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ABSTRACT
Product categorization is a critical component of e-commerce plat-
forms that enables organization and retrieval of the relevant prod-
ucts. Instead of following the conventional classification approaches,
we consider category prediction as a sequence generation task
where we allow product categorization beyond the hierarchical
definition of the full taxonomy.

This paper presents our submissions for the Rakuten Data Chal-
lenge at SIGIR eCom’18. The goal of the challenge is to predict the
multi-level hierarchical product categories given the e-commerce
product titles.We ensembled several attentional sequence-to-sequence
models to generate product category labels without supervised
constraints. Such unconstrained product categorization suggests
possible addition to the existing category hierarchy and reveals
ambiguous and repetitive category leaves.

Our system achieved a balanced F-score of 0.8256, while the
organizers’ baseline system scored 0.8142, and the best performing
system scored 0.8513.

CCS CONCEPTS
• Computing methodologies → Natural language process-
ing; • Applied computing→ Electronic commerce;
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1 INTRODUCTION
Product categorization is necessary to ensure that e-commerce
platforms accurately and efficiently retrieve the relevant items [9].
E-commerce sites use hierarchical taxonomies to organize prod-
ucts from generic to specific classes. For instance, the product ‘Dr.
Martens Air Wair 1460 Mens Leather Ankle Boots’ falls under the
‘Clothing, Shoes, Accessories -> Shoes -> Men -> Boots’
category on Rakuten.com.

Product taxonomies allow easy detection of similar products and
are used for product recommendation and duplicate removal on
e-commerce sites [16, 18]. Although merchants are encouraged to
manually input categories for their products when they post them
∗This is the corresponding author

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
eCom Data Challenge, July 2018, Ann Arbor, Michigan, USA
© 2018 Copyright held by the owner/author(s).

Category: 3292>1041>4175>4258
Canon EOS M10 Mirrorless Digital Camera with 15-45mm Lens
+ 16GB Memory Card + Camera Case

Canon 6163B001M PowerShot ELPH 530HS White 10.1MP

Panasonic Lumix DMC-GF7 Mirrorless Micro Four Thirds
Digital Camera (Black Body Only)

Category: 3292>1041>4380>4953
Canon PowerShot Elph 360 HS Wi-Fi Camera + 32GB + Case
+ Battery + Selfie Stick + Sling Strap + Kit

Fujifilm X-E3 4K Digital Camera & 23mm f/2 XF Lens (Silver)

Category: 3292>1041>4380>4374
Canon EF 70-200mm f/2.8L IS II USM Telephoto Zoom Lens
Deluxe Accessory Bundle

Table 1: Product Titles and Categories in the Training Data

on e-commerce platforms, the process is labor-intensive and leads
to inconsistent categories for similar items [3, 10].

Automatic product categorization based on available product
information, such as product titles, would thus significantly smooth
this process.

Previous approaches to e-commerce product categorization fo-
cused on mapping product information (titles, descriptions, images,
etc.) to the specific categories based on the existing labels from
the training data. Despite the effectiveness of such approaches,
products can only be classified into the categories given by the
platform. In contrast, the static product category hierarchies would
not be able to adapt to the ever-growing number of products on the
e-commerce platform. We want to automatically learn the cross-
pollination of sub-categories beyond the predefined hierarchy, in-
stead of imposing the hard boundaries inherited from higher level
categories.

By redefining the classic product category classification task as
a sequence generation task, we were able to generate categories
that were not predefined in training data. For example, our model
assigned ‘Canon 9167b001 12.8 Megapixel Powershot(R) G1 X Mark Ii
Digital Camera’ to the 3292>1041>4380>4258 category which does
not exist in the product taxonomy in the train set. Table 1 shows a
sample of related product titles and their respective categories from
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Top-level
Categories Count (%) Largest Sub-category (%)

4015 268,295 0.3353 4015>2337>1458>40 0.031851
3292 200,945 0.2511 3292>3581>3145>2201 0.037682
2199 96,714 0.1208 2199>4592>12 0.087393
1608 85,554 0.1069 1608>4269>1667>4910 0.013727
3625 29,557 0.0369 3625>4399>1598>3903 0.021400
2296 28,412 0.0355 2296>3597>689 0.004927
4238 23,529 0.0294 4238>2240>4187 0.001985
2075 20,086 0.0251 2075>4764>272 0.004962
1395 18,847 0.0235 1395>2736>4447>1477 0.004720
92 8172 0.0102 92 0.010215

3730 8113 0.0101 3730>1887>3044>4882 0.003978
4564 5648 0.0070 4564>1265>1706>1158>2064 0.001281
3093 5098 0.0063 3093>4104>2151 0.001907
1208 1030 0.0012 1208>546>4262>572 0.000195

Table 2: Distribution of First Level Categories and the Most Common Label in Each First Level Categories

the training data that overlapped with the 3292>1041>4380>4258
label.

2 SEQUENCE-TO-SEQUENCE LEARNING
The most common Sequence-to-Sequence (Seq2Seq) models belong
to the encoder-decoder family. The source sequence, i.e. product
title string in our case, is first encoded as a fixed-length vector. This
vector is then fed to a decoder, which steps through to generate
the predicted output sequence one symbol at a time until an end-
of-sequence (EOS) symbol is generated. In the context of product
categorization, every sub-category is a symbol in our experiments,
and a sequence of the sub-categories forms a full hierarchical cate-
gory label. The encoder and decoder are jointly trained to maximize
the probability of generating the correct output sequence given its
input[4, 5, 8, 13] .

Simple encoder-decoder performance deteriorates when trans-
lating long input sequences; the single fixed-size encoded vector
is not expressive enough to encapsulate that much information.
To address this problem, the attention mechanism was proposed
to learn an implicit alignment between the input and output se-
quences. Before the decoder generates an item, it first aligns for
a set of positions in the source sequence with the most relevant
information [1]. The model then predicts the target item based
on the context vectors of these relevant positions and the history
of generated items. In other words, attention extracts contextual
information for every symbol processed.

3 DATASET CHARACTERISTICS
The Rakuten Data Challenge (RDC) dataset consists of 1 million
product titles and the anonymized hierarchical category labels. The
data was split 80-20 into training and testing set. The test labels
were kept unknown until the end of the competition.

3.1 Class Imbalance
Unbalanced class distribution presents a significant challenge to
general classification systems, such as nearest neighbors and multi-
layered perceptron, despite remedies, like up-/downsampling and
cost-sensitive learning, with limited effectiveness [12].

Like most e-commerce product categorization data [2, 6, 17],
the distribution of the 14 top-level categories is highly skewed, as
shown in Table 2. A similar imbalance is found in the distribution
of the sub-category labels. From the train set, there are over 3000
unique sub-categories. The largest category (2199>4592>12) con-
tains ~69,000 product titles that made up 8.7% of the 800,000 product
titles from the train set.

3.2 Noisy Product Titles
Noise is inherent to product categories datasets; the RDC dataset is
no different. Related works on product categorization had dedicated
approach to address the noise through a combination of feature
engineering and classifier ensembles [3, 10].

Figure 1: Lists of Characters not in Printable ASCII Range

We checked for common noise signatures in the RDC product
titles by searching for characters beyond the printable ASCII range
(0x20 to 0x7E). Figure 1 shows the list of characters outside the
range, the left side shows the number of product titles that contain
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one or more of the characters on the right, e.g., the \x99 appears
in 2 to 10 product titles.1

Upon inspection, we find that the noise can be helpful to the
learning systems due to their systematic nature. For example, the
same strings of non-ASCII-printable characters appear consistently
in clothing category (1608>4269), such as “I (Heart) My *string
of non-ASCII-printable characters* - INFANT One Piece -
18M” in category 1608>4269>4411>4306 and “Frankie Says Relax
Statement Women’s T-Shirt by American Apparel by Spreadshirt
*string of non-ASCII-printable characters*” in category
1608>4269>3031>62. Hence, we decided not to remove the noise
detected in the product titles.

4 EXPERIMENTS
We lowercased the product titles from the RDC dataset and tok-
enized the data with the Moses tokenizer2,3. To frame the product
categorization task into Seq2Seq generation, we split the categories
up into its sub-categories and treat the category as a sentence. For
example, "4015>3636>1319>1409>3606" is changed to "4015 3636
1319 1409 3606".

4.1 Models
Without explicit tuning, we trained a single-layer attentional encoder-
decoder using the Marian toolkit[7] (commit f429d4a) with the
following hyperparameters.

• RNN Cell: GRU
• Source/Target Vocab size: 120,000
• Embedding dim.: 512
• En/Decoder dim.: 1024
• Embedding dropout: 0.1
• Dropout: 0.2
• Optimizer: Adam
• Batch size: 5000
• Learning Rate: 0.0001
• Beam Size: 6

We allowed the model to over-fit the training data by using
the full training set as our validation set. We trained the baseline
model for 2 hours and stopped arbitrarily at the 7th epoch when the
perplexity reaches 1.18. Our baseline model achieved 0.81 weighted
F-score in the phase 1 result.

For the rest of the submissions, we ensembled the baseline model
with the models trained on different random seeds, and we stopped
the training when we observed that the perplexity on the validation
set falls below 1.0*. It is unclear what is the benefit of over-fitting
the model to the training set and expecting a 1.0* perplexity, but
the assumption is that at inference, given a product title that was
seen in training, the model should output the same label.

Table 3 presents the validation metrics (cross-entropy and per-
plexity) for the different models. In retrospect, we could have been
more disciplined in the stopping criteria and monitor the model
1The penultimate character in the >50 list is the non-breaking space \xa0 and the
last character is a replacement character. They appear in 643 and 766 product titles
respectively. Usually, these are breadcrumbs of the HTML to Unicode conversion.[14,
15]
2https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
3Python port: https://github.com/alvations/sacremoses

Random
Model Seed Epoch Cross-entropy Perplexity
M1 0 77 0.8446 1.1835
M2 1 189 0.0191 1.0038
M3 1 470 0.0723 1.0145
M4 2 54 0.0542 1.0108

Table 3: Cross-entropy and Perplexity during Model Train-
ing

Phase Model(s) P R F
1 M1 (Baseline) 0.82 0.81 0.81

M1-3 0.83 0.83 0.82
M1-4 0.8311 0.8296 0.8245

2 M1-4 0.8267 0.8305 0.8256
Best system (mcskinner) 0.8697 0.8418 0.8513

Table 4: Precision, Recall, F1 Scores on Held-out Test Set

validation more closely to stop with a consistent criterion, e.g.,
limiting the no. of epochs/steps or a particular threshold for the
validation metric.

5 RESULTS
Table 4 presents the precision, recall, and F-score of the baseline
and ensemble systems. The phase 1 results are based on a subset of
the full test data, and the phase 2 results are based on the entire test
dataset. Our baseline system achieved competitive results with 0.81
weighted F-score in phase 1 of the data challenge and the ensembled
systems improved the performance scored 0.82 in phase 1 and 2 of
the challenge.4,5

Similarly, the best system (mcskinner) in the competition is an
ensembled neural network system[11]. It used an ensembled of
multiple bi-directional Long Short Term Memory (LSTM) with a
novel pooling method that balances max- and min-pooling across
the recurrent states. The best system scored 0.85 in phase 2. How-
ever, the best system follows the traditional classification paradigm
where supervised inference produces a fixed set of labels learned
from the training data.

6 ANALYSIS
6.1 Attention Alignment
The ability to generate alignments between the source and target
sequences allows us to easily interpret the category predictions
with respect to their product titles. We generated the attention
weight alignment between source and target sequences for the
training set using the baseline model, M1.6

4Initially, the data challenge reported scores to 2 decimal places, and the change to
report 4 decimal places happened in the last couple of days of the challenge. Since
the labels for the test set were not available at the time of publication, we could not
perform postmortem evaluation to find out the scores for the M1 baseline and M1-3
ensemble models
5The full ranking of the data challenge is available on https://sigir-ecom.github.io/data-
task.html
6We only analyzed the attention weight alignment on the test set minimally because
the gold labels on the test set were not made accessible.
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Example 1
(Correct label: 2296>3597>2989)

Example 2
(Correct label: 2296>3597>1997)

Figure 2: Attention Alignments of Music Product Titles from Training Set

In this section, we analyze the behaviors of the model predictions
in relation to their attention alignment based on cherry-picked
examples (Figure 2-6). We also discuss the implications of such
behaviors on the existing product category hierarchy.

Figure 3: Attention Alignments of a Correctly Labeled
Product

Figure 3 shows an example of a correctly labeled product from
the training set. The heat maps represent the attention weights
that associates the the subcategory labels to each word in the prod-
uct titles. The ‘gucci’ token aligns heavily to the 1608 first level
category that we observe from eyeballing the data, it may refer to
the ‘jewelery and accessories’ category. We see that the ‘eyeglasses’
and ‘frames’ aligns tightly to 2227 subcategory while ‘woman’ and
‘gucci’ are associated with the 574 subcategory. We observe in the
train set that the 2226 final level category is dominated by the
‘eyeglasses’. From the attention weights, we see that many tokens
in the product titles has little or no effect to the alignment to the
specific subcategories.

6.2 Music Category
The first row of Example 1 in Figure 3 shows an interesting phenom-
enon that the ‘</s>’ (end of sentence) token is highly associated
with the 2296 first level category. The attention model might have
learned to correlate short sequence length with 2296 category. The
2296 category seems to be related to media content whose titles are
often succinct; in the train set, there are 2085 single token product
titles out of which 1720 titles has 2296 as their first level category.

When the product titles are terse, the model is unable to dis-
tinguish between the fine-grained subcategories. In Example 2,
the true label in the 2296>3597>1997 refers to the ‘Media>Music>
Electronica’ category7, but themodel predicts it to be 2296>3597>
689 i.e. the ‘Media>Music>Pop’ category.8. Although the model is
smart enough to discover the correct top-level(s) categories by
learning to associate short sequence with 2296>3597 label, it fails
to correctly identity the lowest level category. There are 25 sub-
categories under the 2296>359, without additional information, it
would be hard even for a human to categorize the music genre
based on short and sometimes single-word product title.

6.3 Machine Created Categories
Unlike traditional classification, the Seq2Seq approach has the abil-
ity to generate new categories.

Model Data Split Creation Count
M1 Train 2

(Baseline) Test 46
M1-4 Train 0

Test 1
Table 5: Count of Created Categories

Table 5 shows the breakdown of the created categories when
we applied the models to the train and test set. While the baseline
7https://www.rakuten.com/search/asiatisch/4464/
8We found this out by searching the product titles from the train
set that are labeled with 2296>3597>689 on Rakuten.com, e.g.
https://www.rakuten.com/search/Grey%20Sky%20Over%20Black%20Town/4455/

4



Example 3 Example 4

Example 3: PM Company 07622 One-Ply Adding Machine/Calculator Rolls- 2-1/4&amp;quot; x 17 ft- White- 5/Pack
Example 4: "Universal Adding Machine/Calculator Roll, 16 lb, 1/2"" Core, 2-1/4"" x 150 ft,White, 100/CT - UNV35710"

Figure 4: Attention Alignment of Products with Created Categories

model created 2 new categories, it created 46 categories on the
test set. During model training, the optimizer makes updates that
discourage the creation of new categories tominimize cross-entropy
loss and perplexity. The M1 baselinemodel created 46 new categories
on the test set, while the M1-4 ensemble model produced only 1
new category.

Example 3 and 4 from Figure 4 demonstrates how Seq2Seq model
creates cross-pollinated categories. In this example, the baseline
Seq2Seq model M1 assigned the product, “PM Company 07622 One-
Ply Adding Machine/Calculator Rolls- 2-1/4&amp;quot; x 17 ft- White-
5/Pack”, with a new category, 4238>2149>1286.

To breakdown this created category, we find in the train set that
the overarching category 4235>2149 is for paper-related stationary
products 9. The last sub-category 1286 consistently appears in
4238>4960>1286 which includes calculator-like machines 10 and
their accessories, like calculator cases 11.

In 4238>4960>1286, we also spotted a product analogous to Ex-
ample 6, "Universal Adding Machine/Calculator Roll, 16 lb, 1/2"" Core,
2-1/4"" x 150 ft,White, 100/CT - UNV35710". The presence of this calcu-
lator printing roll from a different brand may suggest that Example
6 should fall under the same category. However, calculator-like ma-
chines dominate the category 4238>4960>1286 by constituting 95
out the 105 products in the train set. Therefore, 4238>2149>1286,
created by our Seq2Seq model, is an adequate suggestion for a new
category of calculator printing rolls.

The ensemble model (M1-4) created one novel category by la-
belling the product “Natural Tech Well-Being Conditioner - 1000ml/

9Examples: Paper | FE4280-22-250 in 4238>2149>1644 and Lissom Design 24021 Paper
Block Set -WB in 4238>2149>488
10Examples: Hewlett Packard HP 10s Scientific Calculator, Casio DR-210TM Two-Color
Desktop Printing Calculator and Ti Nspire Cx Graphing Calc
11Guerrilla Accessories TI83BLKSC TI83 Plus Silicone Case Black

33.8oz” as 3625>594>1920. However, it is unclear whether the cre-
ated category is a valid one without the true labels of the test set
which is not released prior to the paper publication.12

There is a variety of creations across almost all categories in the
existing category hierarchy. Although some are mislabeling, many
of these created categories are worth considering for adaptations
and additions to the existing ones.13

7 CONCLUSION
By framing the product categorization task as a sequence gener-
ation task, we trained attentional sequence-to-sequence models
to generate unconstrained product categories that are not limited
to the supervised labels from the training dataset. These models
created new categories based on the existing sub-categories, sug-
gesting improvement to existing product taxonomy. Categoriza-
tion outcomes by these models can also highlight repetitive and
ambiguous categories. In contrast to the traditional classification
paradigm, the attention weight alignment generated for each prod-
uct title makes the model easily interpretable. With an F1-score of
0.82 in the Rakuten Data Challenge at SIGIR eCom’18, attentional
sequence-to-sequence models are shown to be adequate for product
categorization.
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