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ABSTRACT
Collecting lifelogs comprising data related to human life over
a long period of time has progressed in recent years due to the
widespread use of inexpensive small sensors. Understanding long-
term daily life can be helpful in healthcare applications and for
improving quality of life, for example. In this research, we pro-
pose a method for comparing two periods of daily life, which
makes it possible to find similar and different life periods in
lifelogs. Since a human life includes various behaviors, we pro-
pose an approach for comparing two periods of daily life based
on the differences in the behaviors performed in each period.
We extracted episodes corresponding to several behaviors from
motion data acquired with wearable sensors. Frequent episodes
corresponding to frequent behaviors can be extracted using con-
ventional episode mining methods. However, when comparing
daily lives, not only a behavior frequency, but also its duration
is important. Hence, we introduce long-duration episodes cor-
responding to long-running behaviors. In the proposed method,
the similarity of two daily life periods is calculated based on
differences of long-duration and frequent episodes. We demon-
strate with experiments using real-life data that the proposed
method can establish the similarity between two periods of daily
life correctly.

1 INTRODUCTION
The collection and utilization of lifelogs comprising long-term
data about human life have advanced in recent years due to the
widespread use of inexpensive and small sensors. For example,
MyLifeBits is known as a research project focusing on lifelogs
[11, 12]. In MyLifeBits, scans of photos, books, and letters, web-
page browsing and e-commerce history, GPS position informa-
tion, sent e-mails, and files of photos and videos are collected as
lifelog. Users can look back on their lives by browsing their past
data. Data continuously measured over a long period of time by
wearable sensors can also constitute a lifelog [13]. For example,
a small wristband or clip device with an acceleration sensor is
often used to collect motion data, from which information such
as the number of steps per day, calories burned, sleeping time,
amount of exercise performed per a time unit, and heart rate can
be derived and visualized.

Many studies have been reported on recognizing and visualiz-
ing human activities from lifelogs using data mining techniques
[6, 8, 16, 27]. Lifelogs have also been utilized in healthcare[9]
proposing applications for monitoring and improving diet[4,
10], smoking cessation[28], analyzing the effects of daily activ-
ities on disease progression [7, 23, 29]. One main goal in app-
plying lifelogs to healthcare is expected to help us understand
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long-term life[14]. Lifelogs can help users remember past events.
However, only browsing past data is insufficient for understand-
ing long-term daily life. Knowing how a user spent past time,
rather than what the user did in the past, can be useful for im-
proving the user’s daily life. The Social Rhythm Metric (SRM)
method for evaluating the regularity of daily life over a long pe-
riod was proposed by [24, 25]. The authors used questionnaires
to collect times for 17 types of behaviors, including wakeup,
breakfast, and commute times, and measured the life regular-
ity based on the dispersion of these times. The limitation of this
study is that users are required to record times manually, which
is difficult to continue over a long period of time. Research to
build human behavior model for user identification from lifelog
of many sensors on smartphone has been reported in [18]. How-
ever, this model focuses on user identification, and it is not tar-
geted for understanding one user’s long-term daily life. An ap-
proach for monitoring and detecting life changes using lifelogs
comprisingmovement and location collected bymany room sen-
sors has been reported in [26]. For applications of healthcare, it
is necessary to consider not only daily behaviors of in the house
but also that of outside the house.

To compare daily life over a few weeks, it should be charac-
terized with the behaviors performed during this period. When
many similar or different behaviors are exhibited in two distinct
periods, these periods can be treated as having similar or differ-
ent daily lives, respectively. Motion data acquired by awristband
device equipped with an acceleration sensor is used in this study
to characterize human behavior as a series of events. Therefore,
episodes corresponding to different behaviors can be established
by applying an episode mining algorithm to motion data. For
example, an episode mining algorithm proposed by [5, 19, 33]
finds frequent episodes, while frequent episodes are regarded
as those corresponding to frequently performed behaviors. An-
other algorithm for episode mining that consider the duration
of events was proposed by [30, 32]. The limitation of these al-
gorithms is that they cannot find long-duration behaviors, fre-
quency of which is low, with duration as a threshold. High utility
episode mining algorithms [31] have been proposed that con-
sider weight of items in a dataset. By treating duration of an
event as a weight, these algorithms can find an episode with du-
ration threshold; however, these algorithms cannot find episodes
corresponding to long-duration behaviors. We cannot duplicate
the same behavior at the same time. These algorithms do not
consider overlapping of occurrence intervals.

In this study, we propose an approach for comparing two
periods of long-term daily life. We introduce a procedure for
finding long-duration episodes by evaluating the sum of dura-
tions rather than the frequency of occurrence. We then compare
two periods of daily life using both frequent and long-duration
episodes extracted from the entire lifelog of motion data. To
achieve this, we calculate the similarity between each pair of



episodes that are locally long-duration or frequent in each pe-
riod. The effectiveness of the proposed method is evaluated with
experiments using real-life data.

2 COMPARISON OF DAILY LIVES
This study evaluates the similarity between two periods of daily
life of one user. We assume that human life consists of various
behaviors, which we define as a series of activities performed
with purpose. For example, the daily life of a student during an
academic term consists of behaviors such as going to school, tak-
ing classes, and studying. During the summer vacation period,
the student’s daily life consists of behaviors such as studying,
working part-time, and hanging out with friends.

In this study, we compare two periods of daily life according
to the difference of the behaviors the user performs during each
period. Hence, the problem of daily life comparison can be for-
mulated as comparing the similarity between a set of behaviors
performed in periods 1 and 2. To characterize behaviors, motion
data are used in this study.

3 LIFELOG DATA USED IN THIS PAPER
We used the life recorder UW-301BT from Hitachi Systems as a
sensor device (Figure 1) to collect motion data. Three-axis ac-

Figure 1: Wristband device UW-301BT

celeration of the arm movement was measured as the device
was worn on the wrist during the day and while sleeping. The
output of this device is motion status data indicating a seg-
ment, in which the same type of motion status continues. This
data is continuously outputwithout interruption or overlapping.
The degree of activity intensity is expressed in the following
nine types of motion statuses: “rest”, “quiet (sitting quietly)”,
“deskwork (sitting task)”, “light work (standing work)”, “work”,
“exercise”, “walking”, “jogging”, and “not-wearing”. These sta-
tuses describe the intensity of activity level in order from “rest”
to “exercise”. “Walking” indicates that a periodic activity was
performed. “Jogging” indicates that a periodic and hard activity
was performed.

A motion status data D = ⟨d1, . . . ,dn⟩ is an ordered list of
motion status events. A motion status event di = (mj ,Tsi ,Tei )
with 1 ≤ i ≤ n is a set consisting of a motion status, starting, and
ending date-time. Here,mj ∈ M (M is a set of motion statuses)
is a motion status.Tsi andTei are starting and ending date-time,
where Tsi < Tei with 1 ≤ i ≤ n and Tei ≤ Tsi+1 with 1 ≤ i ≤
n−1. The duration of motion status di isTei −Tsi . Table 1 shows
an example of motion status events. The motion status event
in the first row means that “walking” continued for 3 minutes
from “2018-10-15 08:02” to “2018-10-15 08:05”. Themotion status
event in the second rowmeans that “deskwork” began soon after

Table 1: Example of motion status events

motion status starting date-time ending date-time

walking 2018-10-15 08:02 2018-10-15 08:05
deskwork 2018-10-15 08:05 2018-10-15 08:44
walking 2018-10-15 08:44 2018-10-15 08:56
deskwork 2018-10-15 08:56 2018-10-15 09:52
walking 2018-10-15 09:52 2018-10-15 09:59
light work 2018-10-15 09:59 2018-10-15 10:34

quiet 2018-10-15 10:34 2018-10-15 12:01
deskwork 2018-10-15 12:01 2018-10-15 12:53
walking 2018-10-15 12:53 2018-10-15 13:03
deskwork 2018-10-15 13:03 2018-10-15 14:25
walking 2018-10-15 14:25 2018-10-15 14:27
light work 2018-10-15 14:27 2018-10-15 14:47
deskwork 2018-10-15 14:47 2018-10-15 15:43
quiet 2018-10-15 15:43 2018-10-15 16:38

walking 2018-10-15 16:38 2018-10-15 16:40
light work 2018-10-15 16:40 2018-10-15 16:55

“walking”. The motion status data consisting of motion status
events in Table 1 are arranged in order of starting date-time:
⟨(walking, 2018-10-15 08:02, 2018-10-15 08:05), (deskwork, 2018-
10-15 08:05, 2018-10-15 08:44), . . . , (light work, 2018-10-15 16:40,
2018-10-15 16:55)⟩.

Conventional sensor devices equipped with an accelerometer
do not output motion status data. The majority of such devices
output the amount of activity per unit time as a time-series data.
A method for detecting segments, in which characteristic activ-
ities are performed, from the amount of activity per unit time
has been proposed [21]. Methods for generating symbolic rep-
resentation of time-series data such as Symbolic Aggregate Ap-
proximation (SAX) [15] can also be used to obtain motion status
data from the amount of activity per unit time.

4 BEHAVIOR AND MOTIONAL STATUS
PATTERN

A behavior constituting a user’s daily life is a series of activities
performed with purpose. In other words, a behavior appears in
the motion status data as an ordered pattern of somemotion sta-
tuses. For example, consider the behavior of going shopping by
walking from home to a store. This behavior consists of walk-
ing from home to the store, shopping in the store, and walking
from the store to home. In the motion status data, this behavior
appears as “walking”, “light work”, and “walking”. In this way,
behaviors can be expressed in the order of completion of corre-
sponding motion statuses.

The motion status data represents a single event sequence,
while the motion status pattern represents the order of motion
statuses. Therefore, an episode extracted by applying episode
mining to the motion status data corresponds to a pattern of
the motion status indicating a behavior. Many episode mining
methods have been proposed [1, 5, 17, 19, 20, 22, 30, 32, 33]. An
episode showing a behavior of a user is suitable for representing
the followed-by-closely pattern of orderedmotion statuses. Note
that a user cannot perform several motion statuses at the same
time. In this paper, we adopt the serial episode with minimal and
non-overlapping occurrences [17, 33].



We consider that frequent and long-duration episodes corre-
spond to behaviors performed mundanely. Exceptional behav-
iors that are not normally performed can be identified by brows-
ing the lifelog. However, these exceptional behaviors are not
useful for comparing long periods of daily life, and hence are ex-
cluded in this study. In this study, we use a formalism ofMANEPI
[33] to identify frequent episodes. In addition, we define a new
type of episodes, namely, long-duration episodes.

Episode: Let α = ⟨m1, . . . ,mk ⟩ be an episode, wheremj ∈ M .
The length of α is the number of motion statuses. Episode refers
to the ordered pattern, in which each motion status appears in
the order from m1 to mk . An episode α = ⟨m1, . . . ,mk ⟩ is a
sub-episode of another episode β = ⟨m′1, . . . ,m

′
s ⟩ if there ex-

ists 1 ≤ j1 < · · · < jk ≤ s such that mi = m′ji for all i with
1 ≤ i ≤ k . For example, episode ⟨walkinд,deskwork, liдhtwork⟩
means that motion statuses appear in the order of “walking”,
“deskwork”, and “light work”. Episode ⟨walkinд,deskwork⟩ is a
sub-episode of episode ⟨walkinд,deskwork, liдhtwork⟩.

Occurrence: In the motion status data D, if each motion status
mj of the episode α is contained in D preserving the order, it
denotes that α appears in D. The occurrence of α , denoted by
occ (α ), is a segment, where α appears in D. occ (α ) is denoted as
[Tsm1

,Temk
] using the starting date and time of a motion status

event includingm1 and the ending date and time of a motion sta-
tus event including mk . The duration of occ (α ) = [Tsm1

,Temk
]

isTemk
−Tsm1

. In Table 1, one of the occurrences of episode α =
⟨walkinд,deskwork, liдhtwork⟩ is occ (α ) = [2018-10-15 08:44,
2018-10-15 10:34].

To exclude redundant occurrences where the duration re-
quired for one behavior becomes too long, we use a constraint
related to the span of an occurrence [1, 30]. A span is defined
by the duration or length of an occurrence. In this paper, we
define a span by the duration of an occurrence since episodes
correspond to behaviors. A span constraint,maxspan, is the up-
per bound of the duration of each occurrence[31]. An occur-
rence occ (α ) = [Ts ,Te ] of the episode α has to satisfymaxspan
such that Te − Ts ≤ maxspan. For example, for episode α =
⟨walkinд,deskwork, liдhtwork⟩, occ (α ) = [2018-10-15 08:44,
2018-10-15 10:34] satisfies the constraint maxspan = 300 min-
utes; however, occ (α ) = [2018-10-15 08:44, 2018-10-15 14:47]
does not satisfied this constraint.

Moreover, we use a gap constraint,maxдap, that is the max-
imum length of the time interval between two consecutive mo-
tion status events in an occurrence [1, 22]. Let a segment ofD be
an occurrence of episode α = ⟨m1, . . . ,mk ⟩ if the time interval
between the ending date-time ofmi and the starting date-time
of mi+1 is maxдap or less for all i with 1 ≤ i < k . For exam-
ple, occ (⟨walkinд,deskwork, liдhtwork⟩) = [2018-10-15 09:52,
2018-10-15 14:47] does not satisfy maxдap = 120 minutes be-
cause the time interval of motion status events corresponding to
“walking” and “deskwork” is 122 minutes (= “2018-10-15 12:01”
− “2018-10-15 09:59”).

Among the occurrences of episode α , a set of all occur-
rences satisfying maxspan and maxдap is the occurrence list
of α , denoted in this paper as OCC (α ). In Table 1, the occur-
rence list of episode α = ⟨walkinд,deskwork, liдhtwork⟩ sat-
isfying maxspan = 300 minutes and maxдap = 120 minutes
is OCC (α ) = {[2018-10-15 08:02, 2018-10-15 10:34], [2018-10-
15 08:44, 2018-10-15 10:34], [2018-10-15 12:53, 2018-10-15 14.47],

[2018-10-15 12:53, 2018-10-15 16:55], [2018-10-15 14:25, 2018-10-
15 16:55]}.

Minimal and non-overlapping occurrence: In this study,
we consider episodes with minimal and non-overlapping oc-
currences [17, 33]. An occurrence of an episode α , occ (α ), is
minimal if occ (α ) does not contain any other occurrences in
OCC (α ). For occurrences [ts , te ], [t ′s , t ′e ] ∈ OCC (α ), [t ′s , t ′e ] con-
tains [ts , te ] if ts ≥ t ′s ∧ te ≤ t ′e . A set of minimal occur-
rences of episode α is denoted as MO (α ). Here, MO (α ) ⊆
OCC (α ). For example, inOCC (⟨walkinд,deskwork, liдhtwork⟩),
[2018-10-15 08:02, 2018-10-15 10:34] is not minimal occur-
rence since it contains [2018-10-15 08:44, 2018-10-15 10:34].
Set of minimal occurrences of ⟨walkinд,deskwork, liдhtwork⟩
is MO (⟨walkinд,deskwork, liдhtwork⟩) = { [2018-10-15 08:44,
2018-10-15 10:34], [2018-10-15 12:53, 2018-10-15 14.47], [2018-
10-15 14:25, 2018-10-15 16:55]}.

For occurrences [ts , te ], [t ′s , t ′e ] ∈ OCC (α ), the relation-
ship is non-overlapping if te < t ′s ∨ t ′e < ts . A set
of minimal and non-overlapping occurrences of episode α
is denoted as MAMO (α ). Here, MAMO (α ) ⊆ MO (α ).
When several occurrences overlap, we preferentially select
the occurrence of the earliest possible starting date-time as
MAMO . For example, in MO (⟨walkinд,deskwork, liдhtwork⟩),
[2018-10-15 12:53, 2018-10-15 14:47] and [2018-10-15 14:25,
2018-10-15 16:55] are overlapped. Set of minimal and non-
overlapping occurrences of ⟨walkinд,deskwork, liдhtwork⟩ is
MAMO (⟨walkinд,deskwork, liдhtwork⟩) = { [2018-10-15 08:44,
2018-10-15 10:34], [2018-10-15 12:53, 2018-10-15 14:47]}.

Frequency and frequent episode:
The frequency of episode α , f req(α ), is the number of occur-
rences inMAMO (α );

f req(α ) = |MAMO (α ) |.
For example, f req(⟨walkinд,deskwork, liдhtwork⟩) = 2. An
episode satisfying a user-specified minimum value of the fre-
quency,minf req, is called a frequent episode.

Total duration and long-duration episode: The sum of the
durations of all occurrences contained in MAMO (α ) is named
as the total duration of α , denoted by tdur (α );

tdur (α ) =
∑

[ts ,te ]∈MAMO (α )

(te − ts ).

For example, tdur (⟨walkinд,deskwork, liдhtwork⟩) = 224 min-
utes. An episode satisfying a user-specified minimum value of
the total duration,mintdur , is called a long-duration episode.

5 EXTRACTING FREQUENT AND
LONG-DURATION EPISODES

The problem of mining frequent episodes can be formulated as
extracting all episodes satisfying minf req. In this paper, fre-
quent episodes are extracted using MANEPI [33] that extracts
frequent episodes with minimal and non-overlapping occur-
rences. MANEPI extends episodes by adding one motion sta-
tus event to frequent episodes. By concatenating an occur-
rence of motion statusm to all occurrences of frequent episode
α , MANEPI generates the occurrence list of episode ⟨α ,m⟩,
OCC (α ,m). Here, an occurrence of α , occ (α ) = [tαs , tαe ], is con-
catenated to an occurrence of m, occ (m) = [tms , tme ], which
satisfies the following three conditions:



• tαe ≤ tms

• tme − tαs ≤ maxspan
• tms − tαe ≤ maxдap.

A set of minimal occurrencesMO (α ,m) is generated by deleting
non-minimal occurrences from OCC (α ,m). By selecting non-
overlapping occurrences from MO (α ,m), we can attain a set
of minimal and non-overlapping occurrences MAMO (α ,m). If
MAMO (α ,m) satisfiesminf req, ⟨α ,m⟩ is outputted as a frequent
episode. This process of extending episodes is repeated. Redun-
dant candidate episodes can be pruned because the downward
closure for frequent episode mining [2, 3] holds.

The problem of mining long-duration episodes can be for-
mulated as extracting all episodes satisfying mintdur . Long-
duration episodes can be extracted in the same way as MANEPI.
However, to extract all long-duration episodes, it is necessary
to examine episodes which do not satisfy minf req. A long-
duration episode is an episode satisfying mintdur and hav-
ing an unbounded frequency. An episode that does not sat-
isfy minf req can also be long-duration. Consider Table 1 with
minf req = 3 and mintdur = 200 minutes. For episode α =
⟨walkinд,deskwork, liдhtwork⟩, f req(α ) = 2, and tdur (α ) =
224 minutes. α is not extracted by frequent episode mining,
since α does not satisfyminf req. However, α is a long-duration
episode since α satisfiesmintdur . In long-duration episode min-
ing, we have to consider the total duration rather than fre-
quency.

However, the Apriori property does not hold for the total
duration. For episodes α and β (α is a sub-episode of β), the
total duration of β may be longer than that of α . For exam-
ple, in Table 1, tdur (⟨walkinд, liдhtwork⟩) = 81 minutes and
tdur (⟨walkinд,deskwork, liдhtwork⟩) = 224 minutes. Even if α
does not satisfymintdur , β must be examined; therefore, prun-
ing cannot be performed using the total duration to extract long-
duration episodes. However, it is not necessary to examine all
candidate episodes. For an episode that becomes a long-duration
episode, the frequency is minimum when the duration of all oc-
currences is maxspan. In other words, the lower bound of the
frequency of a long-duration episode is ⌈ mintdur

maxspan ⌉. For exam-
ple, when mintdur = 1000 minutes and maxspan = 300 min-
utes, an episode X such that f req(X ) < 4 (= ⌈ 1000300 ⌉) cannot
be a long-duration episode. Therefore, it is sufficient to extract
episodes with this lower bound of frequency in MANEPI. Here-
after, the minimum frequency in a long-duration episodemining
is denoted as low f req:

low f req = ⌈mintdur

maxspan
⌉ .

When an episode satisfying low f req is extracted, it is output as
a long-duration episode if it satisfiesmintdur .

The procedure of our method for mining long-duration
episodes is as follows.

Procedure ExtractLongDurationEpisodes(D,minf req,
mintdur ,maxspan,maxдap)

Input: a motion status data D,
a frequency threshold of an episodeminf req,
a total duration threshold of an episodemintdur ,
a duration constraint of an occurrencemaxspan,
a gap constraint of an occurrencemaxдap

Output: all long-duration episodes
1: FI := All motion statuses that satisfy low f req

2: Generate minimal occurrence listMO for each motion
status in FI

3: foreach motion status h ∈ FI do
4: foreach motion statusm ∈ FI do
5: ExtendEpisode(h,m)
6: end
7: end

ExtendEpisode(α ,m)
Input: episode α , motion statusm
Output: long-duration episode β
8: Generate episode β by appendingm to α
9: MO (β ) = ∅
10: foreach occ [oas ,oae ] ∈ MO (α ) do
11: Extract the occurrence [oms ,ome ] ∈ MO (m)

such that oms < om′s ∧ oms ≥ oae ∧ om′s > oae
for any [om′s ,om′e ] ∈ MO (m)

12: if (ome − oas ≤ maxspan) ∧ (oms − oae ≤ maxдap) then
13: Append [oas ,ome ] toMO (β )
14: endif
15: end
16: Delete occ [os ,oe ] fromMO (β ) such that oe == o′e ∧ os > o′s

for any [os ,oe ], [o′s ,o′e ] ∈ MO (β )
17: MAMO (β ) = ∅
18: foreach occ [os ,oe ] ∈ MO (β ) do
19: if (os ≥ o′e for any [o′s ,o′e ] ∈ MAMO (β )) then
20: Append [os ,oe ] toMAMO (β )
21: endif
22: end
23: if |MAMO (β ) | ≥ low f req then
24: tdur (β ) =

∑
[os ,oe ]∈MAMO (β ) (oe − os )

25: if tdur (β ) ≥ mintdur then
26: Output β as long-duration episode
27: endif
28: foreach motion statusm′ ∈ FI do
29: ExtendEpisode(β ,m′)
30: end
31: endif

The episode that satisfies low f req can become a long-
duration episode; hence, we have to examine episodes that sat-
isfy low f req. First, all motion statuses that satisfy low f req are
extracted (line 1), and the minimal occurrence lists of these mo-
tion statuses are generated at the same time (line 2). Here, for
a motion status m, OCC (m) and MO (m) are equivalent. Then,
an episode extended with one motion status is examined in the
ascending order of short episodes (line 3-7). We can extract all
long-duration episodes using this procedure.

In ExtendEpisode procedure for extending episode α by mo-
tion statusm, episode ⟨β⟩ = ⟨α ,m⟩ is generated (line 8), occur-
rence of m is added to occurrences of α to generate the occur-
rence list of β (line 9-15), non-minimal occurrences are deleted
(line 16), and the minimal occurrence list of β ,MO (β ), is gener-
ated. Then, non-overlapping patterns are sequentially selected
from the head of MO (β ) (line 17-22), and MAMO (β ) is gener-
ated. When MAMO (β ) satisfies the lower bound of frequency
for long-duration episodes (line 23), the total duration of β is
calculated (line 24). When the total duration of β satisfies the
minimum threshold of the total duration (line 25), β is output



as a long-duration episode (line 26). Since an episode that sat-
isfies low f req can become a long-duration episode, ExtendE-
pisode procedure is repeated (line 28-30).

6 PROPOSED METHOD
We compare two periods Pd1 and Pd2 of daily life by measuring
their similarity based on motion status data D, minimum fre-
quency minf req, minimum total duration mintdur , maximum
occurrence durationmaxspan, and maximum gapmaxдap.

We focus on behaviors performed mundanely in the user’s
daily life. First, long-duration and frequent episodes are ex-
tracted from the entire motion status data. In the two periods,
episodes corresponding to actual behaviors are selected. Then,
the similarity the two periods is evaluated based on the differ-
ence of the episodes included in each period. The procedure of
the proposed method is as follows.

(1) Extracting global long-duration episodes and global fre-
quent episodes:
Extract long-duration and frequent episodes from the en-
tire motion status dataD. We call these episodes as global
long-duration and global frequent episodes, respectively.
Non-maximal episodes are deleted from these global
episodes. Here, a maximal episode is an episode that is
not a sub-episode of any other episode.

(2) Taking out local long-duration episodes and local fre-
quent episodes:
Episodes that are locally long-duration episodes and lo-
cally frequent episodes in each period are selected from
their global counterparts. Locally long-duration and fre-
quent episodes in a period Pdi are long-duration and fre-
quent episodes that satisfy long-duration and frequent
conditions mintdur and minf req in this period, respec-
tively.
For each global long-duration or frequent episode д, all
occurrences satisfying the following two conditions are
selected fromMAMO (д):
• starting date-time of occ (д) ≥ date-time of the first day
of period Pd1,
• ending date-time of occ (д) ≤ date-time of the last day
of period Pd1.

When the total duration or frequency of the selected oc-
currences satisfies the relativemintdur orminf req ratio
of period Pdi to the entire motion data, д is appended to
LLPdi or LFPdi , respectively. Here, LLPdi and LFPdi are
the sets of local long-duration and frequent episodes sat-
isfying the relative condition in the period Pdi .

(3) Evaluating similarity of daily lives:
The similarity between two periods is calculated from the
set of their corresponding local long-duration and local
frequent episodes using the Jaccard index.
Here, the Jaccard index is calculated as
|LLPd1∩LLPd2 |+ |LFPd1∩LFPd2 |
|LLPd1∪LLPd2 |+ |LFPd1∪LFPd2 |

, where LLPdi is a set
of local long-duration episodes of period Pdi and LFPdi
is a set of local frequent episodes of period Pdi ; i = 1, 2.

In (1), long-duration and frequent episodes are extracted from
the entire motion status data. These episodes are not extracted
from the motion status data of each period to be compared.
Although the considered comparison period is several weeks,
mintdur andminf req become too small in each period. Episodes
that are long-duration or frequent only in the considered period

are incidentally extracted. Therefore, episodes that do not cor-
respond to daily behaviors may be extracted. Hence, we extract
global long-duration episodes and global frequent episodes cor-
responding to daily behaviors from the entiremotion status data.

Our method uses only maximal episodes to compare two pe-
riods of daily life since the similarity between these periods be-
comes high when using non-maximal episodes. Suppose there
are episodes α and β corresponding to certain behaviors, and
episode γ is a sub-episode of both α and β . Furthermore, episode
α appears only in one of the two considered periods, while
episode β appears only in the other period. Episode γ appears
in both two periods. Let episodes α and β represent different be-
haviors in the two periods. Then, assuming that the two periods
are similar would be incorrect since γ is a sub-episode of both
α and β . However, episode γ becomes a factor to raise the simi-
larity of two periods of daily life erroneously since γ appears in
both periods. Hence, episode γ should not be considered as it is
not an episode corresponding to a certain behavior. Therefore,
only maximal episodes are considered in this study.

Our method compares two periods of daily life using local
long-duration and frequent episodes in each period. In (2), all
long-duration and frequent episodes are selected from global
frequent and long-duration episodes, respectively. For example,
consider the case where the entire motion status data period is
600 days, minf req is 1000, mintdur is 72000 minutes, and the
number of days in the period Pd is 30 days. When the total dura-
tion of the selected occurrences satisfies 7200 ∗ 30

600 , the episode
is determined as local long-duration episode in period Pd and
appended to LLPd . When the frequency of the selected occur-
rences satisfies 1000 ∗ 30

600 , the episode is determined as local
frequent episode in period Pd and appended to LFPd .

In (3), our method outputs the Jaccard index as the similarity
measure between two periods of daily life. When two periods
are similar, the number of common long-duration and frequent
episodes increases and the similarity becomes a value close to 1.
On the other hand, when the user’s daily life is different in the
two periods, the similarity is close to 0.

7 EXPERIMENTS
We examine whether the proposed method can compare two pe-
riods of daily life using real-life data. In particular, we usemotion
status data collected from six participants. The period covered
by each data set varies from 0.8 to 6.5 years (average is about 2.2
years). In this experiment, each motion status was divided into
two motion statuses at the median of the duration. Five motion
statuses, namely, “rest”, “quiet”, “deskwork”, “light work”, and
“walking”, were divided. Other motion statuses were not divided
due to their low frequency. Therefore, the total number of mo-
tion statuses was 14.

We prepared 18 pairs of the periods in which similar daily
lives were confirmed and 27 pairs of the periods in which differ-
ent daily lives were confirmed. For each pair of the periods, their
similarity was calculated using the proposed method. Here, we
set the involved parameters as follows:minf req is 4 per week,
mintdur is 480 minutes per week,maxspan is 240 minutes, and
maxдap is 45 minutes.

First, we evaluated the effect of using maximal episodes. Fig-
ures 2 and 3 show the similarity between the pair of periods
evaluated using the proposed method with only maximal and
all episodes, respectively.



Figure 2: Similarity of two periods of daily life when using
maximal long-duration and frequent episodes

Figure 3: Similarity of two periods of daily life when using
all long-duration and frequent episodes

It can be noticed from Figures 2 and 3 that the proposed
method can compare two periods of daily life correctly. The simi-
larity of the two periods, which the two respective subjects spent
in the same way, is high, whereas that of different daily lives is
low. When only maximal episodes are considered, the similarity
of similar daily lives is higher than that of different daily lives.
The error ratio, which we define as the ratio of cases in which
the similarity of similar daily lives is smaller than that of dif-
ferent daily lives for each participant, was 0%. This means that
the proposed method using only maximal episodes can compare
two periods of daily life correctly. On the other hand, the sim-
ilarity becomes high when all episodes are used even for dif-
ferent daily lives. The error ratio when using all episodes was
43%. This means that we cannot correctly compare daily lives in
many cases when all episodes are used. Note that non-maximal
episodes are included when considering all episodes. A non-
maximal episode is a sub-episode of multiple maximal episodes.
This means that a non-maximal episodes is a part of multiple be-
haviors. Therefore, even if a maximal episode is long-duration
or frequent in one period, its sub-pattern often becomes long-
duration or frequent in two different periods. This trend be-
comes higher as the length of an episode shortens.

Next, we evaluated the effect of using both long-duration and
frequent episodes. Figures 4 and 5 show the similarity between
two periods of daily life when using only long-duration or fre-
quent episodes.

Figure 4: Similarity of two periods of daily life when using
long-duration episodes

Figure 5: Similarity of two periods of daily life when using
frequent episodes

Figures 2, 4, and 5 show that the range of the similarity of
daily lives increaseswhen using only either long-duration or fre-
quent episodes. In particular, there are cases when the difference
between the similarity of similar daily lives and that of different
daily lives is bigger providing that only long-duration episodes
are used. However, the lowest similarity value of similar daily
lives decreases, and the maximum similarity value of different
daily lives increases, which results in wrong comparison of daily
lives. The error ratios when using only either long-duration or
frequent episodes were 0.9% and 8%, respectively. This means
that daily lives cannot be compared correctly when using only
one of the episode types. The most accurate results can be at-
tained when using both long-duration and frequent episodes,
even if accuracy for one of them is low.

8 CONCLUSIONS
In this study, we proposed a method for comparing two periods
of daily life based on episode mining of a lifelog of motion data.
Conventional episode mining algorithms can extract frequent
episodes, which correspond to frequently occurring behaviors.
To characterize a human daily life, behaviors lasting for a long
period of time are also important. Hence, we proposed an algo-
rithm for mining long-duration episodes, which are evaluated
based on their total duration rather than frequency. In this way,
long-duration episodes with low frequency can be extracted.



The proposed method for comparing two periods of daily
life uses both long-duration episodes and frequent episodes.
For global long-duration and global frequent episodes extracted
from the entire motion data, local long-duration episodes and
local frequent episodes are selected for each period. Then, the
similarity between two periods of daily life is calculated based
on the sets of local long-duration and local frequent episodes for
each period. By using onlymaximal episodes, ourmethod avoids
using redundant episodes. Experimental results on real-life data
showed that the proposed method can correctly compare peri-
ods of daily life.

In this paper, the time slot during which an episode persists
is not considered. In the future, we plan to extend our method
to distinguish episodes using time slots, during which a pattern
persists.
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