
Towards Practical Visual Search Engine
Within Elasticsearch

Cun (Matthew) Mu

Jet.com/Walmart Labs

Hoboken, NJ

matthew.mu@jet.com

Jun (Raymond) Zhao

Jet.com/Walmart Labs

Hoboken, NJ

raymond@jet.com

Guang Yang

Jet.com/Walmart Labs

Hoboken, NJ

guang@jet.com

Jing Zhang

Jet.com/Walmart Labs

Hoboken, NJ

jing@jet.com

Zheng (John) Yan

Jet.com/Walmart Labs

Hoboken, NJ

john@jet.com

ABSTRACT
In this paper, we describe our end-to-end content-based image

retrieval system built upon Elasticsearch, a well-known and

popular textual search engine. As far as we know, this is the

first time such a system has been implemented in eCommerce,

and our efforts have turned out to be highly worthwhile. We

end up with a novel and exciting visual search solution that is

extremely easy to be deployed, distributed, scaled and mon-

itored in a cost-friendly manner. Moreover, our platform is

intrinsically flexible in supporting multimodal searches, where

visual and textual information can be jointly leveraged in re-

trieval.

The core idea is to encode image feature vectors into a

collection of string tokens in a way such that closer vectors

will share more string tokens in common. By doing that, we

can utilize Elasticsearch to efficiently retrieve similar images

based on similarities within encoded sting tokens. As part of

the development, we propose a novel vector to string encod-

ing method, which is shown to substantially outperform the

previous ones in terms of both precision and latency.

First-hand experiences in implementing this Elasticsearch-

based platform are extensively addressed, which should be

valuable to practitioners also interested in building visual

search engine on top of Elasticsearch.

CCS CONCEPTS
• Information systems → Image search; • Applied com-
puting → Online shopping;

KEYWORDS
Elasticsearch, visual search, content-based image retrieval,

multimodal search, eCommerce

ACM Reference Format:
Cun (Matthew) Mu, Jun (Raymond) Zhao, Guang Yang, Jing Zhang,

and Zheng (John) Yan. 2018. Towards Practical Visual Search Engine

Permission to make digital or hard copies of part or all of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for third-party components of

this work must be honored. For all other uses, contact the owner/author(s).

SIGIR 2018 eCom, July 2018, Ann Arbor, Michigan, USA
© 2018 Copyright held by the owner/author(s).

Within Elasticsearch. In Proceedings of ACM SIGIR Workshop on eCom-
merce (SIGIR 2018 eCom). ACM, New York, NY, USA, 8 pages.

1 INTRODUCTION
Elasticsearch [22], built on top of Apache Lucene library [4, 15,

38], is an open-source, real-time, distributed and multi-tenant
textual search engine. Since its first release in February 2010,

Elasticsearch has beenwidely adopted by eCommerce websites

(e.g., Ebay, Etsy, Jet, Netflix, Grubhub) to successfully help

customers discover products based on the textual queries they

requested [13, 57] .

But a picture is more than often worth a thousand words. With

the explosive usage of phone cameras, content-based image
retrieval [16] is increasingly demanded from customers. Espe-

cially for categories like furniture, fashion and lifestyle (where

buying decisions are largely influenced by products’ visual ap-

pealingness), uploading a picture of the product they like could

be substantially more specific, expressive and straightforward

than elaborating it into abstract textual description.

Finding images relevant with the uploaded picture tends to

be much more involved and vaguer than retrieving documents

matching keywords [45, 48, 58] typed into the search box, as

words (by themselves) are substantially more semantic and

meaningful than image pixel values. Fortunately, modern AI

techniques, especially the ones developed in the field of deep

learning [3, 21], have made incredible strides in image feature

extraction [17, 32, 39, 42–44, 59, 60] to embed images as points

in high-dimensional Euclidean space, where similar images are

located nearby. So, given a query image, we can simply retrieve

its visually similar images by finding its nearest neighbors in this
high-dimensional feature space. However, Elasticsearch, as an
inverted-index-based search engine, is not much empowered to

accomplish this mathematically straightforward operation in

an efficient manner (though efforts [6, 7, 19, 30, 36] have been

made successfully in finding nearest neighbors over spaces

of much lower dimension), which significantly limits the ap-

plicability of its nicely designed engineering system as well

as the huge volume of product metadata already indexed into

its database (for textual search). The gist of the paper is to

conquer this difficulty, and thus make it feasible to conduct

visual search within Elasticsearch.

In this paper, we describe our end-to-end visual search

platform built upon Elasticsearch. As far as we know, this

andrew

andrew
Copyright © 2018 by the paper’s authors. Copying permitted for private and academic purposes.
In: J. Degenhardt, G. Di Fabbrizio, S. Kallumadi, M. Kumar, Y.-C. Lin, A. Trotman, H. Zhao (eds.): Proceedings of the SIGIR 2018 eCom workshop, 12 July, 2018, Ann Arbor, Michigan, USA, published at http://ceur-ws.org�

Image
descriptor

Vector to string
tokens encoding

ES

Indexing

Encoding Search

Indexing

Reranking within

Retrieval based on token matching 	

Database images

Query
image

Image
descriptor

Figure 1: Pipeline of our visual search system within Elasticsearch. The image vectors and their encoded string tokens are

indexed together into Elasticsearch. At search time, the query vector x̂ will be first encoded into string tokens ŝ , based on which

a small candidate set R is retrieved. We will then re-rank vectors in R according to their exact Euclidean distances with x̂ , and
output the top ones as our final visual search outcome.

is the first attempt to achieve this goal and our efforts turn

out to be quite worthwhile. By taking advantage of the ma-

ture engineering design from Elasticsearch, we end up with

a visual search solution that is extremely easy to be deployed,
distributed, scaled and monitored. Moreover, due to Elastic-

search’s disk-based (and partially memory cached) inverted in-

dex mechanism, our system is quite cost-effective. In contrast to
many existing systems (using hashing-based [2, 20, 23, 33, 54–
56] or quantization-based [18, 25–27, 29] approximate nearest
neighbor (ANN) methods), we do not need to load those mil-

lions of (high-dimensional and dense) image feature vectors

into RAM, one of the most expensive resources in large-scale

computations. Furthermore, by integrating textual search and

visual search into one engine, both types of product infor-

mation can now be shared and utilized seamlessly in a sin-

gle index. This paves a coherent way to support multimodal
searches, allowing customers to express their interests in a

variety of textual requests (e.g., keywords, brands, attributes,

price ranges) jointly with visual queries, at which most of

existing visual search systems fall short (if not impossible).

Since the image preprocessing step and the image feature

extraction step involved in our system are standard and in-

dependent of Elasticsearch, in this paper we address more

towards how we empower Elasticsearch to retrieve close im-

age feature vectors, i.e., the Elasticsearch-related part of the

visual system. Our nearest neighbor retrieval approach falls

under the general framework recently proposed by Rygl et al.

[47]. The core idea is to create text documents from image
feature vectors by encoding each vector into a collection of

string tokens in a way such that closer vectors will share more
string tokens in common. This enables Elasticsearch to approx-

imately retrieve neighbors in image feature space based on

their encoded textual similarities. The quality of the encoding

procedure (as expected) is extremely critical to the success

of this approach. In the paper, we propose a noval scheme

called subvector-wise clustering encoder, which substantially

outperforms the element-wise rounding one proposed and

examined by Rygl et al. [47] and Ruzicka et al. [46], in terms of

both precision and latency. Note that our methodology should

be generally applicable to any full-text search engine (e.g., Solr

[51], Sphinx [1]) besides Elasticsearch, but in the paper we do

share a number of Elasticsearch-specific implementation tips

based on our first-hand experience, which should be valuable

to practitioners interested in building their own visual search

system on top of Elasticsearch.

The rest of the paper is organized as follows. In Section 2,

we describe the general pipeline of our visual search system,

and highlight a number of engineering tweaks we found useful

when implementing the system on Elasticsearch. In Section 3

and 4, we focus on how to encode an image feature vector into

2

a collection of string tokens—the most crucial part in setting

up the system. In Section 3, we first review the element-wise

rounding encoder and address its drawbacks. As a remedy,

we propose a new encoding scheme called subvector-wise

clustering encoder, which is empirically shown in Section 4 to

much outperform the element-wise rounding one.

2 GENERAL FRAMEWORK OF VISUAL
SEARCHWITHIN ELASTICSEARCH

The whole pipeline of our visual search engine is depicted in

Figure 1, which primarily consists of two phases: indexing and

searching.

Indexing. Given image feature vectors

X := {x1,x2, . . . ,xn } ⊆ R
d , (2.1)

we will first encode them into string tokens

S := {s1, s2, . . . , sn } , (2.2)

where si := E(xi) for some encoder E(·) converting a d-
dimensional vector into a collection of string tokens of car-

dinality m. The original numerical vectors X and encoded

tokens S, together with their textual metadata (e.g, product

titles, prices, attributes), will be all indexed into the Elastic-

search database, to wait for being searched.

Searching. Conceptually, the search phase consists of two

steps: retrieval and reranking. Given a query vector x̂ , we will
first encode it into ŝ := E(x̂) via the same encoder used in

indexing, and retrieve r (r ≪ n) most similar vectors R :={
xi1 ,xi2 , . . . ,xir

}
as candidates based on the overlap between

the string token set ŝ and the ones in {s1, s2, . . . , sn }, i.e.,

{i1, i2, . . . , ir } = r-argmax

i ∈{1,2, ...,n }
|ŝ ∩ si |. (2.3)

We will then re-rank vectors in the candidate set R according

to their exact Euclidean distances with respect to the query

vector x̂ , and choose the top-s (s ≤ r) ones as the final visual
search result to output, i.e.,

s-argmin

i ∈{i1,i2, ...,ir }
∥xi − x̂ ∥

2
. (2.4)

As expected, the choice of E(·) is extremely critical to the

success of the above approach. A good encoder E(·) should

encourage image feature vectors closer in Euclidean distance

to share more string tokens in common, so that the retrieval set

R obtained from the optimization problem (2.3) could contain

enough meaning candidates to be fed into the exact search

in (2.4). We will elaborate and compare different choices of

encoders in the next two sections (Section 3&4).

Implementation. In this part, we will address how we imple-

ment the retrieval and reranking steps in the searching phase

efficiently within just one JSON-encoded request body (i.e.,

JSON 1), which instructs the Elasticsearch server to compute

(2.3) and (2.4) and then return the visual search result in a

desired order (via Elasticsearch’s RESTful API over HTTP).

For the retrieval piece, we construct a function score query
[9] to rank database images based on (2.3). Specifically, our

function score query (lines 3-29 in JSON 1) consists ofm score

functions, each of which is a term filter [14] (e.g., lines 6-14

in JSON 1) to check whether the encoded feature token ŝi
from the query image is being matched or not. With all them
scores being summed up (line 26 in JSON 1) using the same

weight (e.g., lines 13 and 23 in JSON 1), the ranking score for

the database images are calculated exactly as the number of

feature tokens they overlap with the ones in ŝ .
For the reranking piece, our initial trial is to fetch the top-r

image vectors from the retrieval step, and calculate (2.4) to

re-rank them outside Elasticsearch. But this approach pre-

vents our visual system from being an end-to-end one within

Elasticsearch, and thus makes it hard to leverage many use-

ful microservices (e.g., pagination) provided by Elasticsearch.

More severely, this vanilla approach introduces substantial

latency in communication as thousands of high-dimensional

and dense image embedding vectors have to be transported

out of Elasticsearch database. As a remedy, we design a query
rescorer [12] (lines 30-52 in JSON 1) within Elasticsearch to

execute a second query on the top-r database image vectors re-

turned from the function score query, to tweak their scores and

re-rank them based on their exact Euclidean distances with

the query image vector. In specific, we implement a custom

Elasticsearch plugin [10] (lines 35-47 in JSON 1) to compute

the negation of the Euclidean distance between query image

vector and the one from database. As Elasticsearch will rank

the result based on the ranking score from high to low, the

output will be in the desired order from the smallest distance

to the largest one.

Multimodal search. More often than not, scenarios more

complicated than visual search will be encountered. For in-

stance, a customer might be fascinated with the design and

style of an armoire at her friend’s house, but she might want

to change its color to be better aligned with her own home

design or want the price to be within her budget (see Figure

2). Searching using the picture snapped is most likely in vain.

To better enhance customers’ shopping experiences, a visual

search engine should be capable of retrieving results as a joint
outcome by taking both the visual and textual requests from

customers into consideration. Fortunately, our Elasticsearch-

based visual system can immediately achieve this with one

or two lines modifications in JSON 1. In particular, filters can

be inserted within the function score query to search only

among products of customers’ interests (e.g., within certain

price range [11], attributes, colors). Moreover, general full-text

query [8] can also be handled, score of which can be blended

with the one from visual search in a weighted manner.

3 VECTOR TO STRING ENCODING
The success of our approach hinges upon the quality of the

encoder E(·), which ideally should encourage closer vectors to

share more sting tokens in common, so that the retrieval set R

found based on token matching contains enough meaningful

candidates. In the following, we first review the element-wise

rounding encoder proposed by Rygl et al. [47], and discuss

its potential drawbacks. As a remedy, we propose a novel

encoding scheme called subvector-wise clustering encoder.

3

JSON 1 Request body for visual search in Elasticsearch 6.1

1 {
2 "size": s,
3 "query": {
4 "function_score": {
5 "functions": [
6 {
7 "filter": {
8 "term": {
9 "image_encoded_tokens":
10 "query_encoded_token_1"
11 }
12 },
13 "weight": 1
14 },
15 ...,
16 {
17 "filter": {
18 "term": {
19 "image_encoded_tokens":
20 "query_encoded_token_m"
21 }
22 },
23 "weight": 1
24 }
25],
26 "score_mode": "sum",
27 "boost_mode": "replace"
28 }
29 },
30 "rescore": {
31 "window_size": r,
32 "query": {
33 "rescore_query": {
34 "function_score": {
35 "script_score": {
36 "script": {
37 "lang": "custom_scripts",
38 "source": "negative_euclidean_distance",
39 "params": {
40 "vector_field": "image_actual_vector",
41 "query_vector":
42 [0.1234, -0.2394, 0.0657, ...]
43 }
44 }
45 },
46 "boost_mode": "replace"
47 }
48 },
49 "query_weight": 0,
50 "rescore_query_weight": 1
51 }
52 }
53 }

color: dark expresso

price range: < $200

Figure 2: Illustration of multimodal search. Armoire is

searched using image query jointly with color/price range

specified by the customer. Our Elasticsearch-based visual

search engine can be easily tailored to handle complicated

business requests like the above by adding filters (e.g., term
filter [14], range filter [11]) to JSON 1.

3.1 Element-wise Rounding
Proposed and examined by Rygl et al. [47] and Ruzicka et al.

[46], the element-wise rounding encoder rounds each value in

the numerical vector top decimal places (wherep ≥ 0 is a fixed

integer), and then concatenates its positional information and

rounded value as the string tokens.

Example 1. For a vectorx = [0.1234,−0.2394, 0.0657], round-
ing to two decimal places (i.e., p = 2) produces string tokens of
x as

s = {“pos1val0.12”, “pos2val-0.24”, “pos3val0.07”} .

The encoded positional information is essential for the inverted-
index-based search system to match (rounded) values at the same
position without confusion. Suppose on the other hand, positional
information is ignored, and thus

s = {“val0.12”, “val-0.24”, “val0.07”} .

Then the attribute “val0.12” could be mistakenly matched by
another encoded token even when it is not produced from the
first entry.

For a high-dimensional vector x ∈ Rd , this vanilla version
of the element-wise rounding encoder will generate a large

collection of string tokens (essentially with |E(x)| = d), which
makes it infeasible for Elasticsearch to compute (2.3) in real

time.

Filtering. As a remedy, Rygl et al. [47] presents a useful

filtering technique to sparsify the string tokens. In specific,

only top-m entries in terms of magnitude are selected to create

rounding tokens.

Example 2. For the same setting with Example 1, whenm is
set as 2, the string tokens will be produced as

s = {“pos1val0.12”, “pos2val-0.24”}
4

with only the first and second entries being selected; and when
m is set as 1, the string tokens will be produced as

s = {“pos2val-0.24”} ,

with only the second entry being selected.

Drawbacks. Although the filtering strategy is suggested to

maintain a good balance between feature sparsity and search

quality [46, 47], it might not be the best practice to reduce

the number of string tokens with respect to finding nearest

neighbors in general. First, for two points x̂ ,x ∈ Rd , their
Euclidean distance

∥x̂ − x ∥2
2
=

d∑
i=1

(x̂i − xi)
2, (3.1)

is summed along each axis equally rather than biasedly based

on the magnitude of x̂i (or xi). In specific, a mismatch/match

with a (rounded) value 0.01 does not imply that it is less im-

portant than a mismatch/match with a 0.99, in terms of their

contributions to the sum (3.1). What essentially matters is the

deviation ∆i := x̂i − xi rather than the value of x̂i (or xi) by
itself. Therefore, entries with small magnitude should not be

considered as less essential and be totally ignored. Second, the

efficacy of the filtering strategy is vulnerable to data distribu-

tions. For example, when the embedding vectors are binary

codes [24, 31, 34, 35, 52], choosing top-m entries will lead to

an immediate tanglement.

In the next subsection, we will propose an alternative en-

coder, which keeps all value information into consideration

and is also more robust with respect to the underlying data

distribution.

3.2 Subvector-wise Clustering
Different from the element-wise rounding one, an encoder

that operates on a subvector level will be presented in this

part. The idea is also quite natural and straightforward. For

any vector x ∈ Rd , we divide it intom subvectors
1
,

[x1, . . . ,xd/m︸ ︷︷ ︸
x 1

,xd/m+1, . . . ,x2d/m︸ ︷︷ ︸
x 2

, ,xd−m+1, . . . ,xm︸ ︷︷ ︸
xm

].

(3.2)

Denote Xi
:=

{
x i
1
,x i

2
, . . . ,x in

}
as the collection of the i-th

subvectors from X for i = 1, 2, . . . ,m. We will then separately

apply the classical k-means algorithm [37] to divide each Xi

into k clusters with the learned assignment function

Ai
: Rd/m → {1, 2, . . . ,k}

assigning each subvector to the cluster index it belongs to.

Then for any x ∈ Rd , we will encode it into a collection ofm
string tokens{

“pos1cluster{A1(x1)}”, “pos2cluster{A2(x2)}”, . . .
}
. (3.3)

The whole idea is illustrated in Figure 3. The trade-off between

search latency and quality is well controlled by the parameter

m. In specific, a largermwill tend to increase the search quality

as well as the search latency, as more string tokens per each

vector will be indexed.

1
For simplicity, we assumem divides d .

In contrast with the element-wise rounding encoder, our

subvector-wise clustering encoder obtains m string tokens

without throwing away any entry in x , and will generate

string tokens more adaptive with the data distribution, as

the assignment function Ai (·) for each subspace is learned

through Xi
(or data points sampled from Xi

).

2

1

3

4
5

6
7

1

2

3

4

5

1

2 3

6 4

57

Figure 3: Illustration of the subvector-wise clustering
encoder. The vector x ∈ Rd is divided into m subvectors.

Subvectors at the same position are considered together to be

classified into k clusters. Then each subvector is encoded into

a string token by combining its position in x and the cluster it

belongs to, so exaclym string tokens will be produced.

4 EXPERIMENT
In this section, wewill compare the performance of the subvector-

wise clustering encoder and the element-wise rounding one

in terms of both precision and latency, when they are being

used in our content-based image retrieval system built upon

Elasticsearch.

Settings. Our image datasets consists of around half a mil-

lion images selected from Jet.com’s furniture catalog [28]. For

each image, we extract its image feature vector using the pre-

trained Inception-ResNet-V2 model [53]. In specific, each

image is embedded into a vector in R1536 by taking the out-

put from the penultimate layer (i.e., the last average pooling

layer) of the neural network model. String tokens are produced

respectively with encoding schemes at different configura-

tions. For the element-wise rounding encoder, we select p ∈

{0, 1, 2, 3}, andm ∈ {32, 64, 128, 256}. For the subvector-wise

clustering encoder, we experiment with k ∈ {32, 64, 128, 256}

andm ∈ {32, 64, 128, 256}. Under each scenario, we index the

image feature vectors and their string tokens into a single-

node Elustersearch cluster deployed on a Microsoft Azure

virtual machine [40] with 12 cores and 112 GiB of RAM. To

better focus on the comparison of the efficacy in encoding

scheme, only vanilla setting of Elasticsearch (one shard and

zero replica) is used in creating each index.

Evaluation. To evaluate the two encoding schemes, we ran-

domly select 1,000 images to act as our visual queries. For

each of the query image, we find the set of its 24 nearest

5

Figure 4: Pareto frontier for the element-wise round-
ing and the subvector-wise clustering encoders in the
space of latency and precision. It can be clearly seen that

our subvector-wise encoding scheme is capable of achieving

higher precision with smaller latency.

neighbors in Euclidean distance, which is treated as gold stan-

dard. We use Precision@24 [49], which measures the over-

lap between the 24 images retrieved from Elasticsearch (with

r ∈ {24, 48, 96, . . . , 6144} respectively) and the gold standard,

to evaluate the retrieval efficacy of different encoding methods

under various settings. We also record the latency for Elas-

ticsearch to execute the retrieval and reranking steps in the

searching phase.

Results. In Table 1, we report the Precision@24 and search

latency averaged over the 1,000 queries randomly selected.

Results corresponding to p ∈ {2, 3} or r ∈ {24, 48} are skipped

as they are largely outperformed by other settings. Configu-

rations that can achieve precision ≥ 80% and latency ≤ 0.5s

are highlighted in bold. From Table 1, we can see that the

subvector-wise encoder outperforms the element-wise one,

as for all results obtained by the element-wise encoder, we

can find a better result from the subvector-wise one in both

precision and latency. To better visualize this fact, we plot the

Pareto frontier curve over the space of precision and latency in

Figure 4. In specific, the dashed (resp. solid) curve in Figure 4

is plotted as the best average Precision@24 achieved among

all configurations we experiment for element-wise rounding

(resp. subvector-wise clustering) encoder, under different la-

tency constraints. From Figure 4, we can more clearly observe

that the subvector-wise encoder surpasses the element-wise

one. Notably, when we require the search latency to be smaller

than 0.3 second, the subvector-wise encoder is able to achieve

an average Precision@24 as 92.14%, yielding an improvement

of more than 11% over the best average Precision@24 that can

be obtained by the element-wise one.

5 FUTUREWORK
Although our subvector-wise clustering encoder outperforms

the element-wise rounding one, it might be still restrictive to

enforce a vector to be divided into subvectors exclusively using

(3.2), which could potentially downgrade the performance of

the encoder. Our next step is to preprocess the data (e.g., trans-

form the data through some linear operation x 7→ T [x] with
T[·] learned from the data) before applying our subvector-

wise clustering encoder. We believe this flexibility will make

our encoding scheme more robust and adaptive with respect

to different image feature vectors extracted from various im-

age descriptors. Another interesting research direction is to

evaluate the performances of different encoding schemes in

other information retrieval contexts–e.g., neural ranking model
based textual searches [5, 41, 50], where relevances between
user-issued queries and catalog products are modeled by their

Euclidean distances in the embedding space to better match

customers’ intents with products.

ACKNOWLEDGEMENT
We are grateful to three anonymous reviewers for their helpful

suggestions and comments that substantially improve the pa-

per. We would also like to thank Eliot P. Brenner and Aliasgar

Kutiyanawala for proofreading the first draft of the paper.

REFERENCES
[1] A. Aksyonoff. 2011. Introduction to Search with Sphinx: From installation to

relevance tuning. " O’Reilly Media, Inc.".

[2] A. Andoni and P. Indyk. 2006. Near-optimal hashing algorithms for ap-

proximate nearest neighbor in high dimensions. In Proceedings of FOCS.
459–468.

[3] Y. Bengio. 2009. Learning deep architectures for AI. Foundations and
trends® in Machine Learning 2, 1 (2009), 1–127.

[4] A. Bialecki, R. Muir, G. Ingersoll, and L. Imagination. 2012. Apache lucene

4. In Proceedings of SIGIR workshop on open source information retrieval.
[5] E. P. Brenner, J. Zhao, A. Kutiyanawala, and Z. Yan. 2018. End-to-End

Neural Ranking for eCommerce Product Search. In Proceedings of SIGIR
eCom’18.

[6] Elasticsearch contributors. 2016. Multi-dimensional points, coming in

Apache Lucene 6.0. Retrieved June 16, 2018 from https://www.elastic.co/

blog/lucene-points-6.0.

[7] Elasticsearch contributors. 2017. Numeric and Date Ranges

in Elasticsearch: Just Another Brick in the Wall. Re-

trieved June 16, 2018 from https://www.elastic.co/blog/

numeric-and-date-ranges-in-elasticsearch-just-another-brick-in-the-wall.

[8] Elasticsearch contributors. 2018. Full text queries. Retrieved May

01, 2018 from https://www.elastic.co/guide/en/elasticsearch/reference/6.1/

full-text-queries.html.

[9] Elasticsearch contributors. 2018. Function score query. Retrieved May

01, 2018 from https://www.elastic.co/guide/en/elasticsearch/reference/6.1/

query-dsl-function-score-query.html.

[10] Elasticsearch contributors. 2018. Plugins. Retrieved May 01,

2018 from https://www.elastic.co/guide/en/elasticsearch/reference/6.1/

modules-plugins.html.

[11] Elasticsearch contributors. 2018. Range query. Retrieved May 01,

2018 from https://www.elastic.co/guide/en/elasticsearch/reference/6.1/

query-dsl-range-query.html.

[12] Elasticsearch contributors. 2018. Rescoring. Retrieved May 01,

2018 from https://www.elastic.co/guide/en/elasticsearch/reference/6.1/

search-request-rescore.html.

[13] Elasticsearch contributors. 2018. Stories from Users Like You. Retrieved

May 01, 2018 from https://www.elastic.co/use-cases.

[14] Elasticsearch contributors. 2018. Term query. Retrieved May 01,

2018 from https://www.elastic.co/guide/en/elasticsearch/reference/6.1/

query-dsl-term-query.html.

[15] Lucene contributors. 2018. Apache Lucene library. Retrieved May 06,

2018 from https://lucene.apache.org.

[16] R. Datta, D. Joshi, J. Li, and J. Wang. 2008. Image retrieval: Ideas, influences,

and trends of the new age. Comput. Surveys 40, 2 (2008), 5.
[17] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell.

2014. Decaf: A deep convolutional activation feature for generic visual

recognition. In Proceedings of ICML. 647–655.

6

https://www.elastic.co/blog/lucene-points-6.0.
https://www.elastic.co/blog/lucene-points-6.0.
https://www.elastic.co/blog/numeric-and-date-ranges-in-elasticsearch-just-another-brick-in-the-wall.
https://www.elastic.co/blog/numeric-and-date-ranges-in-elasticsearch-just-another-brick-in-the-wall.
https://www.elastic.co/guide/en/elasticsearch/reference/6.1/full-text-queries.html.
https://www.elastic.co/guide/en/elasticsearch/reference/6.1/full-text-queries.html.
https://www.elastic.co/guide/en/elasticsearch/reference/6.1/query-dsl-function-score-query.html.
https://www.elastic.co/guide/en/elasticsearch/reference/6.1/query-dsl-function-score-query.html.
https://www.elastic.co/guide/en/elasticsearch/reference/6.1/modules-plugins.html.
https://www.elastic.co/guide/en/elasticsearch/reference/6.1/modules-plugins.html.
https://www.elastic.co/guide/en/elasticsearch/reference/6.1/query-dsl-range-query.html.
https://www.elastic.co/guide/en/elasticsearch/reference/6.1/query-dsl-range-query.html.
https://www.elastic.co/guide/en/elasticsearch/reference/6.1/search-request-rescore.html.
https://www.elastic.co/guide/en/elasticsearch/reference/6.1/search-request-rescore.html.
https://www.elastic.co/use-cases.
https://www.elastic.co/guide/en/elasticsearch/reference/6.1/query-dsl-term-query.html.
https://www.elastic.co/guide/en/elasticsearch/reference/6.1/query-dsl-term-query.html.
https://lucene.apache.org.

r Encoding Round./Cluster.

of feature tokens (m)

32 64 128 256

96 element 0-decimal-place 53.43% | 0.1237 64.35% | 0.2339 76.44% | 0.5256 88.64% | 1.5342

element 1-decimal-place 26.56% | 0.0920 37.94% | 0.1592 50.35% | 0.3370 63.71% | 0.8207

subvector 32-centroids 34.80% | 0.1111 54.45% | 0.1914 74.22% | 0.3760 87.44% | 0.8914

subvector 64-centroids 39.52% | 0.0963 58.51% | 0.1630 76.70% | 0.3426 87.28% | 0.7563

subvector 128-centroids 44.43% | 0.0914 61.93% | 0.1544 78.89% | 0.3088 85.58% | 0.7186

subvector 256-centroids 50.00% | 0.0900 66.22% | 0.1480 79.05% | 0.2970 82.89% | 0.6757

192 element 0-decimal-place 63.72% | 0.1405 74.63% | 0.2499 85.38% | 0.5416 94.13% | 1.5536

element 1-decimal-place 32.49% | 0.1084 45.50% | 0.1748 59.05% | 0.3529 72.12% | 0.8424

subvector 32-centroids 43.73% | 0.1256 64.88% | 0.2080 83.13% | 0.3917 93.56% | 0.9146

subvector 64-centroids 48.84% | 0.1130 69.14% | 0.1795 85.12% | 0.3594 93.28% | 0.7745

subvector 128-centroids 55.14% | 0.1082 72.62% | 0.1714 87.08% | 0.3250 91.97% | 0.7367

subvector 256-centroids 61.41% | 0.1066 77.08% | 0.1644 87.32% | 0.3137 89.28% | 0.6915

384 element 0-decimal-place 73.30% | 0.1749 82.76% | 0.2852 91.19% | 0.5756 97.03% | 1.5963

element 1-decimal-place 38.94% | 0.1431 53.43% | 0.2093 67.12% | 0.3877 79.25% | 0.8741

subvector 32-centroids 53.37% | 0.1603 73.92% | 0.2417 89.06% | 0.4262 96.82% | 0.9509

subvector 64-centroids 59.01% | 0.1479 78.15% | 0.2139 91.25% | 0.3935 96.59% | 0.8097

subvector 128-centroids 66.20% | 0.1433 81.56% | 0.2061 92.75% | 0.3596 95.44% | 0.7705

subvector 256-centroids 73.01% | 0.1415 85.88% | 0.1995 92.67% | 0.3520 93.38% | 0.7243

768 element 0-decimal-place 81.27% | 0.2455 89.09% | 0.3547 94.98% | 0.6443 98.60% | 1.6613

element 1-decimal-place 45.83% | 0.2130 61.30% | 0.2801 74.60% | 0.4574 84.87% | 0.9427

subvector 32-centroids 63.45% | 0.2297 81.30% | 0.3117 93.40% | 0.4974 98.58% | 1.0195

subvector 64-centroids 69.01% | 0.2182 85.47% | 0.2837 95.41% | 0.4647 98.38% | 0.8798

subvector 128-centroids 76.70% | 0.2133 88.91% | 0.2762 96.13% | 0.4288 97.50% | 0.8402

subvector 256-centroids 83.55% | 0.2112 92.14% | 0.2701 95.90% | 0.4267 95.94% | 0.7970

1536 element 0-decimal-place 87.55% | 0.3923 93.45% | 0.5027 97.47% | 0.8012 99.29% | 1.8486

element 1-decimal-place 53.76% | 0.3656 68.68% | 0.4361 81.05% | 0.6069 89.48% | 1.0931

subvector 32-centroids 72.75% | 0.3703 87.30% | 0.4524 96.14% | 0.6400 99.36% | 1.1574

subvector 64-centroids 78.85% | 0.3581 91.52% | 0.4218 97.74% | 0.6045 99.28% | 1.0188

subvector 128-centroids 86.00% | 0.3537 94.12% | 0.4158 98.03% | 0.5665 98.60% | 0.9763

subvector 256-centroids 91.16% | 0.3512 95.97% | 0.4087 97.70% | 0.5582 97.44% | 0.9281

3072 element 0-decimal-place 92.38% | 0.6843 96.40% | 0.8166 98.80% | 1.0909 99.63% | 2.1638

element 1-decimal-place 61.50% | 0.6625 75.62% | 0.7380 86.32% | 0.9135 92.85% | 1.3946

subvector 32-centroids 81.25% | 0.6645 92.11% | 0.7483 97.95% | 0.9375 99.68% | 1.4589

subvector 64-centroids 87.82% | 0.6556 96.32% | 0.7131 99.00% | 0.9006 99.68% | 1.3189

subvector 128-centroids 93.26% | 0.6508 97.72% | 0.7126 99.08% | 0.8604 99.21% | 1.2756

subvector 256-centroids 96.06% | 0.6470 97.94% | 0.7074 98.72% | 0.8566 98.37% | 1.2230

6144 element 0-decimal-place 95.52% | 1.2630 98.22% | 1.3778 99.45% | 1.6737 99.82% | 2.7669

element 1-decimal-place 68.26% | 1.2535 81.75% | 1.2942 90.69% | 1.4800 95.24% | 1.9542

subvector 32-centroids 89.61% | 1.2081 95.86% | 1.2938 99.10% | 1.4892 99.85% | 2.0124

subvector 64-centroids 95.43% | 1.2031 98.87% | 1.2537 99.65% | 1.4459 99.82% | 1.8647

subvector 128-centroids 97.56% | 1.1985 99.13% | 1.2565 99.54% | 1.3959 99.52% | 1.8200

subvector 256-centroids 98.20% | 1.1957 98.90% | 1.2542 99.25% | 1.4037 98.97% | 1.7586

Table 1: Mean Precision@24 | ES average latency. For each setting, we average the Precision@24 and the number of seconds

used over the 1,000 query images randomly selected from the furniture dataset. Settings with mean precision ≥ 80% and latency

≤ 0.5s are highlighted in bold.

[18] T. Ge, K. He, Q. Ke, and J. Sun. 2013. Optimized product quantization for

approximate nearest neighbor search. In Proceedings of CVPR. 2946–2953.
[19] C. Gennaro, G. Amato, P. Bolettieri, and P. Savino. 2010. An approach to

content-based image retrieval based on the Lucene search engine library.

In Proceedings of TPDL. 55–66.
[20] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. 2013. Iterative quantiza-

tion: A procrustean approach to learning binary codes for large-scale image

retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence

35, 12 (2013), 2916–2929.

[21] I. Goodfellow, Y. Bengio, and A. Courville. 2016. Deep learning. Vol. 1. MIT

press Cambridge.

[22] C. Gormley and Z. Tong. 2015. Elasticsearch: The Definitive Guide: A
Distributed Real-Time Search and Analytics Engine. " O’Reilly Media, Inc.".

[23] K. He, F. Wen, and J. Sun. 2013. K-means hashing: An affinity-preserving

quantization method for learning binary compact codes. In Proceedings of
CVPR. 2938–2945.

7

[24] J. Heinly, E. Dunn, and J. Frahm. 2012. Comparative evaluation of binary

features. In ECCV. 759–773.
[25] H. Jegou, M. Douze, and C. Schmid. 2011. Product quantization for near-

est neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2011), 117–128.

[26] H. Jegou, F. Perronnin, M. Douze, J. Sánchez, P. Perez, and C. Schmid. 2012.

Aggregating local image descriptors into compact codes. IEEE transactions
on pattern analysis and machine intelligence 34, 9 (2012), 1704–1716.

[27] H. Jegou, R. Tavenard, M. Douze, and L. Amsaleg. 2011. Searching in one

billion vectors: re-rank with source coding. In Proceedings of ICASSP. IEEE,
861–864.

[28] Jet.com. 2018. Furniture. Retrieved May 01, 2018 from https://jet.com/

search?category=18000000.

[29] Y. Kalantidis and Y. Avrithis. 2014. Locally optimized product quantization

for approximate nearest neighbor search. In Proceedings of CVPR. 2321–
2328.

[30] Nicholas Knize. 2018. Geo Capabilities in Elasticsearch. Retrieved

June 16, 2018 from https://www.elastic.co/assets/blt827a0a9db0f2e04e/

webinar-geo-capabilities.pdf.

[31] H. Lai, Y. Pan, Y. Liu, and S. Yan. 2015. Simultaneous feature learning and

hash coding with deep neural networks. In Proceedings of CVPR. 3270–
3278.

[32] Q. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. Corrado, J. Dean, and

A. Ng. 2012. Building high-level features using large scale unsupervised

learning. In Proceedings of ICML. 507–514.
[33] W. Liu, C. Mu, S. Kumar, and S. Chang. 2014. Discrete graph hashing. In

Advances in NIPS. 3419–3427.
[34] M. Loncaric, B. Liu, and R. Weber. 2018. Convolutional Hashing for Auto-

mated Scene Matching. arXiv preprint arXiv:1802.03101 (2018).
[35] X. Lu, L. Song, R. Xie, X. Yang, and W. Zhang. 2017. Deep Binary Rep-

resentation for Efficient Image Retrieval. Advances in Multimedia 2017

(2017).

[36] M. Lux, M. Riegler, P. Halvorsen, K. Pogorelov, and N. Anagnostopoulos.

2016. LIRE: open source visual information retrieval. In Proceedings of
MMSys.

[37] J. MacQueen. 1967. Some methods for classification and analysis of mul-

tivariate observations. In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, Vol. 1. Oakland, CA, USA, 281–297.

[38] M. McCandless, E. Hatcher, and O. Gospodnetic. 2010. Lucene in action:
covers Apache Lucene 3.0. Manning Publications Co.

[39] G. Mesnil, Y. Dauphin, X. Glorot, S. Rifai, Y. Bengio, I. Goodfellow, E. Lavoie,

X. Muller, G. Desjardins, D. Warde-Farley, P. Vincent, A. Courville, and

J. Bergstra. 2011. Unsupervised and transfer learning challenge: a deep

learning approach. In Proceedings of ICML Workshop on Unsupervised and
Transfer Learning. JMLR. org, 97–111.

[40] Microsoft Azure. 2018. Virtual machines. Retrieved May 01, 2018 from

https://azure.microsoft.com/en-us/services/virtual-machines/.

[41] B. Mitra and N. Craswell. 2017. Neural Models for Information Retrieval.

arXiv preprint arXiv:1705.01509 (2017).
[42] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. 2014. Learning and transferring

mid-level image representations using convolutional neural networks. In

Proceedings of CVPR. 1717–1724.
[43] R. Raina, A. Battle, H. Lee, B. Packer, and A. Ng. 2007. Self-taught learning:

transfer learning from unlabeled data. In Proceedings of ICML. 759–766.
[44] A. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. 2014. CNN features

off-the-shelf: an astounding baseline for recognition. In CVPR workshop.
512–519.

[45] S. Robertson andH. Zaragoza. 2009. The probabilistic relevance framework:

BM25 and beyond. Foundations and Trends® in Information Retrieval 3, 4
(2009), 333–389.

[46] M. Ruzicka, V. Novotny, P. Sojka, J. Pomikalek, and R. Rehurek. 2018. Flex-

ible Similarity Search of Semantic Vectors Using Fulltext Search Engines.

http://ceur-ws.org/Vol-1923/article-01.pdf (2018).

[47] J. Rygl, J. Pomikalek, R. Rehurek, M. Ruzicka, V. Novotny, and P. Sojka. 2017.

Semantic Vector Encoding and Similarity Search Using Fulltext Search

Engines. In Proceedings of the 2nd Workshop on Representation Learning for
NLP. 81–90.

[48] G. Salton, A. Wong, and C. Yang. 1975. A vector space model for automatic

indexing. Commun. ACM 18, 11 (1975), 613–620.

[49] H. Schütze, C. D. Manning, and P. Raghavan. 2008. Introduction to infor-
mation retrieval. Vol. 39. Cambridge University Press.

[50] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil. 2014. A latent semantic

model with convolutional-pooling structure for information retrieval. In

Proceedings of CIKM. 101–110.

[51] D. Smiley, E. Pugh, K. Parisa, and M. Mitchell. 2015. Apache Solr enterprise
search server. Packt Publishing Ltd.

[52] J. Song. 2017. Binary Generative Adversarial Networks for Image Retrieval.

arXiv preprint arXiv:1708.04150 (2017).

[53] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi. 2017. Inception-v4,

inception-resnet and the impact of residual connections on learning. In

Proceedings of AAAI. 4278–4284.
[54] A. Torralba, R. Fergus, and Y. Weiss. 2008. Small codes and large image

databases for recognition. In Proceedings of CVPR. 1–8.
[55] J. Wang, S. Kumar, and S. Chang. 2010. Semi-supervised hashing for

scalable image retrieval. In Proceedings of CVPR. 3424–3431.
[56] Y. Weiss, A. Torralba, and R. Fergus. 2009. Spectral hashing. In Advances

in NIPS. 1753–1760.
[57] Wikipedia contributors. 2018. Elasticsearch. Retrieved May 06, 2018 from

https://en.wikipedia.org/wiki/Elasticsearch.

[58] Wikipedia contributors. 2018. Tf-idf. Retrieved May 06, 2018 from

https://en.wikipedia.org/wiki/tf-idf.

[59] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. 2014. How transferable are

features in deep neural networks. In Advances in NIPS. 3320–3328.
[60] M. Zeiler and R. Fergus. 2014. Visualizing and understanding convolutional

networks. In Proceedings of ECCV. 818–833.

8

https://jet.com/search?category=18000000.
https://jet.com/search?category=18000000.
https://www.elastic.co/assets/blt827a0a9db0f2e04e/webinar-geo-capabilities.pdf.
https://www.elastic.co/assets/blt827a0a9db0f2e04e/webinar-geo-capabilities.pdf.
https://azure.microsoft.com/en-us/services/virtual-machines/.
https://en.wikipedia.org/wiki/Elasticsearch.
https://en.wikipedia.org/wiki/tf-idf.

	Abstract
	1 Introduction
	2 General Framework of Visual Search within Elasticsearch
	3 Vector to String Encoding
	3.1 Element-wise Rounding
	3.2 Subvector-wise Clustering

	4 Experiment
	5 Future Work
	References

