classification performance. For
example, Naive Bayes demonstrates the effectiveness and
efficiency for classifying test documents [15, 19], but it has
poor performance when some categories are sparse [23].
Support vector machines (SVMs) have been served as a well-
established benchmark model for classifying e-commerce
product [9]. Chen et. al proposed a multi-class SVM with
an extension of using margin re-scaling to optimize average
revenue loss [4]. However, SVM has been shown to have
longer computing time and it only works well when the
number of categories is less than five [5]. As one of the
deep learning algorithms, recurrent neural network (RNN) is
proposed by Pyo and Ha to deal with the multi-class classifi-
cation problem with unbalanced data[8], in which the learnt
word embedding depends on a recursive representation of
the same initial feature space. In addition, convolutional
neural network (CNN) achieves remarkable performance in
sentence-level classification [10, 11, 27]. Recently, CNN has

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
andrew


andrew
Copyright © 2018 by the paper’s authors. Copying permitted for private and academic purposes.
In: J. Degenhardt, G. Di Fabbrizio, S. Kallumadi, M. Kumar, Y.-C. Lin, A. Trotman, H. Zhao (eds.): Proceedings of the SIGIR 2018 eCom workshop, 12 July, 2018, Ann Arbor, Michigan, USA, published at http://ceur-ws.org�



SIGIR 2018 eCom Data Challenge, July 2018, Ann Arbor, Michigan, USA Y. Jia et al.

been regarded as a replacement for well-established SVM
and logistic regression models [28], which uses pre-trained
word vectors as inputs for training the CNN models [28].

Product categorization is a hierarchical multi-class classi-
fication problem. Hence, a natural way of classifying product
is to use hierarchical classification. However, hierarchical
classification suffers from error propagation issue [25]. Kos-
mopoulos proposed a probabilistic hierarchical classification
approach that predicted the leaf categories by estimating the
probability of each root-to-leaf path [13]. Cevahir et.al [3]
mitigated the error propagation issue in hierarchical clas-
sification and achieved better results than flat models by
incorporating a large number of features in leaf category
prediction.
To combat with imbalanced classification problem, cost

sensitive training appears to be an effective solution. Zhihua
Zhou et.al [29] show that only over-sampling and threshold
moving is effective for training cost-sensitive neural net-
works by empirical studies. However, it becomes difficult to
define costs of misclassification when there are large number
of classes. A more recent paper [18] also supports similar
claims.

Error-CorrectingOutput coding (ECOC) is anothermethod
that has been used in multi-class text classification to further
improve a classifier’s accuracy [6, 7]. The idea behind this
approach is to encode each class label to a unique binary
code with a number of digits, such that redundancy is in-
troduced to the transformed class labels that are then used
for training a supervised Machine Learning model. Even if
some errors occur in the prediction of a transformed label,
we may still be able to recover the correct original label by
choosing the one that is the closest to the prediction. This
approach helps to reduce the space of model output when
there are a large number of class labels. At the meantime it
also alleviates the class imbalance problem.

3 DATA CHARACTERISTICS
The SIGIR eCom Data Challenge is on large-scale taxonomy
classification. The competition requires us to classify each
product description to one of the classes accurately in the
unlabeled testing data using models developed from the la-
beled training data. Data is provided as a training data (800
thousands of products) and a testing data (200 thousands of
products). The training data has one column having produc-
tion description and one column having product categories.
There are 14 principal product categories represented by
numbers, all but one of which have secondary categories of
levels ranging from 1 to 7, or 1 to 8 levels in total, which
results in a total of 3008 classes. Each of such combination
of principal and secondary categories formulates a string of
numbers that represents a class, eg "3625>4399>1598>3903",
"2296>3597>689".

There are many characteristics and potential challenges in
this dataset. At the class level, there exists large variation in
the number of samples in each class, resulting in a largely
unbalanced dataset (See Table 1). Out of the 3008 classes,
19 classes have only one product, and 1484 (49.3 percent
) classes have less than 25 products, which sums up to be
13,618 products, or 1.70 percent of all products. On the other
hand, 12 classes have more than 10,000 products, which sums
up to be a total of 256,689 products, or 32.1 percent of all
products. The top 3 largest classes include 69915, 30146, and
25481 products respectively (See Table 2). The classes with
many samples might embrace both the richness as well as the
diversity of data that could result in the inter-class distance
being closer than the intra-class distance. The classes with
only a handful of samples are expected to be hard to classify
accurately in the testing data.
The product description is a mixture of letters, words, num-
bers and other ASCII characters. At the product description
level, there appears to have at least the following challenges.
The first challenge is that the difference between data sam-
ples in the same class might be larger than that of samples
belonging to different classes to the extent of seemingly mis-
labels. For example, both "Mont Blanc Mb Starwalker Men
Eau De Toilette Edt 2.5Oz / 70Ml" (a type of perfume) and
"Humminbird Pc11 Power Cord" (an electronic device) are in
the category of "3625>4399>1598>3903", while "Creed Green
Irish Tweed Eau De Perfum For Men - Small Size 1oz (30ml)
", also a type of perfume, is in category "3625>3005". The
second challenge is the categories under the same parent cat-
egories (or principal category) are correlated, which would
enforce the challenge above. A third challenge is that one ab-
breviation could have different meanings, for example, "hp"
could be "horsepower" or "Hewlett-Packard", "mb" could be
"mega byte" or "marble". The fourth challenge is the large
variation in the number of words in each product descrip-
tion, ranging from 1 to dozens. While a short description
might not provide sufficient information, such as a single
word product "Bonjour", a long description might include
too much details that the relevant information might be
hidden, such as "fosmon 2100mah dual port usb rapid car
charger for apple iphone 5c/5s/5/4s/4, samsung galaxy note
3/2, s5/s4/mini/active/s3, lg g3/lg g2/ g2 mini, google nexus
5/4, blackberry z10/z30/q10, htc one (m8), motorola moto
e/moto x/moto g, nokia lumia 1020".
Due to the above data characteristics, data preprocessing
that filters out noise and keeps relevant information is sys-
tematically designed and implemented and various modeling
strategies are tested as described in the next sections.
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Table 1: Data Characteristics - Category Size

log10(Categorize Size) Count Category Size Range

0 893 < 10
1 1372 (10 - 100]
2 623 (100 - 1,000]
3 108 (1,000 - 10,000]
4 12 > 10,000

Table 2: Top 3 Categories

Category Number of Products

2199>4592>12 69915
3292>3581>3145>2201 30146
4015>2337>1458>40 25481

4 PREPROCESSING AND FEATURIZATION
In this section we introduce how the product descriptions are
preprocessed and the features extracted to train our model.

Preprocessing
As we described above, the product description contains
noise. We mitigate the noise in a trial-and-error way in order
to find the balance of signal noise ratio. As a result, we apply
the following procedure. We first convert all letters to lower
case, and replacd special characters such as parentheses ex-
cept single hyphen, and repeated characters such as multiple
hyphen or dots with spaces. We then unify physical units
of "in", "ft", "hp", "ml","oz" and etc that follow a number to
"nnnhp", "nnnml", and "nnnoz", respectively. For example,
"3.4oz", "3.4 oz" or "3.4-oz" would become "nnnoz". Finally,
we remove dash (-), standalone numbers, and extra white
spaces. As a result of the preprocessing, distinct words are
reduced from 670K to 160K.

Word-level and character-level embeddings for
system input
We use three different sets of word embedding to create
vector presentation of words, each of which is as described
in more details below. The resulted vectors of each word in
each product description are then concatenated (i.e, column-
bind) as word embedding features. As shown in Fig. 1, word
embeddings are concatenated as the input to train a CNN
model. Three sets of word embeddings generated by varying
methods are used as three separate inputs.

Word embeddings pre-trained on Google News. The
pre-trained word embeddings are trained on part of Google
News dataset (about 100 billion words) by using word2vec

algorithm [20]. The representation of a word is learnt to be
useful for prediction of other words in the sentence. The
model contains 300-dimensional vectors for 3 million words
and phrases.

Word embeddings pre-trained on product descriptions.
We also learn word embeddings from all product descriptions
by using word2vec algorithm implemented within Gensim
[22], which is an unsupervised learning model. The dimen-
sion of word vector is set to be 50 and we train the word2vec
model using CBOW algorithm [20] with 5 epochs. In each
epoch, we initially set learning rate to be 0.025 and let it
linearly decay to 0.0001.

Word embeddings learnt in training. Firstly, we use
one-hot coding to represent an individual word in a product
description. Then we learn a weight matrix in an embedding
layer of proposed model to transform each word into a word
vector having 50 dimensions. The word vectors transformed
from one-hot coding are used as the input to train the first
convolutional layer.

Character-level embeddings learnt in training. Besides
word embeddings, we also use character level embeddings
learnt in training, where the learning approach is similar to
the approach of learn word embeddings in training. We use
one-hot coding to represent each unique character in the
raw texts rather than each word.

Named entity and part-of-speech tag features
The appearance of named entities might be associated with
certain product categories. For example, locations, landmarks,
and famous people are often prevalent in categories such
as branded perfume, books and movies, while organization
names might be seen more commonly in electronic products
such as Apple and HP. In addition, individual words asso-
ciated with the named entities might be rare and therefore
filtered by our word frequency requirement, but they could
be informative. For example, the word "Beethoven" occurs in
only one product description, but it is the name of a famous
musician and it carries strong information about what type
of product it could be. Therefore, we use Stanford CoreNLP
package [17] to extract 23 types of named entities from the
product description, namely cause of death, city, country,
criminal charge, date, duration, email, ideology, location,
misc, money, nationality, number, ordinal, organization, per-
cent, person, religion, set, state or province, time, title, and
URL. For each product description, we count the number
of words in each entity type and normalize values by the
length of sentence, resulting a 23-dimension feature vector
representing the distribution of named entity types. Addi-
tionally, we generate a 36-dimension feature vector for the
distribution of part-of-speech tags, which was also identified
by Stanford CoreNLP.
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Pre-processing
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Figure 1: Illustration of analysis system for product title categorization

(a) (b) (c)

Figure 2: Classifier performance (F1-score, recall and precision) as a function of Category Size
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Creating sentence level representation
We use doc2vec algorithm proposed in "Distributed Repre-
sentations of Sentences and Documents" by Quoc Le et al.
[14], to create another set of features for product descriptions.
The algorithm modifies word2vec to unsupervised learning
of continuous representations for larger blocks of text, such
as sentences, paragraphs or entire documents. We represent
each product description by a 50 dimensional feature vector
and we train the doc2vec model with 5 epochs.

5 PROPOSED MODEL FOR PRODUCT
TAXONOMY CLASSIFICATION

An overall architecture of our system is shown in Fig. 1. We
introduce the key components in the proposed model in
the following sections. We train five models separately with
each one using multiple data inputs and varying setups. For
making the final predictions, we ensemble the predicting
results from these models. All the models are trained using
Adam algorithm [12] with a learning rate 0.001.

Kim-CNN architecture
Several recent studies have examined CNN models for text
classification tasks and reported CNN based models achieved
outstanding performance [2, 11, 16]. We adopt the design
of Kim’s CNN model to extract informative patterns from
the word embedding representation of input data [11]. Kim’s
model contains paralleled convolution filters of three differ-
ent kernel sizes to protrude informative patterns in a sub
area of the input data. The kernel size (k) of filter determines
the magnitude of the sub area in the case of text, that is
the number of continuous words in a sentence. By mixing
convolution filters of three continuous sizes (k − 1, k , and
k + 1), the network can learn patterns in the sentence at
three different scales. This design is similar to combining
n-gram features of different scales (e.g., unigram, bigram,
and trigram). The max pooling filter scans through outputs
of convolution filters and preserves only the max value in
each area. This operation washes out information that is less
relevant to the classification task and reduces the dimension-
ality of features extracted by convolution filters. The output
is further processed by one layer of fully-connected neurons
to condense output matrix.

Based on the Kim-CNN architecture proposed in [11] that
used kernels in the sizes of 3, 4 and 5, we insert one more
kernel with size being 1 to capture the unigram features
and we apply a batch normalization layer followed by a
dropout layer after the fully-connected layer of a standard
Kim-CNN, then the output is further processed by a second
fully-connected layer to yield final outputs.

Oversampling and threshold moving
We adopt an oversampling strategy to improve the model’s
performance on imbalanced data. In training one of the five
networks as shown in Fig. 1, we initially draw 256 examples
from training data to form one batch. We add 768 more
examples to the batch of data by duplicating those ones
whose classes having less than 5000 examples in the entire
training set. Within the 768 duplicated examples, we further
define three categories of classes according to the class sizes
in training set: classes with 1000 - 5000 examples, 100 - 1000
examples and less than 100 examples. The proportion of
three categories of classes should follow 1:2:4 to form the
total 768 oversampled examples. In the end we have 1024
examples in each batch.

We also apply a threshold moving strategy to adjust model
predictions to alleviate data imbalance problem. The original
output of our models, which are the probabilities for each
class, are divided by the class sizes before we yield final class
labels. This strategy will reduce the probabilities yielded
on large classes but increase those on smaller classes. Our
experimental results show that this strategy is able to further
improve model performance.

Error correcting output coding
To leverage the hierarchy of class labels and explore label
correlation, we also used error correcting output coding
[6, 7]. For our cases with large amount of classes, we create
a unique binary coding for each taxonomy. The coding for
each taxonomy level is different, for example, the first level
taxonomy has 3 digits while the second level taxonomy has
4 digits. Then we concatenate all codes corresponding to
multiple taxonomies to form the new output coding. The
original taxonomy prediction problem is transformed into a
multi-label learning problem using the encoded labels. The
longest sequence of taxonomies contains 8 taxonomy codes.
We pad those encoded labels of taxonomy sequences less
than 8 with zeros.

Model ensembling
The models that are trained for ensembling are shown in Fig.
1 and descriptions of these models are as the following:

• Model 1 : The last fully connected layer uses the input
including: (1) the output of Kim-CNN networks; (2)
NER features; (3) doc2vec features.

• Model 2 : The last fully connected layer uses the in-
put including: (1) the output of one Kim-CNN model
trained with upsampling; (2) the output of the other
Kim-CNN trained with ECOC; (3) NER features.

• Model 3 : The last fully connected layer uses the in-
put including: (1) the output of Kim-CNN networks
trained with ECOC; (2) NER features and (3) doc2vec
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features. The output of Model 3 is decoded from the
yielded multi-label predictions in a way of calculating
the likelihood of predicting each individual class label
firstly and then we assign the original class label with
the highest computed likelihood to the example.

• Model 4 : We train a Kim-CNN model using character
level embeddings of raw texts. The last fully connected
layer uses the input including: (1) the output of Kim-
CNN; (2) NER features and (3) doc2vec features.

• Model 5 : Different from Kim-CNN that concatenates
the feature maps generated from different window
sizes in parallel, we train a new CNN model with six
layers sequentially, which is referred as Zhang-CNN
[26]. The last fully connected layer uses the input in-
cluding: (1) the output of Zhang-CNN; (2) NER features
and (3) doc2vec features. We use the similar hyperpa-
rameters that have been proposed in their paper with
fine tuning.

The output of each model is also adjusted by adopting thresh-
old moving such that each model provides 2 versions of pre-
dictions that are in terms of probabilities, with or without
threshold moving. We derive an ensembling procedure to
combine multiple model predictions. Firstly, we select the
predictions from Model 1, 4 and 5 to form a initial set of
candidate predictions, containing 6 versions of predictions.
We repeat training Model 2 for 3 times with random data
shuffling and oversampling to provide 6 more versions of
predictions and add those to the set. We adopt 3 different
ways of creating output codings and repeatedly train Model
3, to obtain 6 more versions of predictions. We observe that
using even more predictions beyond 6 versions from Model
2 or 3 will not further improve the overall performance. In
the end we implement a majority voting over all versions
of predicted labels within the candidate set to predict the
final labels. When there is a tie, we choose the label with the
highest averaged probability.

6 PARAMETER TUNING AND ERROR ANALYSIS
For training the proposed model, hyper-parameters such
as number of filters among {256, 512, 1024} for each con-
volutional layer, dropout rate among {0.1, 0.2, 0.3, 0.4, 0.5}
and regularization parameter for convolutional and fully
connected layers among {1×10−6, 3×10−6, 1×10−3, 3×10−3,
1×10−1} are tuned using a hold-out set in the training data.
We adopt the same combination of window sizes 3, 4, 5 as
what was used in Kim-CNN [11], otherwise we add a new
window spanning only one word which was helpful to pre-
dict the taxonomy correctly with selected a few single words.
We select an architecture with the best performance. The
adopted hyper-parameters for Kim-CNN model are as the
following :

Table 3: Testing Results

Metric Testing-Stage1 Testing-Stage2

Precision 0.8545 0.8528
Recall 0.8172 0.8172
F1 0.8278 0.8295

• Number of filters : 1024
• Window size of Kim-CNN: {1, 3, 4, 5}
• Dropout rate : 0.5
• Regularization parameter : 3×10−6

In the tuning process, firstly we fix the number of filters to
be 256 and we tune other parameters. Then we increase the
number of filters to 512 and 1024 and the latter one shows
a better performance. We also notice that a higher dropout
rate 0.5 would help to get the best performance. Besides, our
model is quite sensitive to the regularization parameter in
the sense of converging speed. Once we increase it from
3×10−6 to 1×10−3, the model converges much slower but
with no increase in performance.

Our error analysis shows that the classifier works well
for categories whose sample sizes are big, for example, more
than 1000 cases, and not so well for smaller categories. Figure
2 shows the performance on a random validation dataset (20
percent of training data) using ensemble of models trained
with over-sampling, threshold moving and error correcting
output coding techniques. The result inspires us to adopt
various sampling strategies aiming to increase the sample
size for those small categories.

7 RESULTS AND DISCUSSION
The models are firstly trained on 80% of the given 800K
training samples and validated on the rest 20% of data to tune
the hyperparameters. Then the models are retrained with
fixed hyperparameters following an early stopping strategy
in training using all given 800k samples and tested on 200K
samples with unknown labels (Table 3). We achieve a good
performance, with a F1 score of 0.8295.

We observe that feature engineering is particularly impor-
tant in further improving performance using CNN. We went
through a path that as we added more relevant but somehow
different features, for example the NER features, the per-
formance was improved accordingly. We also observe that
there is considerable performance difference among different
models. The performance of models based on character level
embedding are not as good as the others. However, it helps
to improve the overall performance of ensemble model.

The threshold moving method is very helpful to increase
the precision of individual model, which is critical in final
ensembling. The oversampling and ECOC algorithms can
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add additional randomness and improve the performance of
ensembling model to certain extent.
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